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An initial-boundary-value problem for the equation

+ uux-uxxt = 0 (a)

is considered for x, t ^ 0. This system is a model for long water waves of small but finite
amplitude, generated in a uniform open channel by a wavemaker at one end. I t is
shown that, in contrast to an alternative, more familiar model using the Korteweg-
deVries equation, the solution of (a) has good mathematical properties: in particular,
the problem is well set in Hadamard's classical sense that solutions corresponding to
given initial data exist, are unique, and depend continuously on the specified data.

1. Introduction. In a recent paper (l), a model equation governing the unidirectional
propagation of one-dimensional long waves in non-linear dispersive systems was
developed as an alternative to the Korteweg-deVries (KdV) equation. The model
considered was the initial-value problem for the equation

ut + ux + uux — uxxt = 0 (1-1)

with t > 0 and — oo < x < oo. Equation (1-1) has the same formal status as the KdV
equation as an approximate model for long waves of small amplitude in an important
class of non-linear dispersive systems. It was contended in (l) that (1*1) is in many
respects a superior model, having generally good mathematical properties and
avoiding certain problematical aspects of the initial-value problem for the KdV
equation.

It is the purpose of this paper to consider the initial-boundary-value problem

+ uux-uxxt = 0
u{x, 0) = g(x), (1-2)

u(O,t) = h(t),

for t > 0 and x ^ 0, where the boundary value h and initial value g are specified, with
g(0) = h(0) for consistency. Thus we consider the propagation of long waves in a semi-
infinite medium which is given a specified disturbance at the finite end. One physical
system for which (1-2) may serve as a model is an open uniform channel containing
water with a wavemaker at one end. The problem (1-2), with g = 0 say, is perhaps
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392 J. L. BONA AND P. J. BRYANT

physically more relevant than the pure initial-value problem for (1*1). Certainly for
comparing (numerically computed) solutions with actual waves generated in the
laboratory, the situation described by (1-2) seems more useful.

We show that (1-2) admits a satisfactory mathematical theory, being well set in
Hadamard's sense that solutions corresponding to given initial data g and specified
disturbance h exist, are unique, and depend continuously on g and h. The following
statement summarizes the main results to be derived, and serves to define the aims of
this work.

Main results. Suppose g is twice continuously differentiable and that g and its first
two derivatives are bounded for 0 ^ x < oo. Suppose also that g and g' are square
integrable over 0 < x < oo. Let h be continuously differentiable for 0 ^ t < T. Then
there is a unique classical solution u(x, t) of (1-2) for 0 < t ^ T, such that, for each t,
u and ux are square integrable over 0 < x < oo. Further, this solution depends con-
tinuously on perturbations of g and h within these function classes. (The metrics to
which this continuity is referred are reviewed in section 2 and in the discussion
preceding Theorem 2 in section 4.)

The method employed proceeds in three stages. First, the existence of a solution
over a sufficiently small time-interval is proved. This is done by recasting (1-2) in
integral-equation form and using the contraction-mapping principle. The extension
of the solution to arbitrary time intervals is then made by appeal to an a priori estimate
for solutions of (1*2). Finally, uniqueness and the continuous dependence of solutions
on g and h are established by using a priori estimates for the difference of two solutions
of (1-2).

The programme is similar to that carried out in sections 3 and 4 of (l) on the initial
value problem for (1-1). Emphasis is given, in our proofs, to the points that diverge
from those presented in (l).

The present results for (1-2) would not obtain for the same initial-boundary-value
problem posed for the KdV equation. In particular, the presence of an extra x-deriva-
tive in the KdV equation, (2),

ut + ux + uux + uxxx = 0, (1-3)

imposes constraints on the boundary data which are not required in the present
model, and which appear unnatural to the physical problem.

A comment on the unidirectionality of the model is deserved. The assumption of
unidirectional wave propagation is introduced, along with several other assumptions,
in the derivation of the model equations (1-1) or (1-3) from the full equations of motion.
Out theory is set in function spaces which include, but are not exhausted by, initial
data and solutions which come under these assumptions. Hence the term unidirectional
is used only to recall an assumption that would have to be made in a derivation of (1 • 1),
and is not to be construed as implying a mathematically established property of the
system (1*2) for the general initial data prescribed in our main results.

In section 2 we collect together the function spaces used. Then, in section 3, the
existence of a weak solution over a small time-interval is proved under very general
conditions. It is shown further that the weak solution provides a classical solution to
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Long waves in non-linear dispersive systems 393

(1-2) over the small time-interval when the data are restricted as explained above
under the heading Main Results. In section 4 the aforesaid 'solution in the small' is
uniquely extended to a classical solution on arbitrary time-intervals. Finally, in
section 5, an exact result on the continuous dependence of the solution on g and h is
obtained. In contrast with the results formulated in sections 3, 4 and 5, which deal
only with an arbitrary finite interval, the Appendix shows how these results may be
reinterpreted in a Frechet-space setting to take account of the entire time axis.

2. The relevant function spaces. Before we proceed to prove results leading to our
Main Results, it is convenient to collect together the definitions and elementary
properties of the function spaces that we shall use. All functions are taken to be real-
valued.

Supposing / = [0, a] to be a bounded interval in the real numbers R, we denote by
Ck(I) the Banach space of functions on / whose derivatives up to order k are continuous,
k = 0,1 The norm is

ll/ll*./= ll/ll* = sup |/«)(x)|.
l l z l)xel

Let R+ denote the non-negative real numbers. We define (7jj(R+) to be the functions
on R+ whose first k derivatives are bounded and continuous. This is also a Banach
space under the norm (2-1) with R+ in place of/.

By Hk(U+), we mean the Sobolev space of (equivalence classes of) measurable
square-in tegrable functions defined on (R+ whose (generalized) derivatives to order k are
also square integrable over R+, k = 0,1, This is a Hilbert space with inner product

= S [ dx. (2-2)

We denote the norm in Hk(U+) by

li/IU.2 = </./>! (2-3)

to distinguish it from the norm (2-1). H°(U+), which is simply L2(U+), and H^M*) are
the only two considered here. We state some useful properties of H1(U+).

DEFINITION. A function feCb(U
+) is asymptotically null if lim/(x) = 0.

Z-*CD

PKOPOSITION 1. 2Z1(R+) is continuously embedded in Cb(U
+). Further, when H1(U+)

is identified as a subspace ofCb(U
+), thenfeH1(U+) implies that f is asymptotically null,

and that
H/lloSll/IU (2-4)

Proof. Let g be the extension of/to U obtained by reflecting/about the origin. Then
geH1^). The usual embedding result ((3), ch. 1, §9) implies that g is continuous,
bounded, and asymptotically null. Hence / is continuous and asymptotically null. I t
then follows that, for x e U+,

P(x) = - 2 (•"/(£)/'(£)«£ < n
J x JO

from which (2-4) follows.
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394 J. L. BONA AND P. J. BRYANT

We shall also need to consider spaces of functions of two variables analogous to the
one-dimensional spaces just denned. For T > 0, let <ST be the space of bounded con-
tinuous functions u(x, t) denned on K+ x [0, T]. Similarly, let tffy" be the subspace of
elements ue&T such that 8i

t&xue<&T for 0 «S i < I, 0 < j ^ m. (Thus <€T = <g%0.) We
note that ^?j.m is a Banach space under the norm

i m

IMIri- = S S \\%0Lu\\*,. (2-5)
i=0 ^=0

where IMI«> = sup sup |v(x,<)|. (2-6)
0

We shall often omit the T in this norm symbol when no confusion can thereby result.
Taking T > 0 to be finite, we define WT to be the functions f(z, t) defined on

U+x[0,T] such that f(x,t)eH1(U+) for each t and such that the correspondence
, t) is continuous from [0, T] to H1(U+). WT is a Banach space under the norm

||/||#-,= sup ||/(z,i)||lt2. (2-8)

By virtue of Proposition 1, we have:

PROPOSITION 2. ~WT is embedded in ^T for each T > 0. When 1VT is considered as
a subspace of &T, the classification u e iVT implies that u is uniformly continuous in both
variables, asymptotically null uniformly inte [0, T], and

IMI*r < IMI*>- (2-9)
3. Existence in the small. By formal operations, we first put (1-2) into integral

equation form. The equation may be rewritten

and regarded as an ordinary differential equation for ut. Formally, the solution is

/•oo f*a>

' J o Jo
A formal integration by parts, followed by integration from 0 to t, now gives:

r, (3-1)
J 0 J 0

where K(x, i) = \ sgn (x - E) e~^-^ + \ e~<x+®. (3-2)

For short, we write this as

u = Au = g(x) + (h(t)-h(0))e-x + Bu. (3-3)

LEMMA l.LetgeCb(U
+)andheC([O,T]).ThenthereisanSwithT > S > 0, depending

only on g and h, such that (3-3) has a solution ue&g.

Proof. We view A as a mapping of ^s, leaving S to be chosen suitably later. Clearly,
Au e'ifgifue^g. We argue that by choosing R large enough, and S small enough, A is
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Long waves in non-linear dispersive systems 395

a contraction mapping of the ball of radius R about the zero element 0 of <rf5g. The
necessary estimates are

Here we have used the result

sup

Note that (3-5) implies A to be a continuous mapping of ̂  to itself. According to (3-4),
A maps the closed ball of radius R about 0 into itself if

(3-6)

where r(8) = |M|0 + Pllo = IMIo + IWIo.io,«- (3-7)

Hence, by (3-5), A is a contractive mapping of this ball if

S(l+R) = 9 < 1. (3-8)

It is easily verified that a sufficiently small positive value of 8 (< T) is determined by

S(i + 2r(S))^i, (3-9)

so that we can take R = 2r(S) (3-10)

to satisfy (3-6), and then (3-8) is satisfied with © = \.
Lemma 1 now follows by appeal to the contraction-mapping principle.

COKOLLARY. Let g and h, R and 8 be as in Lemma 1, and let

uo(x, t) = g{z) + e-*(h(t) - h(0)).

Then the sequence un(x, t) defined by

un{x,t) = Avi(» ,<) = uo(x,t) + Bun_1(xtt) (3-11)

converges in ^s to the unique solution u of (3-3) in the ball \\u\\^ ^ R.
We now want to determine conditions under which the solution u of (3-3) provides,

on the time interval [0, S], a classical solution of the problem (1-2).

LEMMA 2. Suppose geCl{U+) and AeC^flX),T]). Then any solution ue^T of (3-3) is
an element oftf^,2 and is a classical solution of the initial-boundary value problem (1'2).

Proof. Since u = Au, the first derivative ut clearly exists, being given by

ut = (A«)t = A'(t)e-*+ (XK(x,£){u(£,t) + %u2(£,t)}d£, (3-12)
J o

which is a bounded continuous function on U+ x [0, T] because h' e C([0, T]) and ue^T.

26 PSP 73
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396 J . L. BONA AND P. J . BRYANT

By dividing the range of integration at £ = x we confirm that ux exists and is equal to

ux = g'(x)-e-*(h(t)-h(0))+ C(u + lu2)dt+ P r' L{x,£>)(u + ̂ )d£,dr, (3-13)
Jo J o J o

where L{x,£) = - \[e-&-& + e-<x+®]. (3-14)

Again, since g'eCb(U
+), and ue^T, we have uxe

(£T. The fact that uxe^T implies that
the right-hand side of (3-13) is also differentiable with respect to x, so that uxx exists,
being given by

-h{0))+\\u + $u*
J 0

ft foo
(3-15)

I
J

J 0 J 0

o

which is also continuous and bounded. Finally, the above expression for uxx is obvi-
ously differentiable with respect to t, and we see that

uxxt = (u+2u2)x + ut>

confirming that uxxte'^T and that u provides a solution of the equation in (1-2).
Since u = Au, u automatically satisfies the initial and boundary conditions under

the hypotheses about g and h.
Note that if greater regularity of g and h is assumed, any solution ue^T of (3-3)

acquires correspondingly greater regularity. This is easily seen by continuing the
arguments of (3-12), (3-13), (3-15) and leads to:

COROLLARY. Let geCl
b(U

+) and heCk([0,T]), where k ^ 1, I ~$> 2. Then any solution
ue^T of (3-3) lies in ^ l .

Account can also be taken of the case in which the initial waveform g, or the forcing
term h, are only piece wise continuously differentiable. In particular, we can suppose
that h is continuous, and that h' has only discontinuities of the first kind (i.e. jump
discontinuities), and that similarly g, g' are bounded and continuous, and g" is bounded
and has only discontinuities of the first kind. By a straightforward modification of the
arguments given in Lemma 2, the solution of the integral equation (3-3) corresponding
to such data is shown to be piecewise a classical solution of (1 • 3). The solution responds
to discontinuities in a predictable manner, for the arguments of Lemma 2 show that
u — g(x) — e~x(h(t) — h(0)) = Bti is still an element of (ia]f,2. Thus u is seen to be a classical
solution of (1-3), except on the residual set where g"(x) or h'(t) have jump discontin-
uities, and on this set u has similar discontinuities in uxxt and ut. Note, however, that
a discontinuity in the derivative of the disturbance h is rendered negligible for large x
by the factor e~x.

4. Existence and uniqueness of global solutions. We extend the solutions obtained in
section 3 to arbitrary time intervals by restricting further the initial waveform, and
be appealing to an a priori estimate for solutions of (1-2).
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Long waves in non-linear dispersive systems 397

First we note that if the initial waveform is asymptotically null, then so is the
solution determined by Lemmas 1 and 2 for 0 ^ t ^ 8.

LEMMA 3. Let geC^(U+) and heCl([0, T]), k ^ 2, I > 1, and suppose that for some
p < k, g,g', ...,g<p) are asymptotically null. Then, if ue^s is the solution of (1-2)
guaranteed by Lemma 1 and 2, d\dxu is asymptotically null for 0 < i ^ Z and 0 ^ j < p,
uniformly for 0 < t ^ S.

Proof. The corollary to Lemma 2 assures us that the appropriate derivatives exist.
We need only prove that d\dxu is asymptotically null, uniformly for 0 < t < 8, for the
special cases i = 0,1 and j = 0,1, 2. For the cases i #= l,j ^ 2 follow inductively from
the differential equation (and the result even holds for the range 0 < ji < k in the case
i ^ 1). The cases i = 0 and 5) ^ j ^ 2 follow inductively by differentiating (3-15) and
using the established property of uniform asymptotic nullity.

For u itself, the result follows from the corollary to Lemma 1, the fact that
uo(x, t) = g(x) + e~x[h(t) — h(0)] is uniformly asymptotically null for 0 =% t < S, and the
remark that the integral operator B of (3-3) preserves uniform asymptotic nullity, as
also does the taking of a limit in ^s.

Once u is known to be uniformly asymptotically null, the corresponding fact for
ut, ux, and uxx are derived immediately from (3-12), (3-13) and (3-15) respectively.
Differentiating (3-13) with respect to t, we obtain a similar representation of u^, whose
uniform asymptotic nullity then follows immediately.

The derivation of a priori estimates for solutions of (1-2) can now be undertaken.

LEMMA 4. Suppose AeCfl([0, S]) and geGl(U+) n H^M*). Then the classical solution
u of (1-2) guaranteed by Lemmas 1 and 2, corresponding to g and h, satisfies the estimate

IMIi,2 ^ ll9flli,2eBS + j4-5~1(eBS— 1), (4-1)

where A and B are constants depending only on h and S.

Proof. Multiply (1-2) by u and integrate over 0 ^ x < M, obtaining
rin rM rM rM

uutdx+ I uuxdx+ I u2uxdx— uuxxtdx = 0.
Jo Jo Jo Jo

Applying the fundamental theorem of the calculus, and integrating the last term by
parts, we have

(uut + uxuxt) dx = — [\uz + \uz — uuxt]%z^. (4-2)
0

The assumptions on g imply that g and g' are asymptotically null (cf. (1), Appendix 2).
Since u and u^ are uniformly asymptotically null by Lemma 3, we conclude that the
limit as M -*oo exists uniformly for 0 ^ t ^ S, being given by

f
J

\ u t + uxUxt)dx = \h?{t)+\h?{t)~h{t)Uxt(Q,t). (4-3)
0

Further, if we integrate (4-2) from 0 to t and apply Fubini's theorem, we have

P {u2 + u2
x)dx= r (g2 + gri)dx-2[ [^ui + ̂ u>-uxtu^dr. (4-4)

Jo Jo Joo
26-2
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398 J. L. BONA AND P. J. BRYANT

Also, because greZ71(IR+), we are able to infer the existence of the limit, as M->co, of
the right-side of (4-4) uniformly for 0 ^ t ^ S. Thus u is shown to be in H1^*) for
0 sj t <[£. If we let

E(u)= f"[««(a:,f) + «S(*.O]«fe, (*'5)
J o

the uniform convergence of the integral in (4-3) shows that E(u) is differentiable with
respect to t, and that

dEjdt = %h2{t)+%h3(t)-h(t)uxt(0,t). (4-6)

We now estimate the last term in (4-6). Differentiation of the integral equation
(3-13) with respect to t gives

J o

where L is defined in (3-14). By Proposition 1,

sup

hence |«a;t(O, t)\ can be estimated by

sup \u(x,t)\ ^ E(u)i; (4-7)
x>0

( 4 . 8 )

since j\L(O, | ) | dE, = 1. Furthermore, by (4-7),

|A(t)| = |«(0,*)| < sup|w(x,<)| ^ E(u)i. (4-9)
x>0

Combining (4-8) and (4-9) to estimate dE/dt in (4-6) we obtain

dEjdt < %E(u) + §\h{t)\E(u) + E(u)i\h'(t)\+E(u) + $\h(t)\E(u)\

^[\h'(t)\]E(u)i + [%+§\h(t)\]E(u) (4-10)

< 2AE(u)l + 2BE(u), J

where constants A and B depend only on h and S. From (4-10) we readily deduce that,
for 0 < t < S,

E(u)i < E(0)ieBt + AB-1(eBt- 1),
which implies

ll»lli,2 ^ \\9Wi,2e T -O-D ie —J . ; ,

where 4 and 5 depend only on S and h, and <7 is the initial waveform.

Remark. From physical considerations, one would expect Wu]^ 2 to grow roughly
linearly with the energy supplied by the wavemaker (forcing function h), and hence
that the estimate (4-1) could be improved. Presumably a better result does hold for
data which lead to solutions satisfying the hypotheses under which (1-1) is derived as
a model equation (see (l), § 2). However, we have been unable to improve this estimate
for a general class of initial data.
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Long waves in non-linear dispersive systems 399

In any case, Proposition 1 implies that \\u\\lt 2 is a uniform bound for u{x, t)onx ^ 0,
and that the estimate (4-1) is sufficient to allow us to iterate the arguments of Lemmas
1 and 2, so obtaining our existence theorem.

THEOREM 1. Let the initial waveform, g satisfy the conditions {i)gsH\U.+),{n)ge G§(IR+)
and let the boundary forcing function h satisfy (iii) AeC^fO, T]). Then the partial differ-
ential equation

ut + ux + uux-uxxt = 0 (4-11)

admits a unique solution ue^2 n "WT which satisfies

u(x,0) = g(x), u(O,t) = h(t), (4-12)
for x ^ 0 and t ^ 0.

Proof. Uniqueness: First suppose that on the interval [0, T] we have two solutions
u and v of (4-11), (4-12) in ^ 2 n if?. Let w = u — v. Then we see that

vx + uwx + vxw — wxxt = 0, (4-13)

with w(x,0) = w(0,t) = 0 (4-14)

for x > 0, T ^ t > 0. Multiply (4-13) by w and integrate with respect to x over K+.
Taking account of (4-14), we derive

/• oo /*co

(wwt + wxwxt)dx = wwx(2v — u)dx. (4-15)
Jo J o

(It should be shown that the integral on the left-hand side of (4-15) converges uni-
formly for 0 < t ^ T. This is easy to derive in the present context, and we omit the
details.) If we write

m(t) = \\2v-u\\«t and E(t) = \\w(x,t)\\U,
(4-15) implies that

dE\dt < m(t)E(t).
Since E > 0, this means that

E(t) ^ E(0) exp ( I m(T)dT\.

Finally, i?(0) = 0, so E(t) = 0, whence w = 0, u = v. Thus uniqueness of the solution
is established.

Existence. By straightforward iteration of the existence proof of Lemma 1, using
the a priori estimate (4-1), we infer the existence of an increasing sequence of times
{Tfc}ft=0 over which the solution in the small can be extended. Here Tk is determined
by (3-9) as

Tk = Tk_1 -) , (4-16)

where, according to (3-7),

r{Tk) = sup
x>0
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400 J . L. B O N A AND P . J . B R Y A N T

Here W(Tk) = ||A||(7[o, Tkl, and F is obtained from the estimate (4-1) as

where A and B, defined in (4-10), depend only on t and h, and are uniformly bounded
on [0, T]. Hence V is uniformly bounded on [0, T]. Let M be an upper bound for V on
[0, T]. Then (4-16) and (4-17) give

rp rp > -̂  o

for all k. Hence u may be extended over the range R+ x [0, T] in a finite number of
temporal steps by iterating Lemmas 1 and 2. This method of defining u ensures that
« 6 ^ 2 n "f^x, and that u is a classical solution of the initial-boundary-value problem
(4-11), (4-12).

5. Stability. In this section, we demonstrate that the unique solution u of (1*2),
guaranteed by Theorem 1, depends continuously on the specified data. That is, small
perturbations of g and h lead to small perturbations of the corresponding solution u.
If we let U denote the mapping that takes data g and h into the corresponding solutions
of (1-2), then by Theorem 1 we have

U:T= [H1(U+)f\Gl(R+)]xC1([0,T])^^2(]^T. (5-1)

Remark. If A and B are Banach spaces, then A D B is a Banach space with norm

Hence X = H1(U+) n Cl(U+) is a Banach space, and we mean X x (^([O, T]) to have
the usual product topology. In fact, because X and C1([0, T]) are both Banach spaces,
so is the product. Similarly, ^ = ^y'2 n #~r is a Banach space.

I t follows immediately that U is a continuous mapping in (5-1) if and only if i oU
and j o U are both continuous where i and j are the natural inclusions of ^ into ^ 2

and *WT respectively. The precise result is:

THEOREM 2. U is continuous.

Proof. First, by the last remark, it is enough to show that

Xl-.SZ^Y and \5:X^iVT (5-2)

are both continuous. Next, since ^"is a metric space, and ^ 2 and "WT are both metric
spaces, it suffices to show that U is sequentially continuous in both cases.

Let (git ht) e #*and ut = U(git hj) be the solution corresponding to the initial wave-
form gt and the driving condition hit i = 1, 2. Define w = u1 — u2. Then w satisfies:

wt + wx + wwx + (u2 w)x - wxxt = 0, (5-3)

w(x, 0) = g(x), w(0, t) = h(t),

where g = ^1 — ̂ 2 a n ( i ^ = ^i~^2- Further, we deduce that w satisfies an integral
equation analogous to (4-2):

w{x, t) = g(x) + e~*(h(t) - h(0))

f' rK(x,
J 0 J 0

(5-4)
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Note that the formal operations leading to (4-2) are easily justified because of the
regularity of ux and u2 guaranteed by Theorem 1. Suppose now that the distance
between (grx, hj) and {g2, h2) in #"is bounded from above by e > 0, which for convenience,
we take to be less than 1. In particular, it follows that

(5-5)

We show that U: 2£^-irT is continuous at (g2,h2). If we multiply (5-3) by w and
integrate the result over R+, then after integration by parts and using the fact that
u2, w, and wxt are uniformly asymptotically null for 0 < t ^ T, we have

I "(vnot + wxwxt)dx = \h{tf+^tf + ^fh2{t)+\u2wwxdx-h{t)wxt{Q,t),
Jo Jo

(5-6)
which is the same as

uiivwxdx-2h(t)wxt{0,t). (5-7)
o

Here we have omitted the straightforward verification that the first integral on the
left of (5-6) converges uniformly for 0 < t =% T, so that differentiation under the integral
is valid.

We must now estimate wxt{§, t). To this end, differentiate (5-4) with respect to
x and t, thus

W x t t o O = - e - x h ' ( t ) + \ L ( x ,
J o

where L is defined in (3-14). Since

J o

and ux = w + u2, we derive that

F(t) = f"(«;« +w|) da: = ||w||ff8, (5-8)
J o

If we write

and b = ||w2||^s (5-9)

and apply Proposition 2 to estimate |M|^, then a crude bound for w^O, t) is

Finally, using (5-5,(iii)), we obtain
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where N depends only on h2 and T (since e < 1). Now certainly \h(t)\ = \w{0, t)\ < F(t)i
by Proposition 2. Hence the last result applied to (5-7) establishes

dFjdt < F(t)\
Therefore, since e < 1,

dF/dt ^
?S 2[MF(t) + eNF(t)i], (5-10)

where M and N depend only on T and u2. Since F^O, (5-10) implies that

But F{0)i = ||gr||12 ^ e from (5-5, (i)). Thus for 0 < t s? T,

IMI1.2 = -^(0* < e[eNT + MN~1(eNT-l)]. (5-11)

Hence, ll%-«2ll^>= sup IHIi 2 < e0» (5-12)

where Q depends only on 21 and u2. The continuity of U: ^-^WT at «2 is now clear.
Since, according to Proposition 2 in section 2, #^, is continuously embedded in ^T,

we may also infer that U: 9?->'&T is continuous. In particular, under the assumptions
(5-5), we infer from (2-9) that

K-«2ll«,= IMIw,<ee. (5-13)

This latter fact, and the integral equation (5-4) satisfied by w, is now exploited to show
finally that U: <5T-><^2 is continuous.

Again, g and h are supposed to satisfy (5-5) for a given 1 ^ e > 0. Consider

\\Bldt\V(glt hj) - Ufa, h2)]\\VT = \\wt\\VT < ||*'llcto. 21 + Ki*> i) [«(1 + bo + «a)]«
II J 0 Ikr,

which we obtain by differentiating (5-4) with respect to t. Continuing this estimate,

[" \K(x,£)\ d£,
J 0

|
I <eT

where b is as defined in (5-9) and Q as in (5-13), and hence M is a constant depending
only on u2 and T. This inequality assures that U: 3£-* ̂ fy0 is continuous. Similarly, by
differentiating (5-4) with respect to x we have
||0/a*[U(flr1,A1)-U(02,A2)]llw, = Uuyi^,

*?/)! 'V T i l l [ lo / j f T" I T I I ni (nfl rr \\ ftf II

If f"z(a:,£)[
I J 0 J 0

+ b)

2>0 J 0

II «T

O+ll^llc'to,;
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where L is given in (3-14) and b and Q are as before. Applying (5-5, (ii), (iii)), we obtain

where again M depends only on T and u2. Thus we know that U: 2~->^ x is continuous.
In a like manner, using (5-13) and differentiating (5-4) further we deduce that

U: iT-*-^;2 is continuous. The proof of Theorem 2 is now complete.

We are grateful to our colleague Professor T. Brooke Benjamin for careful reading of
the manuscript and many comments which led to substantial improvements. P. J. B.
also wishes to express his thanks to the University of Essex for hospitality during the
period of this collaboration. We are indebted to the Science Research Council for their
support of the Fluid Mechanics Research Institute.

APPENDIX

Here the results of Theorems 1 and 2 are reinterpreted in a way that allows for the
unbounded time interval 0 < t < oo. This is done with the aid of some additional
function spaces, which are Fre"chet rather than Banach spaces. The new interpretation
is tidier in that the rather imprecise time parameter T is eliminated.

Let Ck(U+) denote the functions denned on R+ whose derivatives to order 1c exist
and are continuous but not necessarily bounded on U+. We give C*(R+) the Fre"chet
space structure induced by the countable collection of pseudo-norms

pn(f)= sup sup \p\x)\ (n= l ,2 , . . . ) . (Bl)

Thus, if/, g e Ck(U+), then the formula

defines a metric on Ck(U+). This space can then be demonstrated to be complete and
separable with regard to this metric. We refer the reader to Treves ((4), chapter 8) for
an account of the details.

We let ̂ m denote the space of functions u(x, t) denned on K+ x U+ whose derivatives
&td3

xu exist, are continuous, and are, for each fixed t, bounded as functions of a;, for
0 ^ i ^1,0 ^j ^ m. That is, "^V" consists of functions u on IR+x R+ that are in (S\m for
all T > 0 finite. (Note that there is no restriction on the growth in time.) c&l£n is given
the Fr6chet structure induced by the pseudo-norms

qn{u)= sup sup \8idiu(x,t)\ (rc = 1,2,...). (B 3)
>0 l>i>0

Finally, by analogy with WT, we define W^, to be the functions u(x, t) on K+ x IR+ such
that ueWT for all T finite. The defining pseudo-norms for the Fre"chet structure
on "W^ are
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404 J. L. BONA AND P. J. BRYANT

From Proposition 2 in section 2 there follows:

PROPOSITION 3. Wm is embedded intf^ (= ^ ° ) . Considering W^ as a subspace
its elements are continuous functions asymptotically null for each t (and uniformly
asymptotically null on bounded intervals) and such that

Qn(u)^rn(u) fa = 1 , 2 , . . . ) ,

where qn and rn are the defining pseudo-norms for &„ and Wx respectively.
We can now prove the result anticipated above.

THEOREM 3. Let the initial waveform g lie in H1(U+) n Cl(U+), and the boundary
forcing term h lie in C1(U+). Then there is a one-to-one continuous map

\J:% = H1{U+) n G2
b(U+) x C1(R+)->7^ n &kz

which associates with (g, h) the unique solution u of the system (1-2) in #^, n ^li2-

REMARK. J£?1((R+) n Gl(U+) is again given its Banach space topology, as in Theorem 2,
and C1(IR+) its Frechet topology as defined above. Thus SC, being the product of two
metric spaces, is itself a metric space. <^;2 fl "f^~m is also a metric space, with metric
d = o~ + p where o~ and p are the metrics on ^ i ; 2 and if^ respectively.

U is therefore a mapping between metric spaces, and thus it suffices to show that U
is sequentially continuous.

Proof. The hypotheses of Theorem 3 imply those of Theorem 1 for any finite T > 0.
Hence we may infer the existence of solutions uTeWT n ̂ T2 to the system (1-2). We
define a function u(x, t) on IR+x IR+ by u(x,t) = w*(a;, t). This is well defined by the
uniqueness assertion of Theorem 1, and it follows from this definition that
tte#r n ^ r 2 for &U finite y> whence ue#f f l n ^ i 2 . Clearly it is a solution, on U+ x U+,
of the system (1-2), since it agrees with a solution on any finite time interval. But u is
unique in having these properties, since when restricted to U+ x [0, T] it is unique
according to Theorem 1 for each T > 0.

Finally, we must show that the correspondence U: (g,h)->u is continuous from SC
into T ô n ̂  2. As we remarked above, it is enough to prove sequential continuity.

Since a sequence in Wx n ̂ i 2 converges if and only if its restriction to U+ x [0, T]
converges in iTT n "^r2, for each T > 0, we may conclude the sequential continuity of
U from the continuity of the restrictions UT defined by

Urfa.fc) = U(sr,A.)|R+x[0,n = uT.
The continuity of U r being guaranteed by Theorem 2, the proof of Theorem 3 is now
complete.
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