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Several topics are studied concerning mathematical models for the unidirectional propagation of long waves in
systens that manifest nonlinear and dispersive effects of a particular but common kind, Most of the new material
presented relates to the initial-value problem for the equation

Upt U+ Uty — Uy = O, (tI)

whose solution u(x,t) is considered in = class of real nonperiodic functions defined for — o < x < o0, £ 2 0. As an
approximation derived for moderately long waves of small but finite amplitude in particular physical systems, this
equation has the same formal justification as the Korteweg—de Vries equation

Y+ U+ U, -t Ugpy = 0: (b)

with which («) is to be compared in various ways. Tt is contended that {a) is in important respects the preferable
model, obviating certain problematical aspects of (5} and generally having more expedient mathematical properties.

‘Lhe paper divides into two parts where respectively the emphasis is on descriptive and on rigorous mathematics,
In §2 the origins and immediate properties of equations (e} and (b} are discussed in general terms, and the com-
- parativeshortcomings of (b) arc reviewed. In the remainder of the paper (§§ 3, 4) — which can be read independently

of the preceding discussion — an exact theory of (a) is developed. In §3 the existence of classical solutions is proved;
ard following our main result, theorem 1, several extensions and sidelights are presented. In § 4 solutions are shown
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to be unique, to depend continuously on their initial values, and also to depend continuously on forcing functions
added to the right-hand side of {(g). Thus the initial-value problem is confirmed to be classically well sct in the
Hadamard sense.

In appendix 1 a generalization of (#) is considered, in which dispersive effects within a wide class are represented
by an abstraci pseudo-differential operator. The physical origins of such an equation are explained in the style of § 2,

two examples are given deriving from definite physical problems, and an existence theory is outlined. In appendix 2
a technical fact used in § 3 is established.

1. INTRODUCTION

The equation studied in this paper is useful in that it describes approximately the unidirectional
propagation of long waves in certain nonlinear dispersive systems. Such also is the well-known
equation of Korteweg & de Vries (1895), concerning which a great deal of new theory has
appeared in recent years (see, for instance, Gardner, Greene, Kruskal & Miura 1g967; Miura
1968; Miura, Gardner & Kruskal 1968; Lax 1968). Under the assumption of small wave-amplitude
and large wavelength, the K.dV equation was originally derived for water waves and it is
similarly justifiable as a model for long waves in many other physical systems. It has been used
to account adequately for observable phenomena such as the interaction of solitary waves and
dissipationless, undular shocks. Our main contention in this paper, however, is that the equation
under investigation, which stands as a rational alternative to the K dV equation, is in important
respects a more satisfactory model.

When the physical parameters and scaling factors presented in a particular example are
appropriately absorbed into the definitions of the dependent variable # and the independent
variables x and £, which are respectively proportional to distance in the physical system and to
time, the KdV equation is obtained in the tidy form

ty Uy Uy F U, = O (1.1)

A further reduction, removing the second term of (1.1), may be made by taking ' = x—tand fas
independent variables. Equation (1.1}, or its equivalent without the second term, is commonly
taken as the starting-point for mathematical studies of long-wave phenomena, although facts
with considerable theoretical significance are already entailed in the derivation of (1.1). Thus
the condensed form of the KdV equation tends to disguise the meaning of the theory of the
equation with regard to the original physical problem. In § 2 we shall review the essentials of the
derivation of the KdV equation in particular physical examples, and we shall point out certain
theoretical difficulties associated with the equation which arise spuriously, being irrelevant to
the original problem. It will be argued in § 2 that in all examples the assumptions leading to the
KdV equation equally well justify the equation

ut+ua;+uuz—urxt; =0 (1'2)

as a model for describing long-wave behaviour, and this alternative obviates the difficulties in
question. We shall refer to {1.2) as the regularized long-wave equation, reflecting in this term our
view that (1.1) is an unsuitably posed model for long waves.

The preferability of (1.2) over (1.1) finally became clear to us after attempting to formulate
an existence theory for (1.1), respective to ucnperiodic initial values u(x, 0) defined on the
unbounded interval (—cc, ). Notwithstanding the many impressive and seemingly useful
properties of solutions of (1.1) that have been demonstrated in recent work, in respect of the
central problem of existence the equation poses grave technical difficulties which exclude the
possibility of neat results being obtained. Although probably not insuperable, these difficulties
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appear disproportionate to the status of the equation as an approximate model for long waves.
"The fact that, in contrast, existence and stability theory for (1.2} is essentially straightforward is
perhaps the most persuasive evidence that (1.2) is better founded than (1.1) as a rational model.

For the KdV equation, the queétion of the existence of periodic solutions corresponding to
periodic initial values was considered by Sjoberg (1970}, but his arguments appear open to
question in several respects.t He suggested that his method of analysis might readily be extended
to the problem of non-periodic initial values defined on (oo, 00}, but a little study shows this
suggestion to be unfounded: the type of argument used by him rests crucially on the assumption
of a bounded domain of definition. A comparable investigation of thc KdV equation has been
made by Temam (1969}, a full account of whose work may be found in a book by Lions (1969,
ch. 3,§4). Temam proved the existence of periodic solutions by the method of parabolic regﬁlari—
zation, first modifying the equation by the addition of a term e, which ensures good propertics
of solutions, and finally letting ¢ - 0in the results for the modified equation. The proof developed
by Temam is very intricate and he made no claim that it could be extended to the initial-value
problem on the infinite interval. A global existence theorem relating to the problem on the
infinite interval has been stated by Kametaka (1969) in a short note, but the detailed proof was
deferred to a later publication which we have not yet seen.

In § 3 the existence of non-periodic solutions of the initial-value problem for (1.2) is proved.
First, a fixed-point theorem is used to establish existence in the small (i.e. over a sufficiently small
interval of time following the initial instant), and then the result is extended to arbitrary time-
intervals by appeal to a property that is to be introduced in the next paragraph. In §4 the
uniqueness of solutions is demonstrated, and then stability properties of the regularized equation
are studied. It is shown that solutions depend continuously on their initial values, and that the
effects of small corrections to the equation remain small over all time-intervals such that this
might reasonably be expected. The latter property appears particularly important in that it
ensures the validity of the equation as a physical approximation. In appendix 1 a generalization
of the problem at issue is reviewed, relating to examples of physical systems in which the dispersion
of long waves cannot be modelled by a differential equation. In place of (1.2) the equation in
question 15 g+t 4wty + (Hu)y = 0,
where the linear operator H belongs to a class of pseudo-differential operators.

The arguments developed in §§ 3 and 4 depend in large part on the following simple property
of solutions u(x, ¢) of (1.2). We provisionally assume

(i) that Uyl Uy > O 28 % —> 400,
and (ii) that E(u) = j Y e rad) de O @3)

t Specifically, his statement of an existence theorem is somewhat indefinite and his proof appears incomplete,
Considering the x-interval [0, /] as one period and taking in the first place a suitably small time-interval [0, 4], ke
constructs a sequence of periodic functions which is shown to have a limit in the class of functions u(x, ¢} which are
differentiable with respect to  and whose first three derivatives with respect to x belong to L;(0, ). This limit would
be a classical solution of the K dV equation if it had appropriate differentiability properties, but these are not
established. In fact Sjéberg does not make clear in his paper what me.iag is attached to the term solution. Con-
sidering the existence of a solution to have heen established for small times, Sjdberg demonstrates existence on an
arbitrary time-interval by assuming further differentiability with respect to time and using certain invariant
functions of solutions as discussed by Miura et al. {1968). The prool of the invariance of these functions seems to
depend, however, on the existence of spatial derivatives of higher order than is established by Sjgberg.
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exists. These conditions will be confirmed later under appropriate assumptions on the initial
data. When (1.2) is multiplied by # and then integrated between ¥ = — R and x = R, an integra-
tion by parts of the final term on the left-hand side gives

It =R
f (auy +u,u,) dx+ [%ug + 4t — uuzt] = 0. (1.4)
—-R . L= I3 )
Because of (i) the integrated terms vanish in the limit as R - oo, and hence we have
® LdE(x
f_m (v + gy, dx = 3 d(t ) 0.
Thus E(u) = const. (1.5)

Using a customary designation we shall refer to the functional E(u} as the energy integral,
although it is not necessarily identifiable with energy in the original physical problem. Note
that the assumption E(z) < oo means that u(x, ) is for any ¢ an element of the Sobolev space
Wi( — o0, 00}, which consists of square-integrable (L,) functions with generalized first derivatives
that are also square-integrable: the norm of this function space is |u} = /E(z) (see Smirnov 1964,
§§112, 114). Itis well known that W}isembedded in the space C of bounded continuous functions
(Smirnov, p. 340, theorem 1): that is, if we ignore the equivalence of functions differing from
u only on sets of zero measure (as we justifiably can for all present purposes), then E(u) < o
implies u to be a continuous and bounded function of x on {— o0, ). In fact one can show by a
simple argomentt that '

s ()| < VEG@). (1.6)

Another invariant nonlinear functional of solutions of {1.2} is reported in a paper by one of us
(Benjamin 1972, appendix B) dealing with the stability of solitary waves,

Other concepts from functional analysis will be introduced where they are required in §§ 3
and 4, and a glossary of special function spaces used in the analysis may be found at the end of
the paper. Partial differentiation will mostly be denoted by subscripts, as exemplified in (1.1)

and (1.2}, but use will also be made of the alternative notation 9, 9, when the connotation is
thereby made clearer.

2. DISCUSSION OF APPROXIMATE EQUATIONS FOR THE
EVOLUTION OF LONG WAVES

‘To put the contribution of this paper into focus, we need first to recall the principles of the
derivation of the KdV equation in physical examples. This is 2 matter that has been discussed
previously by many writers, including Broer (1964), Benjamin (19674), Meyer (1967) and Su &
Gardner (1969).

The details of the derivation differ, of course, in different examples, but in general the essentials
are as follows. We use the notation z* for the dependent variable as originally presented by the
physical problem, likewise x* and ¢* for physical distance and time, The first essential property
of the systems in question is that dispersive effects on nfinifesimal waves vanish in the limit as
wavelength becomes infinite, and the limiting phase speed is a constant ¢, > 0. Thus, respecting

1 Considering the integral of the non-negative function (#—u,)2. By considering the Fourier transfofms of the

L, functions « and u,, and using Parseval’s theorem for integrals, one may derive an estimate sharper than (1.6) in
3 s g g Y P

that a factor 2~ multiplies the right-hand side (cf. Benjamin 1972, §3}. But {1.6) suffices for present purposes, and is
preferred for the sake of tidiness.
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infinitesimal waves of extreme length, propagation in the 4 x* direction is described by the
equation U+ Cgtlhy = 0, (2.1)
whose general solution is an arbitrary differentiable function of £* — ¢ ¢*. It deserves emphasis
that the assumption of unidirectional propagation, introduced with obvious meaning here, will
be 1o less essential to the modifications of (2.1) presently in question. (We should note that the
unidirectional nature of the present model equations 1s generally not essential to the original
physical systems which these equations are meant to simulate approximately, so that special
justification may be needed for this attribute of the modelling. Such justification is to be found
only in the context of particular physical problems, however, and we shall not go into this aspect
here.) In certain applications to nonlinear dispersive systems {e.g. to water waves of tidal pro-
portions), equation (2.1) already has some validity as an approximation for real waves of
sufficiently small amplitude and great length; but it is not a valid approximation. over very large
times, during which nonlinear and frequency-dispersive effects can accumulate to a significant
level. Accordingly, the object of first-order theories improving on this rudimentary approxima-
tion is to establish corrections to {2.1) which represent with a reasonably extended range of
validity, first, nonlinear effects on waves of finite but small amplitude and, secondly, dispersive
effects as suffered by waves of finite but large wavelength. Although for a self-consistent theory
allowance has to be made for the two kinds of small effect simultancously, the outcome of such
theories can generally be anticipated by considering the two effects separately. That 1s, in a first
approximation each is separately accountable by a small correction added to (2.1}, and higher-
order error terms whose estimation would entail consideration of interactions between the two
appear negligible in this approximation.

If the effects of finite wavelength are ignored, it is found, as another general attribute of the
systems in question, that small nonlinear effects on waves propagating in the + x* direction are
representable approximately in the following way. Whereas according to the linearized equation
(2.1} all specific values of u* arc propagated along characteristics with the same velocity
dx* [di* = ¢, at the next approximation the characteristic velocity becomes dependent linearly

on u*: thus 1 /dx*
—\ = = 14 bu* 2.2
Lo (dt* )u* = const. ’ (2:2)

where & is a constant. This property generally depends on |bu*] being small, so we clasify its
meaning by writing
u* =el (e>0), (2.3)

and considering the scaled dependent variable U to be of unit order of magnitude. The validity-
of (2.2) then rests on the conditions that the amplitude parameter ¢ is sufficiently small (¢ < 1)
and that the implicit error is o(¢}. In fact the error is gencrally found to be 0(62) After -this
substitution, (2.2) is precisely equivalent to

U 4 oo Ups e, UU e = 0, {2.4)
which we can regard as the improvement on {2.1) that accounts approximately, to O(e), for
- nonlinear effects (cf. Lamb 1932, §187).

If, on the other hand, the cffects of finite amplitude are ignored, the (lincarized) theory of
travelling waves can generally be developed without restriction on wavelength. In respect of
simple-harmonic. waves represented by #* = aexp (igt—ikx), the properties of the physical
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system are found to determine a dispersion relation between frequency o and wave number &, and
this may be obtained explicitly, or at least implied, in the form

T = ke(k), (2.5)
where the phase velocity ¢ is expressed as a function of . The function ¢(x) is necessarily even and
is generally positive for all , so that only waves travelling in the + x* direction are represented
as above. As already explained, we have ¢(0) = ¢;. The result for simple-harmonic waves may be
generalized by Fourier’s principle, on the assumption that the solution u* (x*, £*) of the linearized
problem and its derivatives are, for each t*, functions of x* on (~ o0, ) to which the Fourier
integral theorem is applicable. Thus one infers that * satisfies the equation

i+ o(Lu¥),.. = 0, (2.6)
n which L is the linear transformation defined by
. 1 w ) f;(f\‘) Lt £ ;5% . ) >
Lu* = ﬁf—w f_m e € u* (£, %) dE dx. (2.7)

The next step is to establish an approximation to L valid for long waves.
For the systems in question, the essential property used at this stage of the argument is that
¢(«) has a smooth maximum with non-vanishing curvature at & = 0.} That s, an approximation

for sufficiently small « is 6(K) = co(1 — a2c?), (2.8)
where e = —3"(0) > 0.
This suggests the introduction of the scaled independent variables
X =etx* T =elgyt¥, (2.9)
and the substitution u* = (¢/b) U(X, T") which transforms (2.6) into
Up+ (LU x =0, (2.10)
with LU= f : f :) %Qeim"gw(s, T)dEdK. (2.11)

The simplest argument here, which is essentially the one that has most commonly been used
in specific examples, supposes that all X-derivatives of {7 (X, T') are of the same (unit) order of
magnitude as U itself. It also has to be assumed in the present approach that these derivatives
are square-integrable on (—o0, 00}, so having Fourier transforms. Then, if the even function
¢(tK)/c; is expandable as a Maclaurin series

2 w
6(62]{) =14 . E AnGﬂKzn, (AJ. = —OLZ), (2'12)
0 n=]1

which is absolutely convergent for all ¢3X, the expression (2.11) is formally equivalent to
. o
LU=U+ 3 (~1)md, e 0%, (2.13)
n=1 .
which for ¢ € 1 will be a rapidly convergent series by virtue of the absolute convergence of the
series (2.12) and the assumption about the magnitudes of the derivatives of I/, Truncating (2.13)
at first order in €, we have the approxiniation
LU= U+ealUyy; (2.14)
i For example, the form of ¢(x) applicable to surface waves on water of dépii A is

, tanh xh
¢ik) = ol - &h

) = 6y{1— S{RAYE+ 2 R T L,

where ¢, = (al)¥.
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and so (2.9) becomes

UptUgtealUy vy =0, (2.15)
which we can regard as the improvement on (2.1) accounting for dispersive effects to first order
in €.

The foregoing explanation of the approximate dispersion equation {2.15) perhaps suffices to
indicate essentials. It is worth noting, however, how {2.15) can be justified more precisely and
at the same time the assumptions about the long-wave solutions U of (2.10) can be weakened
considerably. Considering the remainder left after the approximation (2.14), that is,

AU =L U-U—-ea?Uyy,

we wish to establish that (AU) y is O(e?), so presumably being insignificant compared with the
terms in (2.15) if ¢ is sufficiently small. The definition (2.11) implies that

A= o f * J(@K) EXO(K, T)dK,
where U (K, T) is the Fourier transform of U(X, T) in X and

vi{k) = 6—(5)- N
o

Hence, by use of the inequality (1.6) combined with Parseval’s theorem, it follows that

1 o o 3
sup |(AU) ] < {(,—J (1+K2) K2|AU[2dK}
—w< X <o T ) —w ‘
- [%r f © (K (K2 4+ KY |ﬁ|2d1<}*.

In real examples ¢(x) is a positive function decreasing monotonically with increasing |«], and
accordingly a finite constant B can be found such that |y(«)| < Bkt for all x. Evidently the least

~ possible value for such a constant is B = {1/4!) ¢(0), but in several examples the authors have
* tested this value suffices. Thus we conclude that

o A %
sup [(AU)XlsezB{%rf (K1°+K12)|U|2dK%]

—wo< X <o
=¢?B ——-1 o + 2 aX :
€ on | _ @ ( X 63‘) ‘

A sufficient condition for (2.14) to be a valid approximation for small e is, therefore, that both the
fifth and sixth derivatives, Uy and Uy x, are square integrable. This implies that U 5 is bounded,
which is obviously a necessary condition.

{Tt should be acknowledged at this point that in other examples of physical systems the
" ‘dispersion relation does not admit a small-x approximation in the form (2.8), so that the
‘present conclusions do not apply. The general case will be discussed in appendix 1.)

Having obtained (2.4) and (2.15) as the respective first-order approximations by allowing
separately for small nonlinear and dispersive effects, we may plausibly argue that an approxima-
tion accounting simultaneously for both factors is given simply by combining the ¢ terms from
(2.4) and (2.14). Thus, changing to the scaled variables X, T'in (2.4), we anticipate the equation

Up+Uyx+e(UUx +a*Uxxx) = 0, (2.16)

which has been obtained in various examples where a unified approximation for nonlincar
and dispersive effects has been developed. The parameter ¢ having served its purpose, the
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approximate cquation (2.16) may be reduced by the introduction of the dimensionless but

unscaled variables
x=c¢tX|e = x¥[a, t=etT]o= cot*/a,} (2.17)
u=ell = bu*,

This gives us the tidy form {1.1) of the KdV equation; butin thus dispensing with ¢ we recognizc
a need for caution, because the essential conditions on the magnitudes of the dependent variable
and its derivatives are now hidden.

A point of central importance to our discussion is that, to the first order in ¢, (2.15) is equi-

valent to Up+ Ux+e(UUy — @2Ugxq) = 0, (2.18)

since Uy = — Uj to zero order. Hence the same reduction, in terms of the variables (2.17), leads
to the alternative equation introduced in § 1, namely
Uty bt — gy = 0. {2.19)
Tt is worth further emphasis that, as an approximate model for long waves of small amplitude,
(2.19) has essentially the same formal justification as the KdV equation.| Significant differences
appear, however, with regard to basic mathematical and computational aspects of the two
equations, so that their effectiveness as models can in several respects be markedly contrasted.
To recall the kind of question generally arising in the assessment of such mathematical models,
consider the requirement that an initial-value problem modelling a physical situation should be
well set according to Hadamard’s definition (1923). That is, for some general class of initial data,
a unique ‘classical’ (i.c. appropriately differentiable) solution should exist which depends
continuously on the initial data. Another such practically important requirement isanadequately
extended range of validity: the error implicit in the model, when represented by a small term
added to the approximate equation, should have for a reasonably long time only a small effect on
the solution. A further, obviously desirable element of good mathematical modelling is that the
latter propertics should be demonstrable without undue difficulty, and it is particularly in this
respect, we contend, that the regularized long-wave equation (2.19) is preferable to the KdV
equation. A satisfactory theory for the KdV equation, establishing the desirable propertics
mentioned above, is not yet available, and it would certainly present a much more difficult task
of analysis than the theory for (2.19) that is developed in the subsequent sections of this paper,
We continue the discussion here by examining several problematical aspects of the KdV
equation, which are secn to be obviated by the regularized equation.

Shortcomings of the K dV equation

It is not intended to discuss in any detail the problems of computing solutions, but in passing
a few comments on this aspect are deserved. Numerical solutions of the regularized equation
(2.19) have been presented by Peregrine (x964), who was careful to choose initial data compatible
with the assumptions of the model, so ensuring that his solutions remained physically relevant.
His finite-difference scheme gave little trouble. On the other hand, many numerical studies of the
K dV equation (1.1) have been reported, but most of this work is open to criticism on the grounds
that the values of the solution z and its derivatives were allowed to be unduly large. A common

# In the problem of long water waves, an approximate equation governing unidirectional propagation is
commonly derived by way of the so-cailed Boussinesq equations, a pair of simultaneous partial differential equations

in which the dependent variables are the vertical displacement of the free sweface and the mean horizontal velocity

of the water. In this approach, equation (2.19) in fact comes out more “naturally’ than the formally equivalent
K dV cquation (cf. Peregrine rg64). '
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source of difficulty seems to be that, for von Neumann stability of the finite-difference scheme,
the spatial step-length Ax and time step Af need to be chosen so that (Ax)*[At s a fairly large
number, say about 20,1 but in addition the values of || AtjAx have not to be too small. Conse-
quently rather large values of ju} (sometimes considerably greater than 1} have had to be allowed.
The physical relevance of the results is then questionable, of course, in that the validity of the
K dV equation generally depends on the condition lu| < 1.

Much recent work on the KdV equation has been concerned with associated conservation

laws in the form ) .
T+ X, =0, (2.20)

where the ‘density’ T and ‘flux’ X are polynomials in the solution # and its x-derivatives. The
KdV equation itself has this form (i.e. Ty =u, Xy=u+lu?+u,), and progressively more
complicated pairs T, X, have been given explicitly fromn = 1ton = 9 by Miura et al. (1968)
The assumption that X, — 0 as x — + oo implies that

fm T,dx = const., - (2.20)

and thus one has a functional that for solutions of the KdV equation is invariant with time.
It has been shown by Miura ef al. that, for C* solutions which vanish together with all their
x-derivatives as ¥ — + oo, there exist infinitely many such invariants, and this remarkable fact
appears at first sight very favourable to the prospects of regularity theory for the KdV equation.
As regards basic questions of the existence of solutions corresponding to general classes of initial
values, the outstanding potentiality of invariance properties like (2.21) is that they may provide
useful @ priori estimates, such as may enable local (small-time) results to be extended to global
results. The apparently favourable situation in having any number of these properties available
is somewhat deceptive, however, as the following simple example shows.

Consider the conservation law in the form (2.20) obtained by multiplication of (L1) by u:
that is, T, = Ju?,

Xp = 3+ Jud - wt, — b2,

If the derivative 8, X, exists (at least in a generalized L, sense}, so that 77 is correspondingly
differentiable with respect to ¢, and if X, vanishes as # — + oo, then we have

c%fm 2udx = 0. (2.22)

_— oo

Thus the L, norm of a sclution keeps its initial value. But there are, of course, L, functions for |
which X is not differentiable in even the L, sense, and for which none of the four components of
X, vanishes at infinity. The invariant (1.5) for solutions of the regularized equation presents a
similar situation in that it depends on certain conditions at infinity being satisfied, but these are
readily verifiable by 2 local existence theory (see § 3). In contrast, the conditions justifying (2.22)
appear very difficult to establish as a consequence of the initial data alone. We note that they

might be established by showing that higher-order functionals in the form (2.21) remained

bounded; however, at least the next three (in the hicrarchy defined by Miura et al.) would need
to be so restricted, and the invariance of these depends in turn on further differentiability require-
ments and conditions at infinity.,

T This serves ta obliterate spurious short-wave behaviour as discussed below.

Vol 272, Al
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Tt is helpful to recognize that the main difficulties presented by the K dV equation arise from
the dispersion term and so are common to the linearized equation

Up+ Uyt Uy = 0, (2.23)
which can more readily be used to illustrate their nature. First note that when the solution of
{2.28) is expressible as a summation of Fourier components in the form F(£) etwt—1k2 the dispersion‘
relation determined by (2.23) is

w=k—k3,
which corresponds, of course, to the approximation (2.8) justified only for small wavenumbers.
Unless the spectrum F(k) is cut off beyond small values of £, the solution therefore contains
essentially artificial features, and it is the unduly potent behaviour of these that makes the model
troublesome. The phase velocity w/k becomes negative for 2 > 1, in contradiction of the original
assumption of forward-travelling waves. More significantly, the group velocity
dofdk = 1 -3k

has no lower bound, which means that no limit can be assigned to the rate at which fine-scale
features of the solution are transmitted in the —x direction. This can be troublesome com-
putationally even when the initial waveform is genuinely long; for round-off errors will generally
add small-scale features with which the model will then have to contend.

Let us consider the solution of {2.23) corresponding to given initial data on the whole real
axis x; that is, we require u(x, #) to satisfy (2.23} for £ > 0, —c© < » < o0, and to have the property
u—> g(x) as £} 0, where g{x) is a given function. It may readily be confirmed that the solution is

u==E%ﬁJTL)Ai(£§é%i)g@)dg (2.24)

provi&ed this integral exists, Here Ai denotes the Airy function, normalized so that
f Ai(z)dz = L.

In keeping with the property of the group velocity noted above, the Green function appearing in
(2.24) has fiercely oscillatory behaviour for large negative arguments: specifically, the asymptotic
form in questionis Ai( —z) ~ T—#z-%sin (32} + Lw). Consequently, considered as a transformation
of the initial waveform g(x), the expression (2.24) has a lack of continuity and tendency to-
emphasize short-wave components that is unnatural in respect of the original physical problem.
In the literature on long waves, various example solutions of (2.23) have been given which
incidentally feature short-wave components, but for which, accordingly, special considerations

have to be made {cf. Jeffreys & Jeffreys 1966, § 17.09; Benjamin & Barnard 1964, §4). In fact, to
~ impart some degree of realism to such examples, it seems essential that short-wave features of the
initial waveform should be put at or behind its main front, not far ahead. The short waves are
then soon transmitted far to the rear of the evolving wave-front, which becomes the part of the
solution that is meaningful as a physical approximation. In general, however, short waves
introduced in the initial waveform may as they evolve become concentrated in such a way as to
make the solution totally unacceptable. For example, consider

U(JC) . ] 1(_ﬂx)
> - (1 s xz) m?
with # > 0and § < m < }. Thisis a continuous function which is also an element of Ly( — oo, 00).

But one finds that at the point x = { the solution (2.24) does not exist in the limit as ¢ » 1/(34%).
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We now observe that the lincarized version of the regularized equation (2.19) presents none

of these awkward propertics. The dispersion relation determined by it is seen to be

0=5 (2.25)

144% )

according to which both the phase velocity wfk and group velocity de/dk are bounded for all £,
Moreover, both velocities approach zero for large &, which implies that fine-scale features of the
solution tend not to propagate. In other words, the model has the desirable property of responding
only feebly to artificial short-wave components that may be introduced in the initial waveform
(or in a computational procedure), It will be verified precisely in § 3 that the same property is
possessed by the nonlincar model, equation (2.19).

A comparison deserves to be made at this point with a type of model proposed by Whitham
(1967), in which the exact (linear) dispersive properties of a system are represented but nonlinear
effects are simulated only by the first-order approximation appropriate to long waves. Thus,
after introducing dimensioniess variables, one obtains the equation

up+ (L), + sty = 0, (2.26)

where L is the linear operator defined in general by (2.7). Being exact, the linearized form of this
equation has properties like those just mentioned, which were pointed out to arise from the
artificial but well-behaved dispersion relation (2.25). Unlike (2.19), however, the nonlinear
model {2.26) does not preserve such good short-wave properties. Whereas dispersive effects
disappear for very short waves, the artificial nonlinear effects do not; and so for these waves there
is a tendency towards shock formation — in the same manner as is familiar for extremely long
waves — which is unresisted by dispersion. Tt must be expected that for any initial waveform with
significant short-wave components, the solution of (2.26) will soon cease to be single-valued.
To compare (2.19), it is appropriate to introduce a new dependent variable defined by the
relation V=U—lgy (U{iq))t) = u(ioo, t) = 0)9
the inverse of which is

o
u= f pelesly(s, ) ds

. . = K», sav.
Equation (2.19) then takes the form

v, + (Kv), + (Kv) (Kv), = 0. ' (2.27)

Thelinear operator K is, of course, just that corresponding to the dispersion refation {2.25), which
we saw to indicate that dispersive effects on short-wave components become progressively feebler
with their fineness of scale. We now see from (2.27) that nonlinear cffects are correspondingly
enfecbled, so that the unsatisfactory short-wave behaviour of the model (2.26) does not arise.

3. EXISTENCE THEORY FOR THE REGULARIZED EQUATION
Directing our attention now to the model equation that was introduced as (1.2) and {2.19), we
shall investigate the initial-value problem for it on the unbounded domain R (i.e. —co < x < 00),
The existence of a classical solution] will be established upon the assumptions that the initial

-1 By this term we mean a solulion that is continuously differentiable to the orders required by the pariial
differential cquation, and satisfies the equation pointwise in a given domain of x and &
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waveform u(x, 0) is smooth enough for the partial differential equation to be meaningful, that
this waveform is cvanescent in a certain way at infinity, and that the initial ‘encrgy’ — as
measured by the functional (1.3) — is finite. Following a common procedure, we shall first prove
a local existence thecorem (i.e. for a sufficiently small time-interval} by means of a fixed-point
principle; and properties of the solution thus established will then be shown to substantiate an
energy cstimate which provides a starting-point for a further application of the local theorem.
It will be seen that the argument can be repeated indefinitely, so establishing the existence of a
solution over an arbitrary time-interval. After the presentation of our main result (theorem 1),
several sidelights and extensions will be discussed. .

To provide an amenable version of the problem, the differential equation (1.2) first needs to
be converted by forinal operations into an integral equation, Rewriting the equation as

(3—83) ue = — 0 (u+ Ju?),
we may regard it as an ordinary differential equation for %, the formal solution of which is
w=—1 f e o8 Qfu(E, 1) + §uP(E, 1)} dE,

After a formal integration by parts, this becomes

= | Kx—f) (s hud) dE,

with | K(x) = L(sgnx) eie,
from which there follows
i o0
wot) =g+ [ [ Kir-5 e ) + 3 nyagar, (3.1
where g(x) = u(x, 0).

We write this integral equation for short as
u=Au =g+ Bu. (3.1)

Our aim, achieved through a sequence of lemmas, is to show subject to suitable restrictions on
the function g(x) that (3.1) has a solution which is simultaneously a solution’ of the original
differential equation. _

Notation. We write €[ = C{Rx [0, T1)] to denote the class of functions v(x,t) that are con-
tinuous and uniformly bounded on the infinite strip R x [0, 7] (i.c. on the set of points (x, ) such
that ~ 00 < x < 00,0 < £ £ 7). An instance of this function class is considered in the proof of the
following lemma as a Banach space. We also write @ for the narrower class of functions v(x, )
such that oofve®y for 0 < i <, 0 <j < m. These and other special symbols are listed in the
glossary at the end of the paper. When % appears as a subscript to the norm symbol | I, indicating

that the norm is for the space %, the further subscript 7'is omitted. In all cases it will be clear
from the context what i-interval is implied.

Lemma 1. Let g(x} be a continuous function such that
sup |g(x)] < & < oo, (3.2)
zeRR
Then there exists a £,(4) > 0 such that the integral equation (3.1} has a solution, satisfying

#(x,0) = g(x), which is bounded and continuous for xR and 0 < £ < 4,
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Proof. Consider the Banach space %, of continuous and hounded functions defined on R x [0,%,],
with the norm

folle = sup fo(x )]
zelk
0<I<t,
For the moment, the positive number ¢, entailed in the definition of €, is left arbitrary. We first
notice that, for any »,, v, €%, and any xeR, [0, #,],

t fw
|Avy— Avy) = | By, — Buy| < |1u1-v2|1,6,{1+%|1ul+yz||@}fo L,, (K(x—£)| dEar

= oy —vglle {1+ 3 Jos +va]l 4} ¢

< o= valle {1+ F e+ 3 vl o} &
(Here the first incquality is evident from the factorization 12 — 12 = (v, —#,) (v, +1,), and finally

the triangle inequality for norms is used.) Hence, taking the supremum of both sides for x € R and
te{0, £, we obtain
Avs—Avsle < to(1+% loal e+ 3 [allg) on—vs

o (3.3)
from which it can be confirmed that the operator A is a continuous mapping of the space %, into
itself. Moreover, it follows that the mapping of the ball |o], < R satisfies a Lipschitz condition
with Lipschitz constant § < 1if

L{1+R) <0 < L, _ (3.4)

"This condition on ¢, and R also implies that | B, < @], as appears when we put v, = 0 in
(8.3); and from this combined with the condition (3.2) of the lemma it is seen that the ball is
mapped into itself if; in addition to (3.4),

b<(1-8)R. (3.5)

The conditions (3.4) and (3.5) together mean that the mapping of the ball is contractive. Therefore,
according to the principle of contractive mappings (Smirnov 1964, § 86), these conditions ensure
that A has a unique fixed point » in the ball o], < R.
Tt merely remains to check that 0, R and #, can be chosen to satisfy (3.4) and (3.5) simul-
taneously. For instance, take € = } and R = 25, so that (3.5) is satisfied. Then any positive value
"ty < 1/(2+45) is seen to satisfy (3.4). Thus; as the fixed point of A is a solution of equation (3.1),
the lemma is proven. An implication of this proof'is that the solution u is obtainable by successive
approximations starting from any element of the ball {o]l, < R. In particular, we note that the
Picard sequence {v,} generated by the formula v, = Av,_;, v, = g is convergent in %, towards
the limit .

Lemma 2. If g€ C3(R),T then any solution u(x, t) of (3.1) which is an clement of %y (for a given
T > 0} is also an element of %#* and accordingly is 2 classical solution of the initial value
problem for the partial differential equation (1.2).

Proof. We use typical “bootstrap’ arguments, exploiting the fact that u is identical with Aw. -
Under the conditions of the lemma, Au is a continuously differentiable function of . Therefore
u, exists, being given by

u = (Au); = f KO- (el 0+ B 0} d, (3.6)

T This connotes that the functions g{x), g'(x), g(x) are each hounded as well as continuous on the infinite
interval R.
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and is thus continuous in x, f and bounded on R x {0, T'}. Hence it can be argued inductively that
the mth derivative (m = 2,3, ...) with respect to ¢ also exists, being given by

= [~ K- o (e o) dg, (3.7)

and is continuous and bounded on R x [0, T]. (Ferc we use the obvious fact that #2 has the same
degree of regularity as # if « is bounded.) Since clearly the induction can be carried to any m, the
statement of the lemma concerning the f-dependence of u is verified.

Next, by dividing the range of integration in (3.1) at £ = x, we confirm the existence of Uy,
which is given hy

i 4 =] 7
U, = g'(x) +f {u+3u?) dr —f f peb=fiy 4 L) dE dr. (3.8)
Q 0J—wm

This shows that u,, is continuous and bounded, which in turn implics that the first integral on the
right-hand side of (3.8) is a continuously differentiable function of x — as obviously is the second
integral. So u,, exists, being given by _

i i m
g = ¢"(2) + f (u 2u) dr + f f K(x—£) (u+ %) d dr
0 0 —om ’

t (u+%u2)zd7+u.w—g(x), {(3.9)

.

o
and Is also continuous and bounded. For all the t-derivatives of «, and «,, continuity and
boundedness are deducible inductively as above. It follows that the solution u(x,t) of (3.1)
satisfies (1.2) pointwise in R x [0, 77}, and thus the proof of the lemma is complete.

‘Under the assumptions of the lemma the foregoing argument cannot be extended to establish
the existence of higher s-derivatives of u; for the solution evidently cannot acquire, as a function
of z, better regularity properties than those of the initial waveform g(x). It is easy to see, however,
that further differentiability conditions on g(x) will correspondingly restrict the solution.
Specifically, if geCYR) with [ > 2, then continuation of the bootstrap argument shows that
we @47 ; and this conclusion still holds if { = co. Note, incidentally, that if g is only piecewise twice-
differentiable, our argument still proves thatu — g = Bu belongs to C¥(R) for every te [0, T]. Thus
discontinuities introduced initially in u,, do not propagate. In fact they remain undiminished in
strength at their original positions, while the C? part of the solution evolves away from them. Thus,
for example, if u, , is discontinuous at # = 0, then u, (0, ¢) —u, (0~ 1) is independent of ¢, even
though {0, #), 4, (0, 7) and u,,(0%,¢) may all vary.

Our next object is to establish the invariant property (1.5} for the local solution guaranteed by
lemma. 1. For this purpose we need an unambiguous critericn whereby functions may be specified
to vanish at infinity. Accordingly, we shall say that a function »(x) defined on the whole of R is
asymptotically mdl if limn,,_., [v{x)| and lim,_, ,|v(x)] both exist and arc equal to zero, The following
two propertics of asymptotically null functions will be used:

(1) If{,} is a sequence of functions converging in the Banach space %> as considered in the
proofoflemma 1, and if each function is asymptotically null, then so is the limit « of the sequence,
"This result appears immediately on consideration of the inequality

luf < Jo, ) +lu—uv,,
which obviously must be satisfied for all xe R and all #. By choice of z targe enough, the Lu.b. of
uu—v,| can he made arbitrarily small, and [2,| can be made arbitrarily small by choice of |x| large
cnough. It follows that u must be asymptotically null.
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(i) If the function » is continuous and asymptotically null, then so are both

f :" ele-fy(E)dE  and f " K(x—£)o(g) dz.

The continuity of these two functions is . obvious, having already been considered in the proofs of
lemmas 1 and 2, and the asymptotic property of the second appears directly from the following
argument recardmg the first. To prove the required property for x — 00, we may divide the range
of integration, say at £ = £,. For x » £, we then have the estimate

=] gl.
J'_ c_lx—ilv(g)dgéc*“’f_ cﬁlv(§|d§+23uplv |-

/El
The second term on the right-hand side of this inequality can be made arbitrarily small by
choosing a sufficiently large finite value of £ £y, after which the first term can be made arbitrarily

stall by taking x large enough. The complementary property for x - — o0 may be demounstrated
in the same way.

We can now establish the following proposition: -

Lreaua 3. Ifu(x, ¢) is the solution of (3.1) assured by lemma 1, and if g, &/, ..., g® are continuous
and asymptotically null, then 8,8« is asymptotically null forall m > 0 and 0 < [ < b

The proofis immediate in the light of the aforesaid properties (i) and (ii), once it is recognized
that the solution of the integral equation is the limit of the Picard sequence given by v, = Av
v =g

"This result coupled with lerama 2 enables us to verify the tentative result (1.5): that is, for the
local solution u(x,t) the energy functional E(u) defined by (1.3) is in fact invariant throughout
[0, 2], provided it exists initially, It has been established under the assumptions of lemma 2 that
u satisfies the partial differential equation (1.2) pointwise in & x [0, £,], cach term of the equ'ation
being bounded; hence # also satisfies the integrated form (1.4) of the equation. Upon an integra-~
tion with respect to £ and an application of Fubini’s theorem (1.4) gives

n—1»

fP (u®+ul) dx-—f (g+g*) dx = — f [u+ Jud ~ wuy | B dr, (3.10)
—R —

in which the three integrals certainly exist since R is finite and by lemma 2 the integrands are all
continuous functions. Now suppose that the second integral on the left-hand side remains
hounded in the limit as R — 0. Since the integrand on the right-hand side is uniformty bounded
on the whole of R, (3.10} shows that the first integral on the left-hand side must also be bounded
in this limit. Therefore, since the integrand is non-negative, the monotone-convergence theorem
establishes that this integral exists for R — ¢o. But by lemma 3, if g and ¢* are asymptotically null,
then «, uy, 1, and u,; are all asymptotically null for 0 <€ ¢ < #,; and it follows by the dominated-
convergence theorem that the right-hand side of (3.10) converges to zero as R - oo. Thus

E(w) = f ” (w2 +u2) dx = foo (g*+g) dx

= E, say, (3.11)
throughout the interval [0, {,]. The condition that g and ¢’ are asymptotically null 15 essential
here, but we note that it does not need to he assumed separately, being in fact alrcady implied by
the assumption £, < o in combination with the assumption g € C¥R) of lemma 2. A proof of this
usclul fact is presented in appendix 2.
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Aswas noted at the end of § 1, the condition £() < oo implies that « is a continuous function of
x whose magnitude has the uniform bound E? (sce (1.6)). Thus it appears from (3.11) that u(x, £,)
provides the same set of properties that, when assumed for u(x, 0), enabled the existence of a
solution to be proved for 0 < ¢ < £, Hence the argument can be repeated any number of times,
extending without limit the time-interval over which a solution is guaranteed; and accordingly
our main result is established as follows:

. TuroreM 1. Let g(x) satisfy the conditions
O [ @rena=t <o,

() geCi(R),
which imply that g and ¢’ are asymptotically null (see appendix 2). Then the partial differential
' equation
Upt oyt ull, — Uy = 1)
has a solution u ¢ ¥%® which satisfies o
ufx, 0) = g(x).
At any £€[0, co) the functions «, u, and all their derivatives with respect to ¢ are asympiotically
null, and consequently £(x) = E,,

Commenis concerning function spaces

We now introduce some further definitions and notation which are needed for the generaliza-
tions to be discussed immediately below (as well as for § 4 and appendix 1), but which also furnish
some commentary on the preceding result. As customary, the Banach space of (equivalence
classes of ) functions w(x) that are square integrable on R is denoted by Ly(R}, and the norm of this
space is written |jw|,. We have already mentioned in §1 the so-called Sobolev space W([R)
consisting of L, functions with generalized first derivatives that are alkso L, fanctions, and we
write for the norm of this space

feolly, 2 = (3 + llwxlli)i
which is the same as £%(w) [cf. (1.8)]. A fact already used in this section of the paper and in § 2 is
that Wi(R) = C(R). )

We shall be required to consider the collection of functions J(x,t) defined on R x [0, T such
that fe Ly(R) for each ¢€[0, T, and such that the correspondence £ -» Sz, ) is a continuous
mapping of [0, 7] into L,y(R). This becomes a Banach space, say %, under the norm

Ifle = sup {f{x )] - (3.32)
0T . :

Consideration also needs to be given to the collection of functions v(x, 1) defined on R x [0, T]
which are continuous in ¢, and which for each &[0, 7] are elements of W3(R), being therefore
continuous functions of x too. This becomes a Banach space, say #,, under the norm

Jvll = OSUP fo(x, t)“l, o {3.18)

When sprcifically allowed, the domain of definition may extend to the whole f-axis: i.e, [0, 7]
becomes [0, o).

It is noteworthy that a local existence themem virtually equivalent to lemma 1 can be
established almost as readily by considering the operator A to act in the space #;, instead
of in the space %, considered in the given proof of lemma 1 (see appendix 1). The assumption
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(3.2) of the lemma has to be replaced by gfly, , = b < 00 — as indeed was done in using the lemma
to obtain our global result, theorem 1. Sufficient conditions for A to be a contractive mapping
of a ball can be found in just the same form as (3.4) and (3.5).

By appeal to the foregoing ideas the result stated in theorem I may be interpreted in another
way, which is perhaps more satisfying mathematically, The conditions (i) and (ii) of the theorem
mean that the initial waveform £(x) is drawn from the intersection of the two spaces W1(R) and
C%(R), whereas the solution u(x, ¢) belongs to the intersection of #., and the space %% noted in
the statement of the theorem. Thus the process of solving the initial-value problem may be

regarded as a mapping from the first into the second of these intersections.t This notion is
illustrated in the following diagram:

INITIAL WAVEFORMS g(x) e WHR) n C¥(R),
SOLUTIONS : u(x,t) €W, 0 €.

It can be shown (sce § 4) that the mapping represented here by the vertical arrow is unigue and
continuous, which, coupled with our existence theorem, establishes that the considered problem
is well set in the sense defined by Hadamard (1923).

The effect of a_forcing term
An important generalization of the present problem is provided by the equation
. ut+uz+uum_ux:ct =f(x> t): (3.14)
in which f(x, £) is a prescribed function, In applications this function may represent some kind of
forcing action on the physical system, whose response evolving from a given initial state is
described by the solution «. From a theoretical standpoint, moreover, the study of equation (3.14)
is important in that the right-hand side may also be considered to represent the net error entailed
In equation (1.2), (2.19) as an approximate model for some particular wave system. The error
- will evidently take the form of some functional transformation of the dependent variable u [cf. the
discussion in the paragraph following (2.15)], but an appraisal of its effect may be made by
treating it implicitly as a direct function of x and tas indicated in (3.14): in obvious respects the
following analysis is still applicable if fdepends on x and ¢ through dependence on u(x, ). As was ]
discussed in § 2, the errov has a small parameter ¢ as a factor, but its formal smaliness fore € 1is
inadequate justification for the approximate model unless (3.14) can be shown still to have strong
solutions for an appropriately general right-hand side. We shall discuss the theory of equation
(3.14) in outline only, since in many details it parallels the arguments leading to theorem 1.
We assume that f(x,7) is defined on R x [0, T, for a given finite T > 0, and satisfies the
conditions :

() fe%p, (i) fe (3.15)

Condition (i) is evidently necessary for {8.14) to have classical solutions in the sense we have
adopted, but it could be relaxed if only weak solutions were in question. Condition (i) is, as we

T The first interscetion, which is between two Banach spaces, can itself be made into a Banach space under a
suitable composite norm {e.g. the sum of the norms respective to each of the intersecting spaces). Although 2
is not a Banach space, we get one if coin the definition of the space is relaxed to any finite integer, In fact the space
©** is sufficiently restricted to delimit classical solutions of the partial differential equation (1.2): the further
differentiabilicy of solutions with respect to 4, as asserted by theorem 1, is a bonus without crucial significance.

Subject to such a restriction of definition the sccond intersection considered above can also itself be made into a
Bauach space,

Vol a72, A,
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shall see, a limitation on the “energy’ imparted by the forcing action that f represents. Note that -
an alternative to (i} and {ii) is the single condition fe %7

Counterparts to lemmas 1 and 2 can be established on the same lines as before. In place of the
integral equation (3.1), we obtain from (2.14)

v = AutCf, (3.16)
where Cf= f e B-Hf (£ 7y dEdr. (3.17)

Either of the conditions (i) or (ii) of f ensures that Cfis an element of the Banach space %;,
considered in the proof of lemma I (where without loss of generality we can assume that ¢, < 77,
and we may use either of the estimates

G lle < to e
or [CGflle < 31
the second of which follows from (3.17) by virtue of the Schwarz inequality. Again making the
assumption (3.2) of lemma 1 and adapting the previous argument, we easily find sufficient
conditions for the transformation Cf+ A on the right-hand side of {3.16) to be a contractive
mapping of the ball [lv]; < R:specifically, the conditions are (3.4) as before and, in place of (3.5),

b+{Cfle < (1-0) R.

Hence the existence of a continuous solution of (3.15) throughout a sufficiently small interval
[0, 2] follows directly. The solution is the strong limit of the Picard sequence generated by the
formula 0, = Av 1+ G, vy =g

The required regularity properties of the solution may be demonstrated as in the proof of
lemma 2. We find that if g € C*(R) and the condition (i) in (3.15) is satisfied, then #,, ,, and their
derivatives with respect to ¢ exist as continuous functions, and hence it can be conﬁrmed that u is
a classical solution of the partial differential equation (3.14).

Itremains to obtain an a priori estimate of E(u), by means of which, as before, the local existence
result can be extended over the whole of the interval [0, 7. We first note that, subject to the
condition (i) in (3.15), Cfis an asymptotically null function of x. A simple demonstration of this

-fact is provided by interpreting Gf as a convolution over R and thus recognizing that it is the
(inverse) Fourier transform of the product

PN
= f Fkr)ar

Since fe %, the Fourier transform f (£, ¢) is an L, function of & depending continuously on ¢, and
hence so is the integral in the preceding expression. Being thus the product of two L, functions,

this expression is an L, function and therefore its transform Cfvanishes as ¥ — o0, according to
the Riemann-Lebesgue theorem for integrals (Rudin 1966, § 9.6). It similarly appears that (CF)
{Cf)¢and (Cf ), are asymptotically null. Hence, by reasoning as in the proof oflemma 3, we may
conclude that, provided g and ¢’ are asymptotically null, the local solution » together with u,, oy
and u,; are all asymptotically null. Using these facts after multiplying (1.2) by « and integrating
with respect to x, as in the derivation of (1.5}, we find that

1 dE(u) J' =

2

ufdx, (3.18)

—
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provided E(u) exists. That this last condition is satisfied by the local solution can be verified by
considering the limit of E(w, ), where {v,} is the Picard sequence starting with v; = g (so that

£(v,) = E,) whose strong limit in %, is the solution; but we may suitably pass over the details.

From (3.18) there follows, by use of the Schwarz incquality,

399 il < B 1

;:6":
frorn which we infer that

BY(u) < Bh+[ /]t (3.19)
for £ > 0. Since the supremum of |u| is boundcd from above by Ei(u) [cf. (1.6)], we thus have

sup  |u(x,8)] < Ej+ | f
el
te[0,7']

2T (3.20)

which can serve as the required estimate.

The fixed-pointargument establishing local existence can now, as before, be applied repeatedly,
so that we arrive at the following result, '

Tueorem 2. Let g(x) satisfy the conditions (i) and (i1) of theorem 1, and let f(x, {) satisfy the
conditions (3.15) for a given finite 7" > 0. Then the partial differential equation (3.14) has a
solution u{x, £) e ¥3* n %7, which satisfies u{x, 0) = g(x).

Another type of initial condition, arising in problems of bore propagation
There is an important range of applications for long-wave models that is not covered by
theorem . In these problems the initial waveform converges t¢ zero for x - oo, but converges to
anon-zero constant for x -> —co. In particular, when this constantis positive, the model simulates

- the evolution of 2 bore, or positive surge, such as propagates along a uniform open channel

subsequent to the withdrawal of a partition separating stretches of water with different surface
levels. The numerical solutions of the regularized cquation computed by Peregrine (1964), as
mentioned in § 2, were in fact for just such an application. Theorem 1 is unavailing in this case, of
course, because the initial waveform is not an Z, function (i.e, condition (i) of the theorem is not

satisfied). However, a slight modification of the argument establishing theorem ! leads to a
comparable result for this case.

Let us assume that the initial waveform, say &(x), satisfies the conditions?
1y heC3(R), (i) hel,(R),
(i) Ak >0 as x-»oo, (3.21)
(iv) h->const. (£0), & >0 as x-» —oo.
We first note that by virtue of condition (i) our previous conclusions concerning local existence
{lemma 1) and regularity of solutions {lemma 2) still hold. But a new line of argument is needed
to establish a global upper bound on ||, where « is the solution of (1.2) satisfying u{x, 0) = &(x).
Substituting u(x, ¢} = &(x) +2(x, ¢), we obtain from (1.2)
(0 —v,p)e+ (A o+ 32+ ho+ 30), = 0.

Alter multiplication by v, this is next integrated with respect to x between — oo and oo, On the

T The condition, included in (iii) and (iv), that /" is asymprotically null is actually superfluous. According to the
lemma proved in appendix 2, this condition is implicd by (i) and (ii).

g-2
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assumptions that E(v) exists and that v, v,, v,, v, ave asymptotically null, it follows after two terms
have been integrated by parts that

1 4
H %ﬁi’hf (1 4B) hyp— hou }dx = 0 (3.22)
[cf. (1.4) and (1.5)]. The assumptions leading to (3.22) can now ke verified in much the same
way as with regard to (3.18), and again we may suitably pass over the details.
Writing H = sup |A(x)],
cR
we infer from (3.22) that :

3 &) < el ol ds [ o] o a

< (L+H) [holle oo+ H fo]s Jvglla

by the Schwarz inequality. Here [|o];, and |lv,|, are functions of time, and ohviously ||v]}, < E(v)
and {|o5. [|v.], € $E£(v). Therefore

% dg”) < U1+ H) B} o) 4 JHE(@),
where we have written [ = ||£,[l,. From this differential inequality and the fact that v{x, 0) = 0,
it follows that EYv) < 201+ HY) (elE ) : (3.23)

for £ > 0. The supremum of |v] is bounded from above by E#(v), and so, given any finite 7" > 0,
we have that :
sup |v(x, )] < 201+ HY) (edHT 1), (3.24)

xR
{0, 1]

An upper bound on the magnitude of the solution 2(x, £} now follows from
sup |u] = sup |k+v} < H+supio|.

Hence, essentially as before, the argument establishing local existence can be applied repeatedly,
leading to the following global result.

Treorem 3. Let A(x) satisfy the conditions (3.21). Then, for any finite 7° > 0, equation (1.2)
has a solution u(x, £) € €% which satisfies u{v, 0) = £(x), and which is such that (u— k) e %,..

Arzalytieity of solutions with respect to t
It was shown. in the proof of lemma 2 that a solution u(x,¢) of (3.1) defined on R x [0, c0) 1s
a ( function of £. In keeping with this conclusion, we shall now prove that the solution guaranteed
by theorem 1 is in fact analytic in £ That is, for any finite x, and ¢ € {0, o0), we consider the
formal Taylor series
- (t= )"
Uty = Eu [CFuloxg, 8) g, pou)

=

) (3.25)

and show that U(¢) converges to u(x,,#) in some neighbourhood of ;. Proof is achieved by con-
" firming that the Lagrange remainder in Taylor’s theorem tends to zero as m — oo.
"The successive derivatives of u with respect to ¢ are given by the formula (3.7, and we note that
0" "H(u+ 4u*) appearing on the right-hand side is just a polynomial in #, u,, ..., o 'y, all of whose
cocfficients are positive. We also observe with regard to (3.7) that
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Hence, if G, () s taken to denotc a uniform (over R) upper bound on the magnitude of the mth
derivative of # with respect to ¢, the formula (3.7) is scen to provide a succession of such hounds
related by Cu(t) = Cpua(u+iu®) (m=1,2,..).
Thus, given an upper bound €, > 0 on |u| at £ = ¢, we can compute a simultaneous upper hound
on |8fu| for any m; and the procedure for this is identical with the calculation of the mth derivative
at ¢ =t of the function ¥(¢) determined by
dVjdt = V4+3V2, V() =G, > 0. {3.26)
If moreover the hound ¢y applies uniformly in ¢, then, since the derivatives of ¥ are evidently
all positive at £ = & il V(¢,) > 0, we have for all m > ¢
sup |0¢'u(y, £)| < VO(s),

where the supremum is taken over a neighbourhood of #,. Hence convergence of the Taylor
series for V(f) about ¢ = ¢ implics evanescence of the Lagrarige remainder in respect of the
series U{¢).

From the last statement it follows that, if ¢, is given and the V{#) accordingly defined by (3.26)
Is analytic, then 4 fortiori U(¥) is analytic. But under the conditions of theorem 1 an explicit upper
bound on {z| applying uniformly in R x [0, oo) is available, namely G, = E¥(u) = E}. And the
analyticity of ¥F(¢) in a neighbourhood of ty can be confirmed immediately. We find directly
from (3.26) that, provided t—#, < In{(2 + ) /C),

— - (oh] (t _ Jfl) e : 200
V(t) m§0 v (tl) m! (2 + O{)) efit — Gu )

"This completes the demonstration that the solution assured by theorem 1 is analytic in ¢.

4. UNIQUENESS AND STABILITY

In this section two other favourable aspects of the regularized long-wave equation are demon-
strated. We first show that the solution corresponding to any given initial waveform is unique,
We then consider two ‘stability’ properties concerning the relationship between solutions that
correspond to different initial values and to different forcing functions f(x,) as in (3.14). It
appears that, over any finite time-interval, solutions depend continuously on each of these
determining factors; which conclusion, together with the uniqueness result, complements the
existence theory of § 3 in establishing that the considered probiem is well set in the sense first
explained by Hadamard (rg23). Here again we recall Hadamard’s conception that three require-
ments — existence, uniqueness and the continuous dependence of solutions on prescribed
influences — are generally essential o the practical utility of mathematical models for evolu-
tionary processes. The aforcsaid restriction to a Anite time-interval appears quite natural for
the present problem. In respect of varied initial values the continuity of solutions over an
unbounded time-interval is evidently out of the question, as witness a comparison between solutions
representing two nearly equal solitary waves each of which is initially centred on the same point
in R. However slight the difference in the amplitudes of the waves, the corresponding difference
m their velocities of propagation destines that at sufficiently large times these solutions will be
far apart, judged by any of the measures of closeness adopted here.

As was noted in the context of {3.14), the continuous dependence of solutions on the torcing
function 15 particularly significant with regard to the validation of the regularized equation (1.2)
as an approximate modcl for long waves. We may consider the exact behaviour of the physical
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system in question to be represented implicitly by an equation in the form (3. 14}, where now the
term on the right-hand side stands for the remainder that is approximated by zero when we take
(1.2 as a model equation, For small remainders, the approximation is justified by the property
that solutions depend continuously on them, whu:h is implied if solutions are shown to depend
s0 in general on the forcing term.
* Unigueness

Let u; and ; be two solutions of equation (1.2) which have the properties assured by theorem I;
or let them be two solutions of equation (3.14), with a given forcing term f, which have the
properties assured by theorem 2. In either case, subtracting the equation for , from that for u,
and writing w = u, —u,, we obtain

wy+w, + 3{(u, +u2) w}m_wxa:t =4, (4'1)

The properties of #; and «, imply that each term in (4.1) is continuous in x and bounded on R.
Hence, when we multiply (4.1) by w and integrate with respect to x over the interval [ — R, R},
integrations by parts of the third and fourth terms are permissible, leading to

b3 1 e
J._R (wwy + w,w,,) dx — 3 f N () + 1) i, dx + FRaw? + F(uy + 05) w2 — wiw, J ¥y, = 0. (4.2)

Since uy, s, (). and (up),, are asymptotically null, so are w and w,,. Thus the Integrated terms
in (4.2) vanish in the limit as R - co. The second integral evidently converges in this limit since,
for each finite ¢ > 0, #; and #, are bounded on R and w, like u; and uy, is an element of Wi(R).

In fact we have @
f (u; +uy) ww, dx

- @

< 3C0) 1w
where C(t) = sup liy+ ] < Jufy oot [l (4.3)
’ welR

It follows that the first integral in (4.2) also converges in the mit as R — oo} and, from the fact
that [uy]y, 5 |#ell,, » and hence |w|, , are bounded over any finite time-interval, we may infer that

|7 g de = 1220,

e 2 dt
where E(w) = {Jwl] 5. Thus (4.1) leads to the differential inequality
é‘?g < 3C(t) E(w), (4.4)
which implies that E{w) < {E(w)],_,exp (§ f C(7) d‘T). (4.5)
' ' v
Now, if'u; and u, correspond to the same initial waveform #{x), so that w is identicalty zero at
t =0, then E(w) = 0 at { = 0. Hence (4.5) shows that £(w) = 0, and thercfore uy = u,, for all
finite £ > 0.

This conclusion can be rephrased as follows:

THEOREM 4. The solution of equation (1.2) guaranteed by theorem | is unique, as also is the
solution of the generalized equation {3.14) guaranteed by theorem 2.

By a straightforward adaption of the preceding argument it can be shown that the solution of
(1.2} guaranteed by theorem 3, for an initial waveform that does not vanish as x —» —og, 15 also
unique.

Stability

The result (4.4) may be used further to demonstrate the continuity of solutions with respect

to varied initial values. Let #, and u, be the unique solutions of (3.14) [or, in particular, of {1.2)]
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.such that #,(x, 0) = g;(x) and u,(x, 0) = g,{x). Write Ag = g,—g,. Considering the solutions as
clements of the Banach space #7 defined in § 3, we propose that |l = [l — tsf 4-can be made
arbitrarily small by taking g, close enough to g,, in the sense that 1Agly, » is made small enough.

Suppose that : IAgll. s < 6.

Then, by means of the inequality (3.20) used in the proof of theorem 2, an upper bound for (1),
as defined by (4.3), may be obtained in the form

hax C) < gy +llgallL o+ 2 AT
< 2@l et 20l T+,

=¢, say, (4.6)
which is independent of g,. The result (4.5) now tells us that

lwlly-= sup Juwly, o < |Agly, sexp (3 T)
04T
<

dexp (4T, (4.7)
and this obviously establishes the proposition in question. (This conclusion will be interpreted in
another way presently, as part of a wider proposition.) _

We next consider continuity with respect to varied forcing functions, Suppose that the forcing
function is changed from f; to £, and respectively the unique solutions of (3.14) are #, and u,.
Write A f = f; —f;. As in theorem 2, it is assumed that the functions Jiand f, are elements of the
Banach space %, which means that for each te [0, T'] they are elements of L,(R) (and moreover
that the correspondences ¢ - f;(x, £} and t— f,(x,#) are continuous mappings of [0, T'] into
Ly(R)). Procéeding as before by subtracting the equation for u, from- that for »,, multiplying by
w = uy ~u, and integrating with respect to x, we obtain in place of (4.4)

-

dE(w)/dt < 3C(t) Ew) + 2 f “ whfds
for 0 < ¢ < 7. By use of the Schwarz inequality and the definition (3.12) of the norm in %, this
Teads to AE()(dt < 30() E(w) + 2| Af| , Bb(w). (4.8)
Supposing that

and allowing as before that u; and «, may have different initial values, we can write down an
upper bound for C{t) akin to (4.6), namely

Clt) <e=2{gf1 s+ 2| fil L T+ +7. (4.9)
Hence it follows straightforwardly from (4.8) that
fwlly < Sexp (36T) +4ne{exp (3¢ T) - 13, (4.10)
and the right-hand side of this inequality is independent of Jaand g,. Thus, if § = 0 (ie. 4, and #,
have the same initial values), u; —u, can be made arbitrarily small by keeping f; sufficiently close
to f1, so that 7 is small enough. This property is precisely what we mean by the continuity of
solutions with respect to varied forcing functions.
The case of simultansously varied initial values and forcing functions is also covered by the result
(4.10). Accordingly, to complete the discussion, we formulate a more refined statement of

stability properties which generalizes the foregoing conclusions about the continui ty of solutions.
We consider the topelogical product '

G = WR) 0 CHR) x %) (1%,
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any element of which has the form (g, f), where g(x) € Wi(R) n C*(R) and f(x, ) e £ 06y In
the usual way for such products, # is given a Banach-space structure by delining its norm to he

l(&))le = lelwiace+{flzne BN CATY
[For explanation of the terms on the righ t-hand side of (4.11), see the subsection Comments con-
cerning _function spaces in § 3.] Since g and f as delimited here satis(y the hypotheses of theorem 2,
we can associate with any clement (g, f) € ¢ the unique solution of (3.14) that has the particular
¢ as inittal wavelorm and the particular f as forcing function. ’
The general proposition in view may now be stated as follows:

Tueorem 5. The mapping U: % — #, which assigns to each element {g,f) €% the corre-
sponding uniquc solution # of the regularized equation (3.14), is continuous.

The proof is obvious in the light of (4.9) and (4.10), being a simple extension of the argument
used previously. Note that if ’

. H (glsfl) - (.gzsfz) “’# s (4' 12)
then 8 < tand 7 < ¢, where § and 9 are the bounds on [Aglj, , and |A f| & considered previously. .
Hence it appears that, given any particular element (g, f;) and any (small) € > 0, a value: > 0
can be chosen to ensure that
ity —wafly- < €
for all (g,, f2) satisfying (4,12). This property amounts to continuity of the mapping U as stated
in the theorem.

Since theorem 2 asserts that the guaranteed solutions of {3.14) lie in the intersection #7 n %%,
it is relevant to ask whether the correspondence between % and the class of solutions is also
continuous considered as a mapping of #into this intersection. In fact, an affirmative answer to
this question can be found by further study of equation (4.1), but we pass over this aspect here,

5. CONCLUSION

In the foregoing exposition two distinct lines of inquiry were pursued with a common aim,
namely the advocacy of equation (1.2) as a preferable long-wave model in applications where the
Korteweg-de Vrics equation (1.1) is an alternative. First, in § 2, relying on descriptive rather than
rigorous mathematics, we examined the general origins of these equations in physical problems,
and we identified the elements that appear to correlate the numerous applications already found '
for the KdV cquation. The leading point of the discussion in §2 was that our regularized
cquation is formally equivalent to the K dV equation, considered in its original perspective as an
approximation accounting only to first order for small nonlinear and dispersive effects. In the
last part of § 2 various problematical aspects of the K dV equation were pointed out, all of which
arise from spuriously potent short-wave hehaviour determined by the equation, and none of
which is posed by the regularized equation whose short-wave properties are comparatively feeble
as befits a long-wave model.

Secondly, in §§ 3 and 4, a basic theory for equation (1.2), and its extension (3.14) with a forcing
term, was worked out, showing that the equation has wholly satisfactory mathematical pro-
pertics. In particular, as established in § 4, the stability of solutions with respect to variations in
~ prescribed influences (initial values and forcing functions) is a decidedly favourable property as
regards applications of the model. The initial-valuc problem for (1.2) has in principle been solved
in § 3 and 4, subject to assumptions much weaker than anything so far claimed for the KdV
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equation, Offsetting these advantages, however, it scems that for (1.2) there is no counterpart to
many of the remarkable formal results obtained for the KdV equation in recent years. For
example, whereas infinitely many invariant functionals in the form (2.21) exist for solutions of
the KdV equation (Miura ef al. 1968), a determined search by the present authors revealed

* ouly three for solutions of (1,2}, including the linear invariant obviously obtainahble by integrating

(L2)fromx = —cotox = o0 [see remarks at the end of § 1]. But this appears in no respect a serious
shortcoming in the theory of equation (1.2). The single invariant property (1.5) suffices for the
purposes of the existence theory; and, as we suggested in § 2, the K dV results may be somewhat
illusive, depending as they do on assumptions about the regularity and asymptotic properties of
solutions that cannot be justified in any straightforward way. Also, the provision of just three
invariants by the model seems perfectly reasonable in some applications, such as to water waves,
for they then correspond to conservation of mass, energy and momentum. in the original physical
system. :

It should be recognized that the validity of equation (1.2) as a long-wave approximation
applying to particular physical systems has not been proved here. Indeed this jssue is beyond the
scope of any general discussion like that in § 2 because, obviously, 1t will turn on the complete
specifications of the system in question. That is, the exact dynamical equations for the systerm will -
need to be considered in order to formulate estimates that might verify (1.2} as an approximation.
In demonstrating the mathematical expedience of (1.2) and {3.14), however, we have established
a basis which would provide readily for the complete validation of this model in particular
applications. In particular, as was discussed in the context of (3.14) and in the second paragraph

of § 4, our result that solutions depend continuously on the forcing function £, when it is varied

within a general class of functions, would be the cricial implement in a proof of vahdity.
Among prospective extensions of the present work, the most immediately promising is the
completion of an existence and stability theory for the generalized version of equation (1.2) that
is explained in appendix 1. In this equation general dispersive propertics are represented by an
abstract pseudo-differential operator. For a restricted class of such operators, an existence theory
may be developed by a straightforward adaption of the arguments used in § 3, and this is sketched- -
in appendix I; but a satisfactorily comprehensive theory, covering examples that have already
been derived from significant physical problems, calls for methods transcending those applied

in§§3and 4. - I

Finally, we mention another form of model equation which can be treated by an extension of
present methods. This is comparable with the model equation (2.26) proposed by Whitham
(1967), which has linear terms representing exactly the dispersive effects suffered by infinitesimal
waves, and which includes a nonlinear term derived from the first-order approximation for long
waves of small but finite amplitude. It was pointed out in the context of (2.26) that Whitham’s
model has inexpedient short-wave properties; but this difficulty is obviated by the equation’

g+ L{u, +uu,) = 0, (5.1)

in which as before L is the exact dispersion operator given by linearized theory, corresponding to
the exact relation ¢ = ¢(k) between the phase velocity and wavenumber of sine waves. Since (k)
Is a continuous function and ¢{0) = 1, L reduces approximately to the identity operator for long
waves, so that as a long-wave approximation (5.1) has the same formal standing as the other
model equ=tions that we have considered. A property generally provided by the physical problem

is that ¢(k) vanishes for |k — oo, which implies that L is a smoother operator than identity. For

Vol aga. A,
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example, ife(k) < A(1 +4%)~1, where £ is a finite constant, L is found to be a continuous operator
acting from L,(R) into W3(R). Accordingly, after an integration with respeet to ¢, we may obtain
from (5.1) an equation of essentially the same kind as (3.1}, and hence the theory of (5. 1) may le

developed on the present lines. Corresponding to (1.5), an invariant property of solutions of (5.1)

is that o

f u(L7%) dx = const., (5.2)
—

which may be used as the basis for a global extension of a local existence theorem,

We are indebted to the Science Research Council for their support of the Fluid Mechanics
Research Institute. J.J. M. also wishes to express his gratitude to the University of Essex for
hospitality during the period of this collaboration.

APPENDIX 1. MODEL EQUATIONS REPRESENTING OTHER
FORMS OF DISPERSION

While being concerned with some general issues involved in the mathematical modelling of
long-wave phenomena, our discussion has concentrated on the archetypal problem presenting
the KdV equation (L.1) or its alternative (1.2). The applicability of these equations to long
waves in nonlinear dispersive systems is by no means universal, however, and to supplement our
main subject-matter a generalization will now be reviewed, extending to systems whose dis-
persive properties cannot be approximated in the way that was explained in § 2. The object here
1s just to specify the generalized problem, not to solve it, and the details of an existence and
stability theory comparable with the material of §§ 3 and 4 are suttably left for a separate account,

"To define the present aspect, we need first to recall some essentials of the discussion in §2,in
particular concerning the linearized dispersion equation (2.8) and approximations to it appli-
cable to long waves. For simplicity the relevant properties are now expressed in terms of dimen-
sionless variables free from scaling factors, and we refer to §2 for the principles whereby these
variables are defined. Thus equation. (2.6), which governs the propagation of infinitesimal waves
in the +x direction, is reconsidered in the form

4+ (Lu), = 0, (A1)
with the operator L defined by ~

Lu = (k) a{k, 1), (A2)
where ¢{0) = 1 and the circumflexes denote Fourier transforrms, i.e.

G(k,t) = f B e k% (x, ) dx.

Thefunction ¢(£) in (A 2) may be interpreted as an expression for the phase velocity of infinitesimal
sine waves with wavenumber £; and it is an essential attribute of the class of physical systems in
question that ¢{k) is a continuous, even and non-negative function taking its maximum value at
& = 0. The condition ¢(0) = 1, determined by the choice of dimensionless independent variables,
means that L reduces to identity in the case of extremely long waves,

In the formal derivation of the KdV eguation, or of our regularized eguation (1.2} or (2.19)
it is assumed that the approximation

>

c(k) = 1-k2 - {AB)
is valid for small values of |£: that is, the curve ¢ = ¢{k) can be approximated in the necighbour-
hood of k& = 0 hy an osculating parabola. The definition {A2) of the operator L accordingly
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yields the approximation L = I+ 0Z; and, as was explained in the context of (2.18) and (2,19},
a long-wave approximation with the same formal standing as thisis I = I—8,0,. But suppose the
function ¢(k) does not admit the small-k approximation {A 3), as when, for example, ¢(k) has a
first but not a second derivative at & = 0. A long-wave approximation to L may still be definable,
and may be justifiable in virtually the same way as the foregoing approximation was in §2.
However, one is then presented with a pseudo-differential operator which, in contrast with the
differential operator presented previously, has no local representation alternative to its basic
definition in terms of Fourier transforms. In general, if for small £ one has

c(ky —{1 —a(k}} = o{a(k)} («(0) = 0},
then the long-wave approximation to L is

L=1I-H, {Ad4)
where the operator H defined by

Ho = alk)d(k) (A5)

is pseudo-differential if «(£) is not a polynomial and, as will be assumed, a(k) - oo as |k| - oo,
To be fully meaningful the definition (A 5) needs further qualification, of course, because the
existence of the Fourier transforms and their inverses must be assured. The function «(4) will be
called the symbol of H, which is the usual term in the recent literature on pseudo-differential
operators (see, for instance, Nirenberg 1971). We note the representation of H as a convolution

o= |7 hr-0ue) g

where £(x) is the generalized function (distribution) whose Fourier transform is a(k). From this,
or from Parseval’s theorem applied to the definition (A 5), 1t is evident that the operator H is
symmetric (or, loosely, self-adjoint), thus '

fw uHvdx = fm vHudx.

Now if, just as in the derivation of (2.19), the zero-order equivalence of 9, and — &, is exploited,
and if nonlinear effects are represented as before, we may proceed from (A 4) to infer the general
model equation

pru,fun,+ (Hae), =0, (A 6)

which recovers (2.19) in the special case a(k) = k2 Alternatively, if we do not replace (Hu) _ by
— (Hu),, a corresponding generalization of the KdV equation is obtained; but this presents the
same sort of difficulties as the KdV equation, such as were discussed in the last part of §2. In
particular, the artificial dispersion relation corresponding to the linearized form of the generalized

K dV equation is _
(k) = 1—a(k),

giving unbounded negative phase and group velocities as |£ - co. On the other hand, the

artificial dispersion relation corresponding to {A 6) is

i

c(k) :mz

which, if (k) is a non-decreasing function of #, has satisfactory properties fike those pointed out
with regard to (2.25).

10-2
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Lxamples

To illustrate the definition of the pseudo-differential operator H, we give two examples
deriving from definite physical problems. The first was shown by Benjamin (1967 ) to arisc in the
theory of internal waves in a stably stratified liquid, when. the prescribed variations of density are
confined to a stratum whose thickness is much less than the total depth of the liquid. The operator
then presented (H = # in the notation of the cited paper) has the symbol «(k) = |£|, and so is
comparable in ‘strength’ with the differential operator 8, — which is not symmetric. More
precisely, this particular H has the property H(Hp) = — 20, Thus it may be interpreted as the
square root, in the class of real, symmetric operators, of the symmetric differential operator —o2
which takes the corresponding place in the archetypal problem considered carlier.

The second example arises in the theory of axisymmetric waves in a rotating fluid, when the
fluid is taken to be unbounded radially. Tt is assumed that the azimuthal circulation increases
with radius, as is required for stability, and becomes constant either asymptoticaily or at the
surface of a finite core. Aspects of this problem have been treated by Benjamin (19675), Pritchard
(1970) and Leibovich (1970), each of whom discussed a peculiar dispersive property that is
consequent upon the infinite extent of the fluid. In the corresponding problem for a rotating fluid
contained in a tube, the phase velocity ¢(k) for each particular wave mode is found to be a
function of &, and the theory of moderately long waves of finite but small amplitude exemplifies -
the standard essentials that were explained in § 2. But when the fuid is unbounded ¢(k) is only
a C* function, its small-k behaviour being ¢(k) ~ 1 ~ £%In |£]. A model equation including this
special feature was proposed by Leibovich (1970) in the generalized K dV form, with the symbol

taken to b
of H taken to be alk) = BK,(BIk]) (B> 0),

~ where K, 1s the modified Bessel function of order zero. This model correctly simulates the long-
wave properties of the physical system, but it has inexpedient short-wave behaviour in that (k)
vanishes as || — oo, Thus dispersive effects disappear for very short waves, whereas nonlinear
effects do not, 5o that the model is likely to present difficulties (particularly computational ones)
of the kind that were pointed out with regard to equation (2.25). A slight change in approach,
however, leads to 2 more expedient model in which the symbol of H has the form

a(k) = KA+ Ko(BIE])} (4,8 > 0),
and accordingly an explicit representation of H is
z 1= v(E)dE
= — z Fa - 7 o patils
R ECA TN = vl

The strength of H, which is determined by the asymptotic behaviour of a(k) for large £, is in the
present instance evidently the same as that of the differential operator — 92,

Outline of existence iheory

When allowance is made for an amply representative class of operators H, wide enough to
include the two examples noted above, the theory of equation {A6) presents intricacies con-
siderably beyond the range of the ideas in §§ 3 and 4, and so we shail not attempt to cover them in
this supplement. It is intended that equation (A 6) will be the subject of another paper. For a
restricted class of opcrators, however, the gist of an existence theory may readily be indicated as
follows. '
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We assume additionally that the continuous cven function (k) is positive for |£] > 0 and
satisfies the asymptotic condition

. oofk)
Iminf =< > 0
flow K

: - (A7)

which can also be expressed, in a way bearing more directly on the subsequent argument, as

'I-l——amzo(k_z) for |&] -+ . (A7)
This condition means that H defined by (A 5) is at least as strong as the particular operator — a2
that took the place of H in §§ 3 and 4. It follows from (A7) and from the continuity of a(k) that
a positive constant « exists such that
a < I ' (A8)
L+alk) ~ 1442

Asn § 3 the theory proceeds in two stages, first establishing a local (small-time) result and then

a global extension. For the first stage (A 6) is converted by formal operations into

u=g(x) --J: (I+ H) {u, + uu,) dr

4
= g(x) —i—f Z(u+ 1u?) dr, (AY)
0
where Z =g, (I+H)?
is the linear operator whose symbol, appearing in a definition corresponding to (A 5), is
A ik
Z(k) = ~ E+T(k)'

Equivalently, Z may be interpreted as a convolution with the function Z(x) whose Fourier
transform is Z (k). By appeal to Parseval’s theorem and the inequality (A 8), it readily appears
that Z is a continuous operator acting from L,(R) into WE(R). Hence, when the right-hand side
of {A9) is considered as a nonlinear transformation Ax (as was the right-hand side of (3.1)), it
can be shown that, provided ge Wi(R), A is 2 continuous operator acting in the Banach space
WY, that was defined in § 3. Sufficient conditions for A to be a contractive mapping of a ball
2]l v~ < R into itself can be found which are satisfied if £5.is small enough, and thus a solution of _
{A8) is proved to exist over a small time-interval [0, ty]- In the steps leading to this result, which
are comparable with the proof of lemma 1, § 3, repeated use has to be made of the inequality

¢ ¢
fuv(x, 7)dr . < fu lw{x, )} ,d7

(ct. Hardy, Littlewood & Polya 1952, p. 148, theorem 202). .

Regularity properties of the local solution of (A 9) may be established by bootstrap arguments
like those used in the proof of lemma 2, § 3. On the assumption that the initial waveform g(x) is
continously differentiable and also Hg e C{R), it can be shown that the solution is simultaneously
© a strong solution of (A 6) —in the sense that (A 6) is satisfied pointwise and each term of the
_ equation is a continuous function. As in the case treated in 3 3, the solution is found to he a €=
function of .

To obtain an a prieri estimate akin to (1.5), providing for a glohal extension of the existence
result, the asymptotic nullity of the solution x and its derivative u, needs to be demonstrated. On

the necessary assumption that g and g’ are asymptotically null, these properties can be verified
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from (A 9). The solution is known to be an clement of #; , so that for cach &[0, £} it is a bounded
and square-integrable function of x on R. Hence u+ }u? is also an L, function, and therefore its
Fourier transform (x4 3u®)* exists, being an L, function of the transform variable 4. Now
Ziu +A—§-u2) is the inverse Fourier transform of 2(]») Au+ -éui)“, and the condition (A7) implies
that Z(k) € L,. Being thus the product of two L, functions, Z(k). (z + 32*)* is an L, function; and
therefore the inverse transform Z{z+ u?) is 2 continuous function of x which, according to the
Riemann-Lebesgue theorem, vanishes at infinity. By virture of the dominated-convergence
theorem, the latter property is preserved by the integral of Z(u 4 #®) with respect to £; and thus it
appears from (A 9) that z is asyniptoticaﬂy null. Similarly, from the known fact that «, isa Z,
function of x, so that (1 4+ ) «, is also an L, function, it can be shown by means of (A 9) that u, is
asymptotically null.

Using the preceding conclusions after multiplying (A 6) by « and integrating with respect to x,
we deduce that '

fA fuy+u{ Hu) ) dw = 0.

Ay

In view of the fact that H commutes with @, and is symmetric, it follows that

j J (¥ +uHu) dx = const., (A 10)
provided this integral exists - which property can be verified for the solution  of (A 9) if it holds

for the initial waveform g. But appealing again to Parseval’s theorem and the inequality (A 8),
we have

<0 i ]_ [ .l
J (w4 uHu) dx =%Jmm W+ alk) a2 de

— A

. a * gy b AL ) "
o [ e jafak = a (A1)

The combination of (A 10) and (A 11) shows that ||u] , has an upper bound which is independent
of t, being fixed by the initial data, By reasoning similar to the proof of theorem 1 in § 3, this fact
may be used to complete a demonstration that equation (A 6} has a solution over an arbitrarily
large time-interval.

APPENDIX 2, NULLITY AT INFINITY OF A TUNCTION CLASS

Here we present a proof of the fact, used in § 3, that an clement of WI(R) n C*(R) and its first
derivative both converge to zero at Foo: Le, they are asymptotically null according to our
definition. The proof will follow immediately from the following lemma which may have some
independent interest. .

Lemma. Let ge L(R) n CY{R). Then g is asymptotically null.

Proaf. We argue by contradiction, assuming, for example, that g(x} does not go to zero at +co.
There then exists an ¢ > 0 and a sequence of real numbers {, }, with z,, = oo for # — oo, such that
lg(a)i > e

By taking an appropriate subsequernce irom {a,} if necessary, we can assame without loss of
generality that the g, are strictly increasing with z, that the g(a,,) are all onc sign (which we can
take to be positive by considering — g if necessary), and that for cach » there is between q,, and
a,., apoint &, at which g(&,} < }e. The only assertion that needs any further explanation is the
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last one, and this becomes obvious when we recall that g€ L,{R), so that g > 3¢ can hold only on
a set of finite meaure,

Let b, be the first value of x less than a,, at which g(x) = ¢, and let ¢, be the first value greater
than e, at which g(x} = Je. Thesedefinitions are justified by the continuity of g. Write I, = (b,,¢,).
Then {I,} is a sequence of disjoint, non-empty and open intervals such that g(£) > 4¢ for £e1,,
and g(£) = 4¢ at the end points of 1. Tt follows that m{L,) = ¢, — b, must converge to zero since
gely(R).

Applying the mean-value theorem to g on I,, we may infer the existence of points o, & (b,, a,)
and 7, € (a,, ¢,) sach that

, .__ g(an) _g(bn) ’ - g(f"ﬂ) —g(a’w)
g (G-n) - an—bn B.Ild g (T?l} - Cn—a, -
Taking absolute values and estimating lower bounds for these quotients, we obtain
€ €

€ 2 5=y el > g

One of the right-hand sides of these two inequalities must be at least €/{4(c, —,)}. Thus a point
A, €(b,,¢,) is shown to exist such that

€

ig'(hn)i > m) s

which, in light of the fact that (¢, — ,) - 0, contradicts the assumption that g’ is bounded. Thus

the assumption that g(x) is not asymptotically null is shown to be incorrect, and the lemma is
proven.

ProrosiTion. ge Wi(R) n C3(R) implies that g and g’ are asymptotically nall,
Progf. Both g and ¢’ satisfy the condition of the lemma.

GLOSSARY OF SPECIAL SPACES

space defining property of elements norm
Er u(x,t) continuous on Rx[0, 7] lully = sup |u(x,2)|
fg{%lfRT]
G Ruet, I m
for 0<ig| % X [eidulls
. =0 j=0
) O<yj<sm
% Slee LR for each ie[0, 7). 1o = sup |f050ls
€10,

F1[0, T] » Ly(R) is a continuous

map. . [“u"a - (ffm uzdx)%]

o u(x, ) e W3(R) for each tef0, T]. bully- = sup Ha(, O]
u [0, T] - Wi(R) is a 1£[0,71
continuous map. Olehy e = (a3 + |4.]2)F = EXw)]

feLnn 1 S Vi
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