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For the Korteweg—de Vries equation
tp+ byttt 4 1, = 0,

existence, uniqueness, regularity and continuous dependence results are established
for both the pure initial-value problem (posed on —o0 < & < o0} and the periodic
initial-value problem (posed on 0 < x < [ with periodic initial data). The results are
sharper than those obtained previously in that the solutions provided have the same
number of Ly-derivatives as the initial data and these derivatives depend continuously
- on time, as elements of L,, The same equation with dissipative and forcing terms added
is also examined, _ _ _
A by-product of the methods used is an exact relation between solutions of the
Korteweg—de Vries equation and solutions of an alternative model equation recently
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studied by Benjamin, Bona & Mahony (1972). It is proven that in the long-wave
limit under which these equations are generally derived, the solutions of the two models
posed for the same initial data are the same. '

In the process of carrying out this programme, new results are obtained for the latter
model equation.

1. INTRODUCTION

The equation considered here was derived over 75 years ago by D. J. Korteweg and G. de Vries
- as a model for long water waves propagating in a channel. The significance of their ideas went
more or less unappreciated for several decades. This can be traced in part to an inadequate
description of their work by Lamb in his monumental treatise on hydrodynamics. The appear-
ance of the same equation derived as a rudimentary model for waves in a number of diverse
physical systems has awakened the interest of physicists and mathematicians. Tt is now generally
understood that the Kortewcg~de Vries equation, or other comparable model equations, can be -

- expected to appear as describing to the first approximation the behaviour of unidirectional long

waves in nonlinear dispersive media. An account of the general ingredients of the derivation of
- such model equé.tions together with further references to their derivation in specific physical
situations is presented in Benjamin, Bona & Mahony (1972, § 2). A wealth of additional material
~may be found in the review articles of Benjamin (1974), Jeffrey & Kakutani (1 972), Miura (1974)
and Scott, Chu & McLaughlin (1973). : '
Considerable stimulus to the study of the K.~dV. ‘equation was provided by the research of
a group at the Plasma Physics Laboratory of Princeton University. They built on earlier work of
Whitham (1¢65) and Kruskal & Zabusky (196g), obtaining very interesting results, some of -
which are used here. An account of this work can be found in a series of papers collectively
 entitled ‘Korteweg~de Vries equation and generalizations’ which is referenced in the biblio~
.graphy (cf. Gardner, Green, Kruskal & Miura 1967; Kruskal, Miura, Gardner & Zabusky - -
1970; Kruskal & Miura 1974; Miura, Gardner & Kruskal 1968; Gardner ¢t al. 1974).
Rigorous existence theory for K.~dV. was begun by Sjéberg (196%) in an Uppsala University
Computer Science Department report. For spatially periodic data with threc L,-derivatives -
Sjoberg (1970) proved existence of solutions to the K.—dV. equation which have three L,-
- derivatives. For the same problem, Teman (1969} has shown existence of weak solutions corre-
sponding to periodic initial data with one or two Ly-derivatives, while the later results of
Tsutsumi & Mukasa (1971), when specialized to K.-dV.,, imply existence of solutions with
m Le-derivatives corresponding to initial data with m Ly-derivatives, m > 1. For the case of
primary intercst here, the pure initial-value problem posed on the entire real line, Kametaka
(1969) has announced results in which the solutions had three less L,-derivatives than the initial
data. Again for the pure initial-value problem Tsutsumni, Mukasa & Iino (1970) have announced
results (subsequently established by Tsutsumi & Mukasa 1971) for a generalized K.—dV. which
when specialized to K.~d V. itselfimply existence of solutions with m L,-derivatives corresponding
to initial data with m Ly-derivatives, m > 1. The top three spatial derivatives proven to exist may
be discontinuous functions of time however. Dushane (1971, 1974) has discussed a related class
of third order nonlinear evolution equations in which the solution proven to exist has the same
number of L; derivatives as the initial data. He must assume his initial data has six Ly-derivatives
before he obtains any solution at all and his results exclude the K.-dV., equation. Tsutsumi (1972) -
and Mukasa & Tino (1971) have also given existence theories for various generalizations of the
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basic K.—dV. equation. Menikoff (xg72) has proved existence of unbounded solutions of K.—dV.
His results are not strictly comparable to ours, and he does not make plain what function class his
solutions lie in, but he appears to need conditions on the first seven derivatives of the initial data
in order to establish existence of solutions. None of the above work gives consideration to the
question of continuous dependence of solutions on the initial data. _

The method of proof presented here is to regularize the K.—-dV. equation by the addition of
the linear term —eu,,,, establish results for the regularized problem and then pass to the limit
€ 0. Itisinferred that if the initial data has s > 2 Ly-derivatives then corresponding to the given
data there exists a unique solution (in the sense of distributions) which has s > 2 L,-derivatives,
all of which depend continuously on time. (In fact, as is shown in appendix A, existence can be
proved even for initial data which is in L, and has only one Ly-derivative.) In particular, it is
only required that the initial data has four L,-derivatives in order to ensure existence of a classical
solution to the problem (by which is meant a function for which all derivatives expressed in the
differential equation exist and are continuous and which satisfies the equation pointwise).

- Against these positive results, however, we must set our failure to control the solutmn in Cf
" function classes  Examination of the related hnear problem '

U T Ugge = Os u(x, 0) =g(x)-

seems to hold out little hope of being able to control the solution in C§ except by controlling & + 1
L,-derivatives (cf. Benjamin éf al. 19772, p. 56). In this latter aspect, the K.—~dV. equation is not
as satisfactory mathematically as the alternative model equation

: z‘!t""_ua;:'i-_uuw_umzt =0, ._ _ (L.1)

proposed in Benjamin ef al. (1972), which does allow direct control of solutions in C}.
~ The regularization chosen may at first sight appear peculiar. Certainly the regularization
+ €Uy, used first by Temam for K.—dV. and later by Dushane for a broad class of one dimen-
sional evolution equations, appears to be more attractive in that it clearly guarantees good
properties of solutions of the regularized equation. A price to be paid in using this regularization
is that at least weak control of the fourth derivative must be established. Regularizing with a lower
order term might well be preferable provided reasonable solutions for the regularized equation
can be shown to exist. An examination of the ‘dispersion relation’ for the linear terms in our
regularization seems to indicate ‘on physical grounds’ that smooth solutions should obtain
~ (cf. Benjamin e al. 1972, § 2 for the definition and a discussion of dispersion in the context of
one dimensional long-wave models). It turns out that this heuristic reasoning, based on con-
sideration of the linear dispersion for the regularized problem, can be put on a firm mathematical
base, ' : S o o
A bonus of proving results for K.-dV. by using the regularization suggested here is that the
regularized equation can be used to throw some light on the question of whether K.~dV. or the
equation (1.1} provides a ‘better’ model for long waves in nonlinear dispersive media. It is
demonstrated that in the long-wave limit where amplitude is taken to be inversely proportional
to the square of the wave length, which is the usual assumption made in deriving K.-dV., the
solutions to K.~dV. and to (1.1) corresponding to the same initial data lie very close to each other
(in a sense to be made precise, but which certainly implies the solutions are pointwise close

T CF = {k times continuously differentiable functions which are bounded with their first k derivatives on R}.
64-2
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together). This result seems to indicate that at least for the pure initial-value problem or the
periodic initial-value problem posed for the purposes of modelling genuinely long waves, con-
siderations other than the modelling properties should guide in choosing between K.-dV. and
(1.1). For example, in computing numerically, (1.1) appears to be easier to stabilize for long
waves of small amplitude (cf. the remarks by Benjamin ¢f al. 1972, §2, and the recent work of
Hammack 1973 and Wahlbin 1974). Whereas for theoretical considerations, it might be con-
venient to have available the very considerable arsenal of formalism developed recently for K.~dV.
(cf. Miura et al. 1968, Kruskal ¢ al. 1970; Segur 1973). '

The plan of the paper is as follows. In § 2-7 attention is restricted to the technically more
challenging case of the pure initial-value problem posed on the entire real line. For the case of
periodic initial values, defined on [0,7] say with periodic boundary conditions imposed, the
proofs are the same except some simplification is possible due to the boundedness of the under-
lying spatial domain. A discussion of the periodic case is included in appendix B. In §$2-7, an
effort has been made to prove the results by using as little as we could of the techniques of modern
functional analysis in hopes that the theory presented would be accessible to scientists interested

-+ in problems of wave propagation, but not well acquainted with the latest mathematical tech- -

niques. In appendix A, it is shown how an existence theory can be deduced rather more
efficiently using weak compactness and interpolation ideas. '

2. STATEMENT OF THE PROBLEM AND PRINCIPAL RESULTS

First remark that by changing to a set of coordinates moving with the wave, the initial-value
_problem for the Korteweg-de Vries equation

O tugtuggbug, =0, | ()

can be put in the slighﬂy simpler form ' o | '
I ty + tlly + Uy = 0,

u(x, 0) = g(#), }

for '  t20, —w0<x<o0,

(2.2)

As usual, denote by L, = L,(R) the Hilbert space of measurable real-valued functions defined
~ on R which are square integrable. Here R denotes the real line. For integers s > 0, let H* = H*(R)

be the Sobolev space (feLy: f® = dbfdatel, 1 < k < s},
normed in the standard way || f[2 = i j ’ [fO(x)[2dx. _ (2.3)
. F=0J —=

Thus H° = L,, and the norm in L, will be denoted simply by || {, omitting the subscript. By using .
Plancherel’s theorem to express this norm in the Fourier transformed plane, there emerges the
useful form

VK =f_: (LA 4.+ )| F(B)[2dk,

where f denotes the Fourier transform of 7
In order to describe the evolution of the spatial structure, the following Banach spaces are
needed. For T a positive real number or +co, and non-negative integers s, the space
7 = C(0, T; H¢) consists of the functions z: R x [0, T]—R which, for each ¢&[0, T, have
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u(+,1) e H?, and for which the mappmg u: [0, T:f-—:-H8 is continuous and bounded. HY will
usually be written simply 7. The norm on 5% is

Loy = llells = sup (-, D)

<st<T

For integers £ > 0, there is likewise defined C¥(0, T H*) = #°%* as the functions z€ #% such
that 8iue % for 0 < j < £. The norm in this case is

ey = llello = sup sup [OFu(-, s

OIS T 0<j<h
Thus #%" = #%. A few sunple properties of these spaces are summarlzed in the followmg
proposition.

ProrosiTion 1. For integers s > 1 and £ > 0 the following results hold.

(&) feHs =/, f’,...,fD are bounded uniformly continuous functions which converge to 0
at + o, - '
(b) figeH*=>f-ge H". _ _ _

(c) ues#y* - djdkuis a bounded continuous function on R x [0, T] (uniformly continuous
on bounded time intervals) which converges to 0as x—> + 00, uniformly for bounded time intervals,
for0<y<s—-1,0<Igk

(d) u,ve %" = u-ve Y- o

Remarks. Properties {(¢) and (4) above are standard results which can be found in many text-
books.T Properties (¢) and (d) are straightforward generalizations of (a) and (3).

Notation. Throughout the remainder of this paper the Sobolev norms of a function # of both
spatial and temporal variables will always be applied to the spatial variables. Because of this
uniformity, the simpler but less precise notation ||«], will be used instead of Ju( -, #)] , throughout.
An analogous convention will be used regardmg the L, (R) norm of a function z of both spatial
and temporal variables. :

- It is obvious from the differential equation that differentiating a solution with respect to time
reduces the regularity in the spatial variable by three x-derivatives. Hence it is natural to define
the followmg space of functions. For integers 5 > 0,

o = H#50n st—a,ln Qf%-e,a Noues a (2_4)
That is, Zyp= {uleT atueﬁ%“” for { such that s— 3/ > 0}. '
With this notation in hand, the principal results for K.-dV. can be stated. These serve to define

. the aims of §§ 3-6 and appendix A. Results corresponding to weaker assumptions on the initial
data are also given in appendix A. '

THEOREM. Let ge H*, where s > 2, Then there exists a unique solutlon ueZ, o to the initial-
value problem (2.2) which depends continuously on the initial data.

Inthe above result, if s < 8, then the term ‘solution’ connotes a solution in the sense of distribu=
tions. If s = 3, then all the relevant derivatives exist almost everywhere and the equation is
satisfied pointwise almost everywhere. If s > 3, the derivatives expressed in the K.-dV. equation -
all exist and are continuous, and the equation is satisfied identically. ‘That is, the solution is
_ 2 classical solution of the initial-value problem. The continuous dependence result: alluded to

above will be spelled out more prec1se1y in §6. :

T Cf. E. M. Stein, Singular integrals and differentiability properties of functwm, Princeton Mathematical Sencs Ne. 30,
Princeton University Press, Princeton, 1970,
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3. EXISTENGE OF SOLUTIONS OF THE REGULARIZED
INITIAL-VALUE PROBLEM

Consideration will be temporarily given to the initial-value problem

(3.1)

Ut Uy U, — €l = (),
u(x, 0} = g(x), }
 forxeR, ¢ > 0and fixed ¢ in the range 1 > € > 0say. Changing the dependent and independent
variables as follows. o(%,2) = culeb(x—1), cke), . ' ' (3.2)
transforms the problem (3.1) into the initial-value problem '

.ﬂt'}“yz'l_v.vm_vwzt =0, }

(%, 0) = h{x) = eg(etx), (3.3)

~ for xéR and ¢ > 0. For ¢ fixed and positive, % is of the same function class as £ and hence the
existence and regularity theory for the initial-value problem (3.3} developed by Benjamin et al.
(1972, § 8) may be used to advantage. The result is stated first in terms of the model system (3.3).
The statement given here, which takes account of the Ly-properties of derivatives of order higher
than one, provides a slight extension of the results derived in the last quoted reference. The
essentials of the proof of this extension are included below.

- Lemma 1. Suppose he H™ where m > 2. Then there exists a unique solution # of the initial-
value problem (3.3) which is in #°%, for all finite 7" > 0. Furthermore, forj > 1, djue HP, for
Call finite T > 0, ' '

Remarks. If m > 2, each term in the differential equation in (3.3) is a continuous function of
x and ¢, and u satisfies the equation pointwise, That is, # is a classical solution to the initial-value
problem. For m = 1, the result still holds, but « only satisfies the differential equation, for cach £
pointwise for almost every . o : '

Proof. Since m > 2, the hypotheses are sufficient to imply the results of theorem 1 of §3and
theorem 4 of §4 of Benjamin ez al. (1972). We may certainly conclude that {8.3) has a unique
solution #which in particular lies in the function class . Further, asin Benjamin ef al, (1972,§3),
u satisfies the integral equation derived from (8.8) by inverting 7— 2, integrating by parts, and
then integrating up in time: S Co C :

o) =8+ [ [° Ke-p ) +itnntae, s
where . _ E | K(z) = }sgn (2) e, .

From this representation of u, it follows by induction that, for any finite 7 > 0, ue 27 Assuming
that e 5#°% for some j with m > j > 1, one sces from the representation (3.4) that

[ w©
a£+1u —_ h{i+1)+f ,:a%(u_]“%uﬂ) _f
0

—e

e di(u o) dy) . (3.8)

The right hand side of (3.5) is in 5%, since u, and hence 12 by proposition 1, is in #%. Thus
u€#% and &itlues#,, whence ue H3H. Then ue #%, and the induction cannot proceed
further since £ cannot be differentiated further. Note that if m > 1, we do not assert z € #™ since
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the relations derived do not allow us to bound the growth in time of derivatives of order higher
than one uniformly for all time. _
If (3.4) is differentiated with respect to time, it appears that

U =fio K(x—y) (u+3u2) dy. _ - (3.6)

An easy calculation from the Fourier transform shows that convolution with X mapé H®™ con-
tinuously to H™+L, and so % to P+, Thaus it follows that u, € #7511, We finish by proceeding
inductively from (3.6). Assuming that 8]z e #8+ for J <5, where 5 > 1, write :

oty = f " K(—y) 0+ o) dy.

By proposition 1, 8j(x+ 44?) € #%. Hence the mapping properties of convolution with K alluded
to above allow the conclusion 3tz € 22+, The proof of the lemma is now complete.

‘The second lemma is a corollary to this result and the transformation (3.2) between the two
 initial-value problems (3.1) and (3.3). _ ' :

Lemva 2. Suppose ge Hm where m > 2. Then there exists a unique solution # to the
regularized K.~-dV. equation (3.1) with initial value g which lies m % for any finite 7 > 0.
Furthermore, for 0 < I < m, Fue.#p for any finite 7> 0. S .

- Cororrary. Let g be a 0% function all of whose derivatives are in L,. Then there exists a unique
€= solution u to the regularized K.—dV. equation (3.1) which, with all iis derivatives, lies in
7 for any finite 7" > 0. ' : o

4, DERIVATION OF 4 PRIORI ESTIMATES FOR SOLUTIONS OF THE
) REGULARIZED INITIAL-VALUE PROEBLEM

‘Roughly speaking, the last result of § 3 shows that the regularized K.~dV. equation has smooth
solutions corresponding to smooth initial data. As is not uncommon when dealing with partial
differential equations, the heart of the theory lies in the derivation of 2 priori bounds which
smooth solutions must satisfy. The derivation of these bounds will be undertaken in the present
section. Use is made of the first three non-trivial invariants for K.~dV. discovered by Miura et al.
(1968), adapted to the regularized problem, and of some integral inequalities for solutions of the
regularized K.~dV. equation. Note,_iricidentally, that we cannot avail ourselves of the bounds
for the problem (3.3) because the inverse of the transformation (3.2) becomes singular at e = 0,
Hence bounds must be derived directly in terms of the regularized K.~dV. equation (3.1).

‘Throughout thiis section, the initial data g for (8.1) is assumed to be a €= function all of whose
derivatives are in L,. The set of all such functions will be denoted H®. Then z will denote the
unique solution of (8.1) for the initial data g guaranteed by the corollary to lemma 2, By the
corollary to lemma 2, « and all its spatial and temporal derivatives lie in H#p for all finite T' > 0.
The ¢ in (8.1) is still restricted to the range 0 < ¢ < 1.

Prorosirion 2. The solution # of (3.1) corresponding to g given in H= satisfes the inequality

l#l: < 2(lg]}; - (4.1)

for all ¢ > 0, independently of e in (0, 1], where a: R*—>R* is continuous, monotone increasing
with a(0) = 0. ' ' '
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Proof. Multiply the regularized equation (3.1} by z and integfate over R and over [0,£]. After
appropriate integrations by parts and allowing for the fact that  and all its partial derivatives -
tend to 0 at = oo, there obtains, for all 2 > 0,

|7 oy +atmnas = (st (42)

Next multiplj; the régularized K.-dV. equation by #* + 24,, and again integrate Q{rer R and
“over [0, f]. Making use of the identity
%fm w3,y dx = —J.fn U U X

—0 —

_ derived by multlplymg the regularized K.-dV. equatlon by #,, and mtegratmg by parts, one
. finds that for all tz

_ f fui—%ua] dx =f°° [¢/(9)%~de()%] dx. (4.3)
. 'The relations (4.2) and (4.3) combme to give thc desired result. For from (4. 2) it foliows that, ..
' mdependenﬂy of e in (0, 1], : 4] < ||g”1 | : ( 4.4

" Then by using the elementary?t inequality N :
s ] < D<Ak (4.5)

for f EH1 there is derived from (4.3) and (4 4) the inequality
fm udx _-.—--éfm u3dx+f (x)2 lg(x)3] dx

< $sup o ﬂM+f gprdrrysuplel [~ g
—o0 zeR —o

reR

< %-nunl1|u||2+_!fg'||2+%ﬂgulug||2 |
< Hul g3 +lef2 + 3 el2.

Hence mdependently oft > Oand ein (0,1],

ot = [ -4} v < ol -+ 2Lel2+ el

from which there follows immediately, upon solvmg the quadratic inequality in [#]|, above, that
independently of £ > 0 and 6 in (O 13 ” ), < |[g]| )
1= 172

where a: R+ — R+ is continuous, monotone increasing with ¢(0) = 0.

The bounds derived in proposition 2 above are sufficient to conclude existence of weak solu-
tions of K.~dV., using arguments given in appendix A. Further a priori estimates are required,
however, to establish existence of smooth solutions and in the task of comparing the K. ~dv.
equation with the model equation {1.1). :

1 The first inequality follows from representing f2(x} = f - f i i boundmg the mtegrals by f | ALA

" and then applying the Cauchy-Schwarz inequality. The second mequa.hty follows from the tr1v1al reIauon
ab < a?+4 b2 {The factor of } is eschewed for the sake of tidiness.)
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As will appear below, the next stage in the derivation of & priori bounds is the most difficult,
Here is a simple and useful corollary of proposition 2 which follows immediately from (4.5),

~ Cororrary. The solution # of the regularized K.~dV. initial-value problem (3.1) corre-
sponding to a given ge H* satisfies :
- B sup [u(xt)] <alels), - (4.6)
: : TeR (20 .
~where a is the function in (4.1) of proposition 2. -
~ PropostTioN 3. Let 7' > 0 and g€ H™ be given. Then there e:s:ists'csD = (T, | g5} such that
the solution # of (8.1) corresponding to g and any e in the range 0 < ¢ < ¢ satisfies the inequality
| s < a(]als) BCY)
~ independently of ¢in [0, 7], where a;: R+ > R+ is continuous monotone increasing and a;(0) = 0.
Progf. A lengthy calculation (multiply the regulariied equation by u® + 3u2 + 6uu,, + 184, )
gives the following identity. R ' '

d

5 f '[gu?m — Buul -+ Jut] dx =c f [+ 32 + Guum'-i—l—f-umm] Uy X

- —c
- This can be put in more illuminating form by a few integrations by parts.
w . : oo . :
él_it' [(2 — Beu) uf;, — Buzl + Jut + 2eud,, | dx = — ef [Buytize + BuPuguyy + 6 u,u, ) dx,  (4.8)
—o o —a0 . o .

Hence define . Vit) = f (3 — Bew) 1y — Bud + Jut + 2en2, ] dx,
and integrate (4.8) over [0,1] to obtain
Epe - ' o _
V(&) = V(0) - ef f (Buy e + By + Buy vy uy, ] dadr, (4.9)
: : 0 — " :

From the corollary to proposition 2, x is bounded fdl_‘ all ¥ and ¢in terms of | gll; asin (4.6). Thus
_thereis an ¢, > Osuch thatif 0 < ¢ < ¢, then o e _
B3> 1, | (4.10)

So in the range ¢; > ¢ > 0, the identity (4.9) yields the following integral inequality.

f ipds < f (8- 3en) 2, + b+ Ben, ] dx

—o —c
<VO+3[" (ul ) ax
—w
ifw ) ' . .
+eff |3utuiz+3u2uzuﬂ+6umztmumt| dxdr. (4.11)
. 0J —

‘The first two terms on the right hand side of (4.11) can be bounded, independently of ¢ in (0, &,],
in terms of the //* norm of the initial data g as follows. Ife < e,, then by using (4.10) at ¢ = ¢ and
(4.5) twice, @ : Co
V() = [ [8-20)g™ 255 + i+ Seg

<[7 mRerrsleher e tlelegerar

< Pl +dleli+lgli+2eelz | (¢.12)

65 . . " Vil A
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Similarly, again making use of (4.5),

BIm (Ju| Jg|2) dx < 3||z,:H1fno u2 dx
| < 8l | (4.13)

and the latter quantity is bounded in terms of only the H' norm of g, by proposition 2, Letting C
denote a constant, depending monotonically as it happens on the H® norm of g, which bounds-
the first two terms on the right hand side of (4.11) and estimating further the remaining integral
- on the right of (4.11) leads to

[7 itaar < Core | (Bluola® + ol i e + Bl B Il dr, (819
where Al =sup] f(x)]. o (4.15)

Since ||u|); and [ju]| are known from proposition 2 and its corollary to be bounded in terms soIely
of l2ls mdepcndently of ¢ and £ > 0, (4. 14) implies the followmg inequality.

Julg < €+ (ool +d + o]
Here C denotes constants independent of ¢ < ¢; and ¢ > 0, but dependent on | gliz- Writing for
short '

A=) =il (4.16)
the last 1nequa11ty' comes to ' _

43() < CreC [ ([l () + il + i a0 ()

. In order to make use of the last inequality, some estimates of time derivatives of ¥ must be
derived. To this end, dlﬁ'crentlate the regularized equation with respect to ¢, Letting v = u,, this

is written as
vt + (uv)m + va::cz — EUpgy = 0.

Multiply this'equation' by v and integrate over R. After a few integrations by parts, there emerges

'c(litjw (v® + e} )d:c=—fm u, v? dx.

Now integrate the last relation over [0, ] to obtain .
Ji:) (13 +euy) dx = Jjn [u,(x, 0)2 + euy(x, 0)%] dx —ﬂfio 18 dxdr,
. Define ' | B = Bi(t) = f:u (uf + euly) da. ' (4.18)
Then the last relation gives the integral inequality |
B < B0+ f : It B(7) dr. (4.19)

The estimates (4.17) and (4.19) are extended by the following elementary inequalities.




.

INITIAL-VALUE PROBLEM FOR K.-oV. EQUATION 565
Lemma 3. In the above notation, the following inequalities are valid:
@ Nzl < 2B,
() e < ual lusl)? < CA@3,
| (i) [ < e EB(),
where C depends on | g[;. |

.Procyr (of Lemma). {(iif) is trivial and (ii ) follows from the first half of (4.5) applied to #, and:
the bound on [Ju,|| implied by (4.1). For (i) use (4. 5) and the elementary 1nequa11ty ab < a®+ 52

Jeds < e e = 40l ()]
< e+ ] = 2B

'Taking the square root givcs (3) and concludes the proof of the lemma.

" From the results of lemma 3, (4 17} and (4 19) yield the following coupled system of mtegral
1nequaht1es '
A2() < C+eC f [ej'iBA2+e—%B+e-%BA%] dr,|
| | o - (4.20)
B(1) < BX(0) +C f avprr.

The next task is to obtain a bound on B(0) which depends only on the initial data. This calcula-
tion s the subject of the next lemma. :

Lrya 4. Let ge H® and let u be the corresponding solution of the initial-value problcm (8.1}
for the rcgulanzed K.—dV, equation. Then

|l§|ia(||gl|1+ 1). o (4.21)

Proof. Multiply the regularized equation by #, and perform one 1ntegrat10n by parts to derive
the identity : :

- BY(t) = —fm (s, +u,,,) dx (4.22)
| B [ufa(la)s+1).

Cancelling B(¢) in (4.22} gives an estimate for B(f):

| BO) < [uls(lel+ ),

which at ¢ = 0 yields the required bound (4.21).

Thus again letting C denote constants dependent only on || g, for £ € 3, and noton Torein
(0,€,], the system (4.20) becomes the following coupled system of integral inequalities.

. b4
£2<CreC f (62BA2 46 VB + o3 BAY) dr,

i
B < CiC f AbB2dr.
0 .
65-2
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Upon defining the new dependent variable D2(#) = A%(#) +1, the above formulae imply

i
D <C+elC f BD¥dr,
| s (4.23)
Br<C+ CJ' DiBrdr.
0

There is a particularly convenient form in which to write the constants in (4.28). The claim is
that (4.23) implies :

1-—¢t

2 t
Baé( b )+37—'f Dipdr,
_1-——6‘% & Jo )

. 4 it .
Drg ( % ) +e§%J D2Bdr,
° (4.24)

wherc a, 5,y donotdepend one < €, provided g, < 1 whichis henceforth assumed. (First choose

&, < 1in accordance with the previous restrictions (4.10), then choose @, § sufficiently large, and.

* finally choose y sufficiently large. Since the constants Cin {4.23) can all be agsumed to depend

monotonically on | £]js> then without loss of generality, «, § and y do as well, though this is
not crucial in what follows.) Now define Dand B by ' .

o o \4 4y [t e n
= 'é..._ 2
D (1_65) te ﬁLD Bar,

2 ¢
2= (—'3—;) +-25J' DiBedr.
Q

-

1—-¢

Then by their construction it is always the case that D < Dand B < B, forall £ > 0. But D and
B can be determined explicitly as ' :

_ 'OCII 2 . ﬁe'yt . . -
D%_ (_——_1—6%67”") , B= (_—.—'—1—6"237*)' - (4,26) |

If €, is chosen so that 1 — eferT » } say, and ¢, .= min (e, €,), then since y depends only on | gll5,
€q = €o( T3 gl| 5). Further, if 0 < € < €, (4.26) then shows explicitly that D and B are bounded on
[0, T}, independent of € < €, with a bound depending only on 7 and the H? norm of the initial
data. Thus || and |u}, are seen to be bounded on [0, 77, independently of € in (0, &,]- Note in

‘particular from the explicit form of D that because the constant o depends (monotonically)
on | glls at least for € < ¢, we can now write |u], < a5(]| glls) on [0, T] for € in (0,¢,] where
a, is continuous, monotone increasing and ¢;(0) = 0. It is worth note thatforallt > 0, .

lim supjit] <a=allgly. - (4.27)

The final stage of the derivation of a priori bounds is the bounding of derivatives of order higher
than 2, ' '

ProposiTion 4. Let T > 0 and ge H® be given. Let g, be as in proposition 3. Then for € < €,
the solution z to the regularized initial-value problem (3.1) is bounded in %, for all m > 3,
with a bound depending only on T; &, | g||» and e¥]| gl s : :

Proof. The argument is made by induction. It is known from the last proposition that # is
bounded in #7% with a bound depending only on T, €, and || glis. Let m > 2 and suppose induc-
tively that z is bounded in #5~" independently of ¢ in {0, ] with a bound depending only on

(4.25) -
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T, €y and | g[,,. It will be shown that # is then bounded in #% with a bound depending only
on T, 6y, | gl|,» and €}| g|[ .44 (This allows the induction to commence with the already obtained
% bounds and yet still gives the desired bounds on % in 4% in terms of 2l and € gllnrs)
Introduce the notation : '
= u _
for spatial differentiation. Multiply the regularized equation by g, and integrate over R.
- Integrating by parts appropriately yields '

df= @
Etf _ Dby + ety ] de = —f_m (%) 1. U (4.28)

Now use Leibnitz’ rule to expand the first term in the integrand on the right hand side. Since u is
known to be bounded in #%%, independently of ¢ in (0, g5], it follows that

lu| <€ for r<m—1, - - _
| (4.29)
[egfiw < C for r<m—2,
where C'= C(7, ¢, | g].n).- - _' - -
The right hand integral in (4.28) can be estimated as foll_ows.

7 s = |

.. The last term in the right hand integrand of (4.30} only occurs in the case m = 3, and since it is
a perfect x-derivative, it integrates to 0 in any case. Hence it is ignored in the following. The
first term on the right of (4.30) is conveniently integrated by parts, '

: S om—2 . o '
2
[cli Uttt 4.3) Utm) T €1 U Uiy T Uy 22 Cr i) U1+ u%m—l) u(m)] dx. {4 30)
r= . :

=]

—tm

f Ukt 1) Uy dx = —'2‘f Uy Ui dx,

- ~“and then combined with the second term in the same integral. Sincem > 3, 3]0 < Crom (4.29).
_ Thex_*e follows the estimate :

d w o ) m—2
&)ttt < 7 ot S ol Pl o
—w —ag r=32

;e i © ' b @ .
sC’f u?m,dx-i-(?[f ufm,dx] :;,C(f u?m,dx+l)_ .

T

Define : - E.(8) =f [ty + €ty 11,] d.

Then fhe last inequality implies ,
dE,[fdt < C(E, +1),

from which there follows immediately that for ¢ } 0,
 E,(t) < B, (0) Sty o0ty

independently of € < €, and ¢ in [0, 7). The bound for E,,(t) is seen explicitly to depend only
on | gf,, and et g]l,,.4 since € depends only on | &l and '

E (00} < g+ et] gl man

Thus Jucal < EL, is_hounded. on [0, T, and hence # is bounded in #2, independently of e in
(0, €5], and the proposition is proved. ' , .
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CoroLLary. The solution x to the regularized initial-value problem (3.1) ‘corresponding to
a given ge H> is bounded in HE, independently ofe < ¢y forallk, [, and T > 0.

Proof. This follows from the last proposition by judicious use of the regularized differential
equation. Specifically, write it in the form :

_ (1—€e0F) up = = utly — Uy
Invert the operator 1—e&2, as in lemma 1, to come to the expression
= — K, % (uu +uxm):

where K B = (1+ek®) A s1mple estimate in Fourier transformed varlables shows -that if
Ve #p, then K,+V is bounded in 2% independently of € > 0. Therefore since for each m > 0
the right hand side of the last display is bounded in #°, independently of ¢ in (0, €], 50 #; is
‘bounded in #% for each m > 0, independently of small enough ¢. This shows that ok, is bounded
in' #, for each & > 0, that is « is bounded in 5! for cach m, independently of € in (0, ).
A straightforward induction argument now finishes the proof.

. B, GONVERGENGE OF THE APPROXIMATIONS '

In this section the behaviour of solutions of the regularlzed K.—dV. equation as ¢{ 0 is con-
sidered. It is shown that strong convergence to solutions of the pure initial-value problem for -
the K.-dV. equation obtains. The method of proof is elementary. Given initial data ge HE,
where k > 3, first regularize g by convolution with a smooth function {(an approximate identity).
Then pose and solve the regularized K.—dV. equation for this smoothed data. Finally it appears
that the solutions obtained from this process form a Cauchy sequence in the appropriate function
space, and hence converge strongly. The limiting function is then a solution to the initial-value
problem for the K.—dV. equation. The startmg point is a few prchmmary lernmas which will set
the stage for the main result.

Let ge Howhere s > 3 and let€ > 0. Definea rcgulanza’uon g.ofgas follows (here as before,
f denotes the Fourier transform of f)

2.(k) = o(eh) 2(k), (5.1)
where ois an even C= function, with 0 < ¢ < 1 everywhere and ¢(0) = 1,such thatyr (k) = 1— o(k)
has a zero of infinite order at 0 and such that ¢ tends exponentially to 0 at +co. Such functions
are abundant. For example, o(k) = e~%% where g(k) = k2¢~**" has the desired properties. It is
immediate that g, H*. Hence there is a unique C® solution ,(x,#) = u(x,1,¢), all of whose
derivatives lie in %, for all T > 0, to the regularized K.-dV. equation with regularized data g.:

g+ Uy Uy == €Uy = .0,} . (5.9)
- u(x,0) = g.(%)- '

Here is a simple result giving bounds on various norms of g, in terms of norms of g.

LeMmMa 5. Let g eHswheres > 3 and let g, be the smoothed version of g defined in (5.1). Then

ased 0,
" gs"s+j = 0(6—}7) _fOI‘ .] =1, 23

"g_gens—:i = 0(6%4) for j =1, 2) ) (53)
"g'_'ge”s = 0(1)'




INITIAL-VALUE PROBLEM FOR K.oV. EQUATION 569

Furthermore, the first bound holds uniformly on bounded subsets of H%, and the last two bounds
hold uniformly on compact subsets of H. The second bound holds uniformly on bounded subsets
of H*if o(¢¥) is replaced by O(e¥).

' Proof. This is an easy calculation in the Fourier transformed variables.

Hgftes = [ (4R B0 2,k

. =I°° [hw a(e-}k)][1+___+kze] |8k |2 dk

- T+ 4h= ?
]_ F ... AR
ggl;[ TroeE ? 2(6*k)]llgl|§-

Lettmg K = ¢tk and y = t, the last inequality can be continued more transparently Since

0<e< 1,500 <7y <1 Hence

" o s (O
€ "ge"sﬂ l&ls SuP')” T+... + (Ky) o*(K)

2 psH L s "
"‘<‘ ”gllssgsléﬁ[ /},s_i_".._}_KZs (K)'

Estimating separately the ranges |K| < 1 and [K| > 1 leads to the bound
Hadies < Igli(s+7) sup {1+ K¥o*(K)}.

That is, | S &M glors < Clels

where Cis independent of g and of e This establishes that the first bound in (5.3) holds uniformly
for bounded subsets of H*. The third conclusion must be handled a httle dlﬁerently Flrst note .

- that 1f'g<§Hs then .
le=gdt = [~ waen 1+ 1o Jogh) 54

As ¢ 0, the integrand tends pointwise to zero almost everywhere, T urther, the integrand is
bounded above by the integrable function
(LR R (R |2

Hence Lebesgue’s dominated convergence theorem applies and we may conclude || g — gdls—~0 -
as €4 0, .
Second, note that to demonstrate the uniformity on compact subsets, it is enough to show that

Gorgin He g, —g.|,~0asel0 uniformlyfor n=1,2,..., (5.5)

since sequential compactness is equivalent to compactness in a metric space.
To prove this, let ¥ > 0 be given. It is required to find an ¢, > 0 so thatif 0 < ¢ < < €, then
| gne—&nlis < 7 for all n = 1,2, .... Notice that for all n,

" g'ne_'_-ge“g = " (gn'"'g) sﬂz
= |7 v (k) | 2 - 4Rk

sf: (14 +5%) | 8(0) - g(B)|2dk = | g, — 2|3 - (5.6)
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Hence to verify (5.5), choose N so large that if n > N, then ||g, —g||s < ¥y. Then choose ¢, so
small that g —gifs < §7 for 1 & < Nand | g,—¢g|s < 47, for e in (0, ¢)]. Then certainly

" gns_gnns <% (57)
for 1 £ n < N. Ifn > N, then by using (5.6),

.' . Hgne_'gn”s\"gns ge"s+|lge gl|s+|lg gﬂ"s
<l gn—gls+l g~ gls+1 6—2alls

Sy iy v =1
Herice (5.7) holds for all ».

For the second inequality i in (5.3) a similar argument applies,

© 2(s—1) '
lo-edts =" [% PR U+ 4400 20

[1+ -+ o)

T e *k)” r(e¥k) [1+ +k28}{§(k)i2dk

< sup
kel

< Ceb f V) [1+.. AT | §(R) |2 dk,

. where again C denotes a constant which does not depend on g or on € < 1, As in the proof just
given above that | g— g, = o(1), the integral on the right side of the last display is o(1) as e 0,
uniformly on compact subsets of H* The integral is also bounded above by | g]?% so that
| g —glls—s = O(¢¥) uniformly on bounded subsets of H* as well. Thus all three parts of (5.3) are

verified and the lemma is established. o

CoroLLARY 1. Let s > 3. Then u, is bounded in 5% 1ndependent1y of sufﬁmently small ¢ for
each finite T > 0. Further, ei‘mu is bounded in 9?3"‘"‘ independently of sufficiently small ¢ for
cach finite 7> 0 and m >

Proof. This follows from the last lemma and the results of proposition 4. For by proposition 4,
], has an upper bound depending only on 7, &, | g.[; and ¢| g 5.1 From the properties of
the regularization | g, < | £l and €} g,ls+y < Cet| gll;- Hence, independently of ¢in [0, 77 and
of sufficiently small ¢, |z, has an upper bound depending only on T, €, and §g|;. A similar
proof yields the 5#%™ bounds on e¥™y,.

CororrLary 2. Oy, is bounded in 35”_%‘3 and €dm85t™ 33,4, is bounded in 5%, independently
of sufficiently small ¢, for all finite 7> 0andm = 1,2,...,5 :

Proof. Use the method, preﬁously elucidated in the proof of lemma 1, of inverting {1 —€0Z) -
in the regularized equation (5.2) to gain the estimate

132clls—s < lzal -3 [ Bsteflo-s + 022

‘ < o5+l : (5.8)
and similarly Bt ] osm-s < (|t sm—sl el srms + e orm)
<q (59

where C is a constant, independent of ¢ sufficiently small by corollary 1 since m < 5.

The major proposition of this section states that the functions {z} are Cauchy in 5#% as ¢} 0.
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ProrosrTiON. 5. Let u, be the solution of the regularized K.-dV. equation corresponding to
the initial data g, as in (5.2), where ge H*and 5 > 8. Then {»,} is Cauchy in #% as e} 0.

Progf. Let u = u, and v = u;, where § < ¢ say. It suffices to show that [z — ], can be made as
small as we like, for ¢in [0, T'], by taking ¢ sufficiently small. To this end, define w = #—». Then
w satisfies the partial differential equation

wt+ (uw+%w2)m+wmzz—8w:cxt = (6_8) Upats (5-10)

with w(x, 0) = g,(x) —gs(x) = A(x), say. Forj < s, the 1dent1t1€s

|7ty rontntae = 7t ottndar—2 7t + 1t (-9, gralwgdras,
| (5.11)

are derived by multiplying (5.10) by wy, integrating over R and over [0,#] and by using partial
- integration. (Flere as before wy, is shorthand notation for 8w.) We work out the details for the
case § = 3, and then show how s > 3 goes by induction. ' '
" Consider the casej = 0in (5.11). Let '

w2 =f [102 + dw?] dx,

s0 that AC f " [h o+ ah2] d.
Then (5.11) can be put in the form

V()2 = T/B(o)z_zf:fjm [(w, + $u,) w?] dx d*r—l;z(e—rﬁ‘)f:fw Um0 dedT.

Now it follows from corollary 1 above that |w,,+ $u4,] is bounded on [0, T, say by a constant C, -
depending on 7 and |/ glls, independent of sufficiently small . Further from corollary 2 above,
€¥|t14}} is bounded on {0, 7], say by C, where C, depends on 7 and on | £]|s> but is independent

- of sufficiently small e, Hence for sufficiently small e,

V() < V(0) =+2cf 7(7) 2dT+2€§C'2J‘ (r) dr.
Tt follows readﬂy that for #in [0, T, _
Jul < Ty < Fo(0) €57+ Gy (€07 — 1) G
Now, 00 = {7 Heate) e +2(ite) —1 asf

||g5~g[|1+llge gl < G,

- as ¢ 0 by the lemma 5 above. Hence {u,} is seen to be Cauchy in #%, from the estimate o] < < Ceb,
valid for e sufficiently small.
Consider next j = 1. Again, for convenience of writing, define

e = [ st ds,
0 that - V,(0)% = f " A8k dx.
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Now integrate (5.11) by parts to come to

Vi(t)? = V(02— ff (b, +3u,) w dx dr — 2ff [t (6= Vi ] drdr.

- But by corollary 1 and 2 above, on [0 T, |dwgz+3u,], |t and eYu,,l are all bounded

independently of sufficiently small e. Also, as mentioned above, [|w] < Cet on [0, T'] for € small
" enough. Hence for ¢ sufficiently small,-
| P2 < 02+ 2 (fwalf-+ et d

<REp+2C[ F(r)+ i),

where here, and in the remainder of the proof, C denotes various constants depending on T and
on norms of g up to order s, but independent of sufficiently small e. From this it follows 1nstantly

that on [0, T], () < V(O) eot+€_§-(ect_ 1)

._Hence, for £in [0, T} lw,]| < I{(t < V3(0) €27 +e(eCT — 1),
Again, ) < lg—edutle—els+ g —gdat St e—sila
< Cet -

as ey 0, (§ < e in these calculations) by lemma 5. It is now apparent that {u.} is Cauchy in #%,
and that in fact, on [0 T, for € sufficiently small,

||w||1 Cei o (5.12)
FOI‘_] = 2, {6.11) comes to : :
R =W~ f f [(uw-i—lw Ves W (€= 8) thppuuetigs] dxdr, - (5.13)
where Y= f [0y + Sueg] .

Now since corollary 2 above assures that e¥,,, .} is bounded for ¢ sufficiently small, the second
term in the right hand side in (5.13) is bounded above by e2C||w,,)| . Differentiating and collectmg
terms in the first summand under the integral leadsto

i . : ]
f J (_%(um +wa:) wg:m - 3ua:mw:cwxx_ummwwmm) dx. (514:)

Now by usmg (5.12) and coroHary 1 tolemma b5 for bounds onu 1ndependcnt of; suﬁ'"lcmntly smalle,
we sce that on [0 Ti,

@) e +wa:l
({H) o] <
(i) [|tpea] < C, (5.15)

(v) fud < Co,
W) vl <cd,

where C denotes various e-independent constants. It follows from (5.15) applied to (5.14} that
the absolute value of the integral in (5.14) is bounded above by

Of oud+ o)
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In sum, we have the inequality

B(0? < 0+ 2C [ (e + Ho ) a
 <Hopec [{ ey ome e,

so that on [0, 7] at least, |w V3(0) eCT +e?f(ec"'-" 1).

al < W(t) <
Ta(0) < I+ 832k

<[g—gdlo+]g—gl:+04 g §s|la+3%||£ ~ 853
< C'et +C'et < Ceth,

< Ce%

(5.16)

From lemma 5,

' Putting this in (5.16) yields ] (6.17)

on [0, T]. Note that if s > 8, we would obtain Ce} as bound at this stage, simply because lemma 5
~ would then allow the bound 7,(0) < Ce,

" Finally, consider the highest order case j = 3. Define V,(¢) in the, by now, obvious fashlon
Then (5.11) gives

P02 =3[ [ [0 50) e~ (6= 8) st ] .

Since €¥|uy,p,¢] is bounded, the second term under the integral above converges to 0 as ¢d.
- Again carrying out the differentiation and integrating by parts, the following expression for the
first term under the integral is obtamed '

:f.J

From the corollary to lemma 5 and the results (5.12) and (5.17) already in hand, these estimates

%(u +w$) Wi = AU Uy W — Oy W W — U ) d.xd'r. (5.18)

mx:n

hold for tin [0 T (1) lu, +wz| <G\

| ) <€
(i) e < C
(V) {tapea] < Ce, (5.19)
(V) [w] < Cet, |
(vi} || < Céd,
(Vi) Jwy| < Cet. |

Use (5. 19) in (5 18) to denve the upper bound

2 (Ol + CoHluc)
for (5.18). So, for ¢in [0, T, '

Vy(0)? < V3(0)2+2C f [V(r)2+ etV (r)] dr,

l022a]l < V3(0) €97 4 ek(e07 —1).
As before, the triangle inequality gives

AV

whence

<lg-gls+lg—gils+6¥ -+ g — gyl

which tends to zero as ¢4 0, & < ¢, by lemma 5. Thus [t020f > 0 as €| 0, for any finite 7" > 0,
' 66-2
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For s > 3, the proposition is proved by an inductive argument similar in structure to the
argument just given for s = 3. Since s > 3, it follows from the remark following (5.17) that

lw|, < Cet, whence lw] lw,| < Ced,
ase} 0. Forj < s—1, assume inductively that '
_ ' lwl;—y < Ceb as € 0. ' - (5.20)
~ Then {5.20) holds with j—1 rcplaced byj. To prove this, use (5.11) as before, setting
2= [ tuty+ dutyen] | (5.21)
The'n (5.11) is expressed exactly as - | |

por =@p-2 [ (e - Dtslugdrdr. (52

An estimate of the integral on the right hand side of (5.22) is reqmred. First use Leibnitz’ rule.

= —f j uw+lw )(3+1) (e 8) U, (J+2,] w@) dx dr

i1 41 '
= “I j ( 2 Ckw(g+1—mw<,)“(m+ E clcw(3+1—k1w(3)w(k)'" {e—0) ut,(j+2)w(j)) dxdr. (5.28)
— :

Separate out the top derivative terms and estimate the rest dlrectly

: i+1
3 < CJ-JW ( )y lw(g+1—k)w(3)u(k)l + Z lwo+1—mwmw(g)l +€lut <,+z}w<;)l) dxdr

k=1

C pipa _
— J‘ j (w(j+1)w(,-)u+2ww(j)w(f+ﬂ) dxd‘r_f

From the induction hypothesis (5.20), Juf; 4 < C Cet, so that for 0 <k <j-2, |ug| < < Cet on
R x [0, T7]. From corollary 1, ||, < € and [o]s < € 50 Jug] < Cand Jug| < Con RxIO, T so
long as 0 < k < s—1. From corollary 2, et|u)|, < C. Thus since j+1 < s, we may assemble these
facts and conclude ' ' ' '

i { o
g C J . (|wgl2 + €l wel) d7 —JOJA_ . (urwgy g4 + 2ty Wy p) de dr

Integrating by parts, the second integral is expressible in the form

i o . . [
['[7 tueutaasdr < Of gl

Putting together the pieces gives :
T () < V(0)2+2C f e +ernldn, (5.24)

.’n‘

from which; on [0, 7], one concludes
g < i) < Vi(0) €% +eHeT = 1). (5.25)

lg—gds+g—gl;+ ¥ g— gel|3+1+3%llg gal\m

From lemma 5, S
<Ceh. : _ (5.26)
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Thus ||w; < Cet as required. The inductive step being confirmed, there follows that
fowlen < C (5.27)

The argument just given now holdsline for line for j = 5 — 1, except that in (5.26) one only obtains
the bound Cet from lemma 5. The coneIusion for j = s—1 is therefore

"w“s 1S < Ceb. . (5 28)

Finally, forj = s, e|u| 5, and e8] u, (s+2,|[ are bounded. Hence proceedmg as above, the following

estimate obtalns _ _
lwal < (lg—g.lis+1 & —gslls + Ce?) €97 + ed (07 — 1), (5.29)

which, owing again to lemma 5, converges to zero as €| 0. This finishes the proof of the -
proposition.

Remark. Note again, for later reference, that the various constants appearing in the proof of
proposition 5 depend only on T and on [ g], (where £ < 5 depends on which constant is in
" gquestion) and are independent of sufﬁciently small e.

COROLLARY The functions ug(x, 1, e) are Cauchy in 52 as €} 0. -
Proof. Agaln suppose 6 < € and let # = Uy ¥ =1z and w = u —'1_). Then as in (5.11),"
wy = — (00 + 3% — W+ Sty + (€= 0) . (5.30)

The convergence to 0 in #% 2 of the last two terms on the right side of (5. 30) asey Ols guaranteed
by corollary 2. The convergence to 0 of the other two terms on the right of (5.30) in J%
ey 01s 1mmed1ate from the last propesition. :

The bits and pieces needed to prove our main existence theorem for the initial-value problem
for K.-dV. have now been assembled. (Existence under weaker hypotheses on the initial data
is considered in appendix A.)

THeEOREM 1. Let ge H, where 5 > 3. Then there exists a unique solution #, which is in 5%
for all finite 7" > 0, to the K.-dV. initial-value problem with initial data g.

Proof. Uniqueness is quite easy, as has been pointed out by Sjdberg (1967, 1970) first, and by
nearly all the mathematical papers on the subject since. If there were two such solutions  and »,
then defining w = # —v, it is immediate that w satisfics the initial-value problem

we+ [+ )Wl Wy = 0, w(x,0) =0, (5.31)

Multiply (5.31) by w and.integrate over R to gain the inequality

d © @w - N 7
T _mw'“'dx=f“m (ufu)wwmdx= —§f_m(ux+vt)w2dx

< Cfm w?(x, £) dx.
1t follows from Gronwall’s theorem that

'J‘m' wi(x,f)dx =0 forall ¢ 0.

—@
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Hence w = 0 almost everywhere, and since w is continuous, w is zero everywhere. The boundary
terms in the above integrations by parts all vanish since #, ve H? at least, for each ¢ > 0.
Existence is not difficult in the light of the present machinery. Let g, denote the regularization
of g defined in (5.1), and #, the corresponding solution to the regularized initial-value problem
(6.2). Then from the results of proposition 5 and its corollary, for each finite T> 0, as €4 0,

S u.—>u in 3£, } (5.39)
du,~v in HF. )

From this it is immediate that 0,(42) > 0,(e%) in . .}’f}‘l,} (5.33)
5 .

1 '8—3
eonlle > Opgett 10 SFE

Further; 0,%, is bounded in 2 31'—3', so 020,u, is bounded in #7575, Tt follows that at least in'the

sense of distributions, . _
: Cetidu,~0 in 2 (5.34)

(5..32)' implies that #,—# in the distribution sense, so 8,u,—~ 0z in the distribution sense and

_hence v = %,. Combining this with (5.32)—(5.34), shows that at least in the sense of distributions,
ut+uu;u+ua:xx =0, u(x0)= g(x) (0.35)

The initial data being correctly taken on is a Consequence of lemma 5 and (5.32). Since ue 3%
and u, € #3573, u is seen to be an L,-solution of the initial-value problem (5.35) for K.—dV. if
8= '3, and a classical solution in case s > 3. (The term L,-solution connotes that all the deriva-
tives expressed in the differential equation are, for each ¢, Ly-functions of the spatial variable »
and the equation is satisfied for each ¢, almost everywhere in #.) _
The choice of 7" > 0 wasarbitrary. The larger 7, the smaller e must be in order that the bounds
derived in § 3 be valid. Since interest is focused only on the limit e | 0 however, 7'may be chosen
arbitrarily large and the same results still hold. Hence a glebal solution (solution of the mitial-
value problem on R x [0, o0)) of {5.35) can be defined in the following simple fashion. Let ux be
the solution of the initial-value problem (5.35) on R x [0, K], for K = 1,2, .... The uniqueness
~ result shows that if L > K, then ur|y, z) = #g. Therefore define a function # on R x[0,00) by
u(x,1) = ug(x,t) for ¢ < K. u is then well defined and provides a global solution to the K.-dV.
initial-value problem, which lies in 5% for all finite T > 0 by its construction. This finishes the
proof of the theorem. '

The solutions guaranteed in theorem 1 have more regularity properties than stated above.
This will be elucidated presently. Consider now the question of how many of the formal poly-
nomial invariants (conservation laws) of the K.-dV. equation found by Miura ef al. {1968) are
actually constants of the motion of the solutions guaranteed above. A conservation law of K.-dV.
generally is a functional 7 which maps some function class in the spatial variable (e.g. H°) to
the real numbers such that if u(x, ¢) is a solution of K.—dV. which is, for each ¢ > 0, a member of
the function class on which 7 acts, then I() is in fact independent of 2. As a simple example, con-
sider a solution # of K.~dV. corresponding to initial data gef43, as guaranteed by theorem 1.
Then '

I = bt = [~ wimas
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is a conservation law. To see this differentiate 7, with respect to time. Elementary real variable
theory is used to justify the following computation.

=]

I o(#) = (i"‘ u(x,£)2dx = 2f muutdx = --2f o, +u,,,) dx

—w
o

= —2[3uf 4+ uum]w_ © f Upllyy A%

_ =- 2[%2‘:3 T Uiy — %ux]ngoo =0.

The conclusion is therefore that fy(u) is a constant, independent of time. There are a countable
infinity of such invariants, taking the form (Kruskal e al. 1970, theorem 6)

Ty(u} = J. [t — %Wc:c n+ Qs .. :#(:a-z))] dx, - - (5.36)

foreachk = 0,1,2, ..., where @ isa polynomial of ‘rank’ £ + 2, Here the definition of rank given
by Miura ef al. (1968) is followed, letting a monomial ufgully ... uf) have rank ¥7_o(1+%i) a, and
then defining the rank of a polynomial to be the maximum of the ranks ofits monomial summands.
" In fact, @, is composed entirely of monomials of rank £ + 2. If one of these nonlinear functionals
is indeed a constant of the motion of solutions of K.-dV., useful 4 priori estimates on the behaviour
-~ of solutions can be deduced, which hold for all £ > 0. For example, if I, («) is independent of time,
it follows trivially that ||| is bounded for all ¢ > 0. More generally, ifitis known that [, I;, ..., I,
when evaluated at a solution # of K.-dV., are all independent of time, and the initial data lies
in H*, then it follows easily from the results of proposition 1 that |u|; is bounded for all ¢ > 0
This is most easily seen by induction on £, the case &k = 0 already in hand. If the claim holds for -
k—1, then suppose Iy(u), ..., I(#) are independent of time. By the induction hypothesis, |z,
is bounded independent of ¢ > 0. By proposition 1, it follows that: (i) |u], ..., |#z_p] and
(i) |ul, .., |#g—_g)] are all bounded mdependently of ¢ 2 0 and of xeR. Then from. (5.36), for
any !> 0,if [,(u) = '

f ® u?;c)daﬁ=C+ck f " ey dr— f Qe ) . (5.37)

-0

' The right side of (5.37) is easily bounded independent of ¢ > 0 for £ > 1 from (i) and (ji) above.
For k = 1, (5.37) takes the form

-] ’ 1/
f uidxzc-i-gf wdx,

and the argument of proposition 2 in §4 can be applied to obtaln time independent bounds.
These results are summarized in the next proposition.

Prorostrion 8. Let « be a solution of the K.~dV. equation on R x [0,c0) which is in A% for
each fixed ¢ > 0 and suppose Iy(x), ..., I;(u) are invariant with £. Then [«], is bounded uniformly
forall¢ > 0. :

Thus it is of interest to determine how many of the invariants (5,36) are available. Clearly if
the initial data g is not in F%, we cannot have all of 1, ..., I, invariant, for at £ = 0 at least one
of I(g), ..., L,(g) is not a convergent integral. Direct verification of the conservation laws, as
~ outlined above for 7(x) assuming ge H3, can be justified only for £ < s—3 (see Benjamin ef al.
(1972, section 2)). Indirect means prove the best possible result, however, as is shown in the

next theorem. |
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TucoreM 2. Let ge Ho, s > 3, and let « be the solution of the initial value problem (5.35) for
the K.~dV. equation guaranteed by theorem 1. Then Jo(#), ... I,(#) are independent of time.

Proof. Let k < 5. For the regularized initial-value problem with smoothed data (5.2), the

identity ' fpe (k-35Q
Jo(u) = Jilg.) +€f f { xz é"—{cut,(:Hz)
0J —oo =00l
+ ol ety e, (00 — Ut Uige—1) — U “%k}]} dxdr, (5.38)
is valid, where J(1) = J [(1 — é6,u) tify + €8sy — Extiefe_ny + Q] A (5.39)

“The subscript e in z, has been dropped for convenience of writing. The identity (5.38) is derived,
_ from the fact that « is a C* function of both variables all of whose derivatives are in H® for each
fixed ¢ > 0, by differentiating [, (4) with respect to 2. This would give 0 if # satisfied K.-dV.,
but since « is instead a solution of the regularized K.~dV. equation, there is a remainder, formally
of order e. After appropriate integrations by parts, this is thrown into the form (5.38)-(5.39). It
follows directly from lemma 5 at the beginning of this section that

Ju(g) > Ii(g) as el0. E (5.40)
Tt follows from corollary 1 to lemma 5 and the result of proposition 5 that
| J(u) > L) as elo, | (5.41)

- where »is the solution of the initial-value problem (5.35) for the K.~dV. equation asin theorem 1.
Finally, using corollary  and corollary 2 to lemma 5, one deduces that the integral on the right.
side of (5.38) converges to 0 at least at the rate ¢t as e} 0. Combining this with (5.40-5.41), (5.38)

 yields, in the limit ¢} 0, Rfw) = 5(e), (5.42)

and since ¢ > 0 and k < s were arbitrary in this calculation, this is the required invariance result.

Proposition 6 may be combined with theorems 1 and 2, and the analysis in the proof of the -
corollary to proposition 5 applied to higher time derivatives, to derive the final result in this
section. - '

. Turorem 3. Let ge He where s > 3. Then there exists a unique global solution # of the initial-
. value problem (5.35) for the K.~dV. equation which Hes in 2#%,. Furthermore, if s—3/ > 0,
dlue a5, (In the notation introduced in (2.4), ue 2’ 5, 0) ' - '

6. CONTINUOUS DEPENDENCE OF SOLUTIONS ON THE INITIAL DATA

The main result of this section is a result which, when combined with theorem 8 shows that
the initial-value problem for K.-dV. iswell posedin Hadamard’s classical sense. Let Ut H* &, o,
be the mapping which assigns to g€ H*the unique solution u of the K.--dV. equation with initial
data g. The continuous dependence result then states roughly that U is a continuous mapping.

Before writing the precise theorem, a comment is deserved concerning what cannot be proved.
It cannot be shown that U: H5—> %, o is continuous, as one can see by a simple counter-example,
given already in Benjamin e al. (1972) for the alternative equation (1.1). Specifically, there
exists, for each C > 0, a similarity solution ¢ = ¢ of the Korteweg—de Vries equation, known
already to Korteweg and de Vriesin 1895. This solution is called a solitary wave solution of K.~dV.
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and was inspired by Scott Russell’s (1844) experimental work on water waves in channels. The
solution has the form

. Uo(%,1) = go(x—Ci), (6.1)
where _ Po(z) = 3Csech? (§Ck2). (6.2)

Of course an arbitrary translate of §, is also a smooth sblu_tion of K.—dV. Elementary estimates
show that for any s 2 0, _ _ :

$o>¢p in HS as C»D i R, ‘ (6.3).
However, owing to their differing speeds of propagation, the norm of the difference |ug—up|,
- of the associated solutions to the initial-value problem (5.31) for K.—dV. has :

Eﬁ [#o—upls = fuols+]unls (6.4)

Thus #, does not converge to up in H*uniformly over all times. Hence the impossibility of proving
results valid uniformly in time is seen explicitly, at least in this simple frame of reference. It
deserves remark that stability over the unbounded time interval for the solitary wave solution
to K.~dV. with respect to a different metric, which picks out the ‘shape’ of the wave, has been

demonstrated by Benjamin (1972) (see also Bona 1975). .

Trueorey 4, Let T > 0 be given, and let U: Hs—» % s, o be the resfr_ictioﬁ to.the time interval
[0, T] of the map assigning to ge H¢, s > 3, the unique global solution « of (5.35) for initial data g.
 Then U is continuous. ' : '

. Proof. Remark first that it is enough to prove that U: Hs-» % continuously. For it will then
follow inductively from the differential equation that U: Hé— & 5, 7 continuously. For example,
if s = 3, and U: H®-> 5#%, is continuous, then U: H®— 5% is continuous. For this it is enough

to see that the mapping V: H3— a7, given by V(g) = 8, U(g) is continuous, since it is known
a fortiori that g-»u is continuous from Hs to . Butif g, he H* and x = Ulg), v = U(k) are the
associated solutions of the K.—dV, initial-value problems posed with initial data g and 4 respec-
tively, then again by using the elementary inequality (4.5),

=] < oty 4l = 00— 0,
< [ttty = 00, 4 — Ve
< (= 0) ]+ — ) o 4+ Ju— ol
< = o] + 22, — 2] ol + =] 5
< (e # ol + 1) fu—offs. ' g (6.5)

Taking the supremum over f¢ [O, 7] yields
V(&) = VB, = e —vdlse, < (ledloey + o]y + 1) || Ug) ~ U)o, (6.6)

which shows ¥: H®— 37 is continuous since U: H3— 3%, is known to be continuous,
To show U: H*-> 5#% is continuous, let g,—g in H*, where s > 3 and let u» — Ulg,) and
u = U{g) be the associated solutions of the K.~dV. initial-value problem. It is required to show
that &® —u in #%, or what is the same, [[u* — ], > 0 asn — 00, uniformly for £in [0, 77. Lety > 0
be given. We wish to find N so that if » > ¥, = —ujl, <y for all ¢ in [0, 7). By the triangle
inequality, : : '
| o —ule < lor — s+ o — s + e —2] (6.7)

67 ) . o ' Vol. 278, A,
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Here u, is the solution of the regularized initial-value problem (5.2) with smoothed data g, as in
(5.1) and similarly for ug. '

Clombining the estimates (5.28) and (5.29) of proposition 5, it appears that for $in [0, 7] and -
1< . :

“ub‘ - ”e“s < Cet + C(“ g—geus + ug "'g«%“s) .
Let 84 0 in the last inequality. Since #; >4 in #% by theorem 1, it follows that, for ¢in {0, T,

- “u“_'uens < Cs%""cllg".gs“ss (6‘8) |
and similarly ur—u2|, < Ceb+ Cllgn—Znels _ (6.9)

We are justified in using the same constants C in both (6.8) and (6.9) since, as remarked earlier
following the proof of proposition 5, the constants appearing in the proof of proposition 5 depend

_ only on T and on I g|s Since gn—>4 in H*, of course || g.ls < M, for some M > 0, for all n and

hence the various constants are bounded above, and C'in (6.8) and (6.9) is taken to denote their

supremurm.

Now apply the fact, proven in lemma 5, that if 'gn ~gin H 3; then | g, — gﬂ.e\[ on=1,2,..,and

~ g—gs all converge uniformly to zero as €{ 0. Tt follows from this observation and ‘the

inequalities (6.8) and (6.9) that

mo>0) I, |
e e } . uniformly for £in [0, 7] and 7 = 1,2, ..., 8 el 0. (6.10)
Ju-udy0) _ |
Therefore ¢ may be chosen 50 small that, for all ¢ in [0, T] andalln=1,2,...,
li—uj, <dy and we—afe<dr (6.11)

Thus in order to show that for n sufficiently large |u® —ully < v, fortin [0, 77, it is only necessary

_to show that |2 —u)+0asn—>o0, where € > 01is fixed, but small enough that (6.11) holds. For

if N is then chosen so large that for n > N, lut —us < ¥, it then follows from (6.7) and (6.11)

“that for n 2 W, Jur—ufs < 7

There is no shortage of ways to accomplish this last task. One method is to make an argument
very similar to the argument given in the proof of proposition 5. However, since € > 0is fixed for
the purposes at hand, it is somewhat easier to transform the problem. Specifically, by definition,
1, is the solution of the initial-value problem ' : :

o Ully g — gt = O u(x,0) = g(*) (6.12)

and similarly for u?. But € i fixed, and hence the transformation (3.2) sends (6.12) to the initial-
value problem _ :

0, 4yt = O, (8 0) = h(3) = egelete) (6.13)
Define b, (%) = cgpe(et#), and h(x) = eg.(ebx), and let v* and v be the solutions to the initial-value
problem (6.13) posed for k, and £ respectively. Then, ifym—>vin #%, where R > 013 arbitrary

but finite, it follows by inverting the ransformation (3.2) that #f >4, in %,
Since g,->¢ in H°, certainly g,—~£ in L. Estimates in Fourier transformed variables show

" jmmediately that g,,—g. 1n H* for all r = 0. Of course the rates of convergence in the various

Hr norms depend strongly on €, but ¢ is fixed for now. Hence &y, heH® and h,—>hin Hr for all
r 2 0, Lemma 2 assures us that o, vest’p™ for all R > 0. Therefore the following simple
calculations are valid. ' '
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Let w® = 4 —y, Then w™ satisfies the initial-value 'problem

W+l w4 (o), —uly, = 0,} (6.14)

w(x, 0} = hn(x) _ﬁ(x) = ful%),
~ where f, = 01in A for all 7 > 0. We drop the superscript n during the following computations,
for ease of writing. In analogy with (5. 21), define

Wi(t) = f [y, + ] . - (6.15)

Then multiply (6.14) by wyy and integrate over R and over [0,£], to come to the followmg
relation, after appropriate integrations by parts and applications of Fubini’s theorem

i?i/;-(t)=W(O)+(—i)i4—12ftfw [ww,+ (o) Jugpdsdr. (6.16)

' Integratmg by parts and applying Lelbnltz rule asin the proof of proposition 5 followmg (5.23),
" the inequality

(6.'17)

: i+l
W;(2) 0)+C' f f L Y- W W+ % w(g-!—l—k)v(fc)w(g)) d dr|,

is derived. Here C'is just twice the supremum of the binomial coefficients appearmg from the use
of Leibnitz’ rule, and depends only on j. In case j = 0, this comes to :

W{,(t)éﬂ{.(())—z-c" f f o utdredr

< M(O)+C’f f widxdr
. o)

< W(0) +cf Wi(rydr, | |  (618)
Where sup [v,] has been pulled outside the 1ntegral (6.18) 1mp11es _ _
| Walt) < Wy(0) €%, | (6.19)
Reinterpreting this, it is implied that ) '
oy < [ Al e, E (6.20)

from which it is obvious that 4], 0 as n-» oo, uniformly on [0, R]. Now assuming inductively
that ] ;— 0 as n—>co uniformly on [0, R], one can derive that [t6"]];.1 =0 as n—>c0 by using
(6.17) to derive an inequality of the form :

(1) < W(0)+C [ () +an W)W i,

where g, — 0 as n— 0. It follows that for ¢ in [0., R]
(1.')‘5 W;(0)t %% + g, (eCR — 1), : (6.21)

and this is enough to conclude |}, ,, - 0 as - co uniformly for ¢ in [0, R]. Hence it is demon-
strated that [w"],— 0 as n— oo uniformly for 2in [0, R], for all7 > 0. That s |® ~ |, > O uniformly
on bounded time intervals, for all r > 0, The proof of the theorem is now complete

The last part of the proof of theorem 4 has in effect provided new results concerning continuous
dependence of solutions on initial data for the equation (1.1) (cf. (6.13)) not contained in the
work of Benjamin ef al. (1972), which are summarized in the next theorem.

6y-2
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TwuroreM 5. Consider the initial-value problem
Uy o+ g+ Uty Uy = 0, u(x, 0} =g(x), - {6.22)

for xR and ¢ > 0. Suppose ge H™ where m > 1. Then there exists a unique solution % to (6.22)

- whichisin 2 for all finite 7> 0. Further jue #F+ for all! > 0. Also, the solution % (resp. dh)
~ depends continuously in #7F (resp. S#7F) on the iaitial data g in A™, for all 7> 0.

7. COMPARISON OF SOLUTIONS OF K.—DV. AND THE MODEL (1.1)

In this section the machinery previously erected is exploited to examine a relation between the
initial-value problem for K.-dV. and for the model equation (1.1), It will appear that in a
certain limit, under which this type of model is generally derived, the two models give solutions,
corresponding to the same initial data, which are very close together at least over finite time
intervals. By explicitly considering solitary-wave initial data one can show that this result is best
possible in the sense that one cannot expect close agreement over the unbounded time interval.

The specific assumptions which come to the fore in the derivation of K.-dV. or (1.1) as models
for surface water waves for example are that the amplitude of the wave is inversely proportional
to the square of the wave length, the amplitude being small in comparison to the undisturbed
depth of the fluid (cf. Peregrine 1972). This situation can be reflected for a given function g
defined on R by considering the associated function

h(x) = egleds), oy

fore< 1. The question posed is how do the two models in question respond to the same initial

data (7.1) when ¢ is small? Put more carefully, let u* = u*(x,¢; ¢) be the solution of the K.-dV.

-initial-value problem - .

Wttt b, = 0, w¥(x,0) = k%), (7.2)
and let v¥ = v*(x,1; ¢) be the solution of the initial-value problem for (1.1}
vf"'”ﬁj"'v*vj;" :fa:t = 0, v*(x, 0) = ks(x)' . (73)

Then we would like to know by how much #* and v* differ from each other over some fized finite
time interval [0, T7] say. From the elementary inequality (4.5),

sup [u*(%,8) —v*(x,1)] < supfu* —o¥]s. (7.4)
Rx[0, T] ¢, 71 . :

Hence an estimate for the H® norm of the difference of #* and #* will yield a pointwise estimate

- on their difference. . - :

At this point it should be observed that 2, 0in the function spaces under consideration here
and therefore the continuons dependence results of § 5 for the two model equations imply that
hoth #* and v* are tending to 0 as e 0. Hence they are approaching each other since they are
both approaching the zero function. We have in mind a more substantial result than this. The
point is that the problem must be considered with the right magnifying glass in order to determine '
whether the above argument represents the best that can be said, or whether the two solutions
approach each other faster than they approach zero.

For the purpose of comparison, it is therefore convenient to make the transformation (inverse

to the transformation (3.2)) _
: u(x, 1) = e ¥ (e M t+eH, eH), S (7.5)
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and similarly for » and v*, This transforms to a coordinate system moving with the wave and
scaled inversely to the scaling of %,. Hence function values of z* and o* are magnified and their-
length scale shortened leaving the following equations satisfied by u and v respectively.

Uy + Uty + Up, = 0, ufx, 0) =g(x), _ (7.6)

and Uyt Wy Uy =6, = 0, 0(x,0) == g(x). . (7.7)

Clearly the problem of comparing and v in (7;6} and (7.7) can be attacked by way of the

arguments in § 5, making use of the « priori bounds derived in§4. Let w = v ~u. Then w satisfes
the following initial-value problem analogous to (6.10) with & = 0 and zero initial data,

WeF (V0 + §0%)  + Wy — €0, = 0, w(x, 0) = 0. (7.8)

Suppose at the outset that g€ #* so that both « and v are C* functions in their two variables and
all their partial derivatives lic in .. Then Jjust asin (5.11), the identities :

] tre ' ) L ' .
f_w . 2 dx = — EJ.O f s [+ 310%) 40y — €2y, (j100] wy dedr, (7.9)

w

~arevalid forj = 0,1,2,.... Define  Fj(#)? =f whdy, ' o (7.10)

for convenience of writing. Of course Vi(0) = 0 for all j; as is already reflected in formula (79)
- In order to obtain reasonably sharp results the relation (7.9) will be used in several ways. We
begin with a lemma which extends the result of (4.22).

Lemma 6. Let g€ H® and let o be the corresponding C* solution of the regularized initial-value
problem (7.7) all of whose derivatives are in #, for all T > 0. Then for any integer / > 0 and
! > 0 the following inequalities hold. ' '

@ %ol < (lola+ 2] 310), ,
(10) %o < ed(lofisa+ o)), - (7.11)
(i) oo < e (olen+olEa)-)
Progf. Write the differential equation in the form
(I—e a:?:) Vg = — (m"x + Vg0
and invert the operator J— ¢ 82 as before to obtain _
Up = — (I—€d) o, Flppg) = — ({-e ag)_l(V'i' R (7.12)
where ¥ = su,. By an casy estimate, |V, < |#|%+2 for all £ > 0. Then of course
h wy = 8o, = — (I —e2) YV 4a,,). (1.13)
In Fourier transformed variables this takes the form

. (1K)}

&= +€k2[f'+(ik)3ﬁ], B o (1.14)

where * denotes Fourier transforms as before. Hence

. - kzl A . '
”3"1"2="‘blllz=f_mm'§|7+(lk)3ﬁ]2dk. : o (7.15)
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The estimation of (7.15) is carried out in three ways corresponding to (7.11) (i), (ii) and (iii).
First because 1 +ek? > L forall £,

=) A % .
Qb <[ [ R apopat] <7+

) < IV +12aaals < foldn 4 Ilv||z+3-
For (ii} proceed as follows.

Ju < sup (1+6k2) U Fon- 1>|V+ (i4) 3ﬁ|2dk]

1E[I v+ ﬂx:w"l—l = 26’11!' " V"l 1 + "Uxml f-'l

< 56‘;(||v||z2+i|”||z+z)- |
. Dy kB @ a i
Finally for (iii), I w,|| < sup ( T +ek2) [J k?“‘z’ |V + (1k)3ﬁ|2dk] .

= " V+ vxm"!—z (“ V”l’ 2t li va:m:ul-z)

[N

(ol +[[vla)-

o |

This establishes the lemma,

CoroLLARY. For v as in lemma 6, the following inequalities are valid for > 0.~

@ &2l < C(lgluatilise)
< C(lgllira+ 1 £lFeals

() [l < Gl tllf -
. <cﬁ(ug||,js+||g||,+3 e
i) ) < G ela el

< Ce—l(" Elluiz+gllEss)s

“holding for tin [0, T] and e sufficiently small, where the constants C depend on T but not on €.

Proof. This is a consequence of lemma 6 and the e-independent bounds obtained on solutions
of the rcgularlzed initial-value problem in §4 (see proposmon 4). '

Now consideration is given to the derivation of bounds on the various Hsnorms of the dlffercnce
w = v—u. Bounds will be inferred in threc stages. '

Provoserion 8. For each & > 0, the difference w = v —u satisfies the inequalities
_ lwal < eMp, o (7.17)
where M, = M,(T,| g|l;.1+6) is independent of ¢ sufficiently small.

Proof. This proceeds casily by induction on . To get started consider (7.9} forj = 0 from which
the following inequality is snnply derived. '

fin wrdx =V(t)2 < 2 Sup |w +%ux]f Vo(7) 2d’r+2€f [ [lw"d'r
o CJ (1—)2d'r+2026r o(r) dr, - (7.18)
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where C; depends on a bound for [wa+ 4, on R x [0, Tland hence on Tand | g]|, by proposition 3.
Likewise, C; depends on a bound for [#2zf o0 [0, 7] and hence on |6 by the corollary to lemma 6
above, (7.18) gives, for ¢in o, 77, :

lo] < e(CyfC) (eAT— 1) = e, - (1.19)

where M, depends on T and | &ile- Now suppose that if 0 < J<k = '
lwal <ea, | | (7.20)

where £ > 0 and M; = M( T, | &ll7+6)- Use (7.9) to derive the identity (analogous to (6.22-5.28))

trw ’

0 = =2 [ [0+ 49—, ol o dedr
tfo Thkt+l ' k+1 o

= 2f0f_ - ;0 4 Wt1-p V) Wiy +j_20_fj W+ 1) Wes) w(k)] dxdr
. . irw . o :
+ 2€f f vt' (+2) Wiy dx d?'. . (’1.21)
0J —w
- Making use of the induction hypothesis (7.20) and of (7.18), (7.21) leads to the estimate

V() < 202k+1f0 V;f+1(7) dr+ 26Coy,1q f o I’;g+1(.7') dr,

where ' - Copuq = w17 g li+s)s

and Cotro = Copa{ T, [l 2] +s)-

Hence for ¢in [0,7T]  Juw) =%@ < e-géﬁ—a (%41 T — 1) = eM;, - | (7.22)
: 25+1 : '

 where My = M (T, | 8]l 14e) as required..

The results of proposition 8 would already yield interest_'ing results bearing on the problem
under consideration in this section. Before stating these, another similar set of inequalities is
given which can be used in conjunction with the results of proposition 8 to yield reasonably
sharp results. '

Proposrron 9. For cach £ > 0 the difference w = v~—u satisfies the inequalities
' o - Nwg| < N, ' , L (7.23)
valid for £in [0, 7] and e sufficiently small where &, = N,(7, i &l pra)- _
 Proof, Again the proof proceéds by induction on £. For # = 0, use (7.9) to write

: 13 i
T <2 sup lu,tdu] [ Ti)edr+ e o o ar
: Rx[0, T} 0 0

s _
< le Vy(r)rdr+eCyt,
0 .
valid for ¢ in [0, 7', where C; depends as before on T and | gll; and C, depends also on 7 and
l&lla by the corollary to lemma 6. There follows '
lo]® = V()? < 6(G,fCy) (e17—1), .
so that - [w] <etdy, ' B ' (7.24)




_ p_roposition 4, In sum (7.25) yields

586 J. L. BONA AND R. SMITH

for ¢ in [0, T] where Ny = N(T, ] gla)- Consider the case k = 1. Again.usc (7.9) to write

o
p(r = =2 j [" 1o+ 0 00y U 0] A5 4T

{ frow
B

i i
<2 sup |bwa+ivdl J' Vi) dr+2 sup |Vl j Va(r)dr
mx[o, Tl 0 rX[0,T1 V]

+2sup EN - (7.25)

for ¢ in [0, T1]. As before, bound |w,+ 37, by 2 constant C; depending on T and || glls- By (7 .24)
the middle term on the right hand side of (7 .25) can be bounded by 2etsupg,m|ivls which is

_bounded by ¢ times a constant depending on T and | gll5- Finally gl is bounded by a constant
depending on | gls and T while |10l 15 bounded by a constant depending on T' and | glls bY

_ ; - |
T < G ‘[ "Fy(r)dr-+ et RN D

where Gy = Ca( T> glla) and C, = Cy( T, &ls)- (7.26) now _impiies that for ¢in [0, T]
- g = V) < (GG (7T =D
and hence ' _ lwg < €M, |

w.vht':re.N1 = N(T, | gls)- The generai inductive step follows lines which are by now familiar and

_ whose details may be suitably passed over.

Finally a third method of estimation yields inequalities on Vi(?) _dcpending on T and | glx+sr

PROPOSITION 10. For each k = 0 the difference 0 =1 — y satisfies inequalities of the form
weal < €tLes (7.28)

valid for £ in [0, T] and € sufficiently small where L, = LTl K+8)-

 Proof. Again the argument proceeds by induction on k. Here are the calculations for & = 1 for
example. For ¥} write (7.9) in the form :

. o .
i B
. . Q) —ec
Thenifo <t < T, S
; .
s <3 sup e[ 2 sup ol s (el 52 Gl et
Ax19, T} o . ®x% 00, T) (0, 11 {0, 71
Making use of (7.24) and of (7.161i) there follows from the last inequality
t
()2 < Ga| Talr)dr-reiCis
0 _ :
where C; = Cs(T»] &ll) and similarly Cy = C( T, glla). Then as before, for any t>0
Jw? = V()2 < (Gl Ca) (et —1), ' '
so that for ¢in [0, T, _ lewa] < étL,, (7.29)
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‘where Ly = L (T, | gll4). Again the inductive step, making use of (7.9), is close enough to previous
arguments to be safely left to the reader. At the Zth step, the term on the right hand side giving the

most trouble is fre _ $ re
2¢ f f ?)t, Ge+2) Wiz dx dr = 26‘f f vt,'(k) w(k+2) dx dT,
0J —0 7 0J —c0

which can be estirhated, for ¢ in [0, T, as follows, by using proposition 4 and (7.16)

i rw :
2e!fof_wﬂt,mw(k+mdxd?] < 2ef0 ”agyt” ”w(k+2)” dr

< 21CecH(| gy + g30) [0
< eC,

2 t: _
where G, = Ci+2(T; || g]40). The other terms are handled by way of propositions 3 and 4, the
- Tesult (7.17) of proposition 8 and the induction hypothesis,

Here is a corollary to the last three Propositions which will be used to answer the query
concerning the difference w = y—y, - :

Cororrary. The difference w — v—u, where u and » are the unique smooth solutions of (7.6)
and (7.7) respectively for the given data g EH™, satisfies the following inequalities, each valid
for & sufficiently small and for tin [0, 77 where T > 0 is arbitrary but finite.

(1) Hw”k < er thre Qk = QJG(T; ”g”k-t-ﬁ) (k = Os 13 "'):
W) vl <ty where R~ RyTJgly) (k=0,1,..) (7.30)
(i) [, <etS, where S = Sl T, | 8l ess) L (k=0,1,...). '

Progf. These follow from summing the first £+ 1 inequalities expressed in Ppropositions 8, 9
-and 10 respectively, : '

The inequalities (7.80) were derived for g€ H™ and the resulting smooth solutions, 'Suppo'se
now that g is only in H*where s > 3, Approximate g in H by a sequence {g,} < H=, for example
as was done in lemma 5, Letting ,, and #, denote the respective solutions of (7 -6) and (7.7) posed
for the initial data &n and setting w, = Un —Up, it then follows from the continuous dependence
results, theorems 4 and 5 in §6, that #, > u in #% and U —>vin 3%, Since g, >gin s, g | is
bounded uniformly in 7, Hence the various constants in (7.30) remain bounded uniformly in
and in € < ¢, say where €y can be chosen independent of » by propositions 3 and 4, That is,
Q% = Qu(T, || gullxse) is bounded uniformly in 7, so long as k < 5~6 of course, and similarly for
the R;’s and §,’s with the appropriate restrictions on £ Thus letting @), = sup,, QF, and similarly
for B, and S, then for all # — L2 .., : _ '

Q. provided k<s—8,

ol < cos)

Wallx < €2, provided % <5—4, 7.31
E P

lwalle < et provided £ <s5—3.

Taking the limit as 7 0 in (7.31) establishes the following result,

Prorosirron 11, Let gefl*where s > 3and let x and » be the &, , solutions of the initial-value
problems (7.6) and (7.7) respectively posed with initial data g. Let w = 4 —p. Then ase) 0

el < @ (T, leless) (k=0 1,...), .
”w”k < G%Ek(z ”g”k+4) (k = 03 1: "'): o (7‘32)
lulle < €37, ) g 1s) (k=01,..),)

uniformly for #in [0, 77, for all £ such that the norms of g on the right hand side are finite.

68 ' _ Vol 278, A.




588 J. L. BONA AND R. SMITH

It now remains to interpret proposition 11 in terms of w* = v* —u¥. This is done in the last
result in this section. '

ToeoreM 6. Let g'EHS where § > 3, let 7> 0 be finite and let #* and v* be the &, p solutions
of the initial-value problems (7.2) and (7.3) respectively, and define w* =v*—u¥ Then

hwhy] < 20T gllzse) (B=0ees —6),
Hwﬁﬂ)“ S 6&(%-1-5}?1‘:( T’ “ g“k+4) (k = 0: ey S 4): (7'33)
“wﬁﬂu < _el%ksk( T: “g“k+3) (k = 13 e d— 3)_:

uniformly for 0 < t < T'and € sufficiently small.

Proof. This is an immediate consequence of proposition 11 and the elementary relation induced

by the transformation (17.5) : _
B o] = Rl (k=0 Lsun)s | (1.34)
and similarly for u* and #. ' .

From theorem 6, reasonably sharp convergence results for u¥ to v* as €} 0 can be derived,
for given L,smoothness of g. For example, suppose geH". Then both u* and »* arc classical
solutions of their respective differential equations and from theorem 6, given 7 > 0 there is -
a constant C depending on T and | gl such that for 0 < ¢ < T and ¢ small enough,

Ju* —v¥| < Cet and ||k —vill < Cet. ' - (7.85)
In particular, because of (4.5), : '

sup [ut—v¥| < (Ju*—o¥] i - e}t < O (7.36)
‘®’x10, Tl _ S o

as e} 0. This contrasts with the fact that u* and v* approach zero, in the supremum norm on
R x [0, 7], only at the rate €, as 64 0. ' ' ' : '

8. COMMENTS AND EXTENSIONS

The arguments given in §§ 3-7 are capable of dealing with considerably more general equations
than the Korteweg-de Vries cquation. We eschewed formulating results for more general
equations in order to make the argument as transparent as we could. In this section, without
going into great detail, we will indicate some of the more or less immediate generalizations of
the results already obtained. Of particular concern will be generalizations of interest from the
point of view of modelling long waves, It will be chown that a satisfactory theory for both K.-dV.
and (1.1) can be formulated in the presence of dissipative and forcing effects.

Both the K.-dV. equation and the model equation (1.1) are ‘energy’ conserving equations.
While this is & very good approximation for long waves even over reasonably long time scales,

over dozens of wavelengths dissipation is clearly discernible in some physical systems (e.g. surface
water waves, cf. Hammack (1973) and Hammack & Segur (1974)). Thus for certain considera-
tions, it may be desirable to add a dissipative term to the model. This could lead to the following
equations, analogous to (1.1) and K.—dV. respectively. :

ut+u$+uum—dum——_uzm =0, : ' _ (8.1)
Uy + Uy, Uthyy— Ol + U = 05 ' (8.2)

~where @ > 0. (8.2) has been considered, in generalized form, by Tsutsumi & Mukasa (1971).
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The methods used to treat (1.1) and K.—dV. work just as well for the initial-value problem for
(8.1) and (8.2) posed on the entire real axis, and lead to improved emstence and continuous
dependence results in the case of (8.2).

Consider first the initial-value problem for (8.1). The model may be cast into integral equation
form, as with (1.1), obtaining’

st) = e+ [, [T Koy lutnn) b ~amlnnidydn, - (59)

where g is the initial profile and K is the kernel defined below (3.4). As discussed in the proof of
~ lemma 1, convolution with K maps H* linearly and continuously to A%+, Thus

K x dlfpsn < Gl (8:4)

“"This fact is utilized to show existence of a solution over a small time interval. Suppose ge H for
k > 1 (weaker hypotheses suffice at this point, but not subsequently). For ve 5 let

Av(x, t) ='g(x_) Jrf:flff(x—y){v+§v2_'av$}dyd'r.. R (85)

Then, A: H#7F — 7 is a contraction mapping of a ball about zero in #7 for T sufficiently small,
Tt will follow that A has a fixed pointu € H#F which is then a solution of the integral equation (8.3).
That A: #F - 37 follows from the mapping properties of X mentioned already and the fact
that g€ H* (cf. proposition 1). The estimates needed to establish the contractive properties of A
in a suitable ball are as follows. Let vy, v,€ #F, with fo] s < R, 4= 1,2, Thenif 0 < ¢ < 7,
"Avl Avgly < #[(14+aCy) oy~ valls, + Fo] — 43 ] _ .
< t{(1+aCy) oy —vgllx + 3Ca(loll + [vall) 02— 2alle]
< t[1+aC; +CyRY oy — v, _
where C, depends only on £, Taking the supremum over ¢ in {0, 7] yields
Ao, — A”z";ﬁ";. < Tt +aCy+CyR] [|og — v 5. ' o (8.6)

A second inequality may be derived_from (8.6). Let v be again in the ball of radius R about zere
in 2. Then since A(0) = g, : o
| 4v]s, = [| 40— A(0) + 8, < | Av—A(O) s +[ ] s
< |lgle+ Tt +aCy+RC] o] sy .
< | glle+ T1 +aCy + RCI R. (87
Hence the choice R = 2| g|; and T = 1/{2[1+aC; +RC‘2]} yields the foﬂowmg inequalities,

valid for », v,, #, in #% with norm less than or equal to R.

| Avy — Avy| o S oy — ”2" aﬂ‘a}

8.8
| 40 g, < R (8:8)

Thus A is seen to be a contractive mapping of the closed ball of radius R about zero in 3?? % and
hence there is a 2 e 3%, with norm at most R such that

Ay =u. _ | (8.9)

Now standard bootstrap arguments (cf. Benjamin ef a/. 1972, lemma 2) show that a fixed point z

is in fact a solution of the differential equation over the time interval [0, T7].
' : 68-2
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These arguments are extended to yield a global solution of the initial-value problem by
deriving a priort bounds for solutions of the initial-value problem for (8.1). The derivation follows
arguments similar to those given earlier and we merely anticipate the result that if ge H1n G}
then so is #(x, #) for each t€[0, 77 and further '

s f " el )+l )] dx+ 20 '[ T adi-0. (8.10)

From this it follows that the H'norm of u(x, t) is decreasing with increasing time. Hence the proof
of existence in the small can be iterated to yield a global solution to the problem just asin Benjamin
et al. {19’72, pp- 61-62). The extension to higher order Sobolev spaces can now proceed from the
integral equation (8.5) just as in the proof of lemma 1 in §2. Here is the precise resuit.

ProvosiTion 13. Let gEH’“ where m > 2. Then there is a ﬁnique solution # in 37, with
initial value g, to the equation (8.1). Furthermore, 8kue #7 for all £ 2 0 and finite T > 0.

" The only point that requires comment is the claim that # is bounded in H™ uniformly in time,
This follows from a priori estimates which will be outlined below in the attack on the equation
(8.2) (cf. (8.16), (8.21) and (8.22) with e = 1). ' : _

To tackle the equation (8.2) use is made of the theory for the initial-value problem for (8.1).
First a shift to coordinates moving at speed one gives a slightly simpler initial-value problem.

ittty — Ul + Uy = 0,}

(2,0) = 8. (510

“This initial-value problem is regularized as before by addition of a term — €tgat- Thus considera-

tion is given to the problem

Uy Uiy — Oy + Uiy — Wt = O,} (8.19)

u(x, 0) = g(#). |
Letting v be defined from « by the change of variables (3.2), there appears the following initial--

value problem for v

Dy Uy Wy Q6 R — Vgt = 9,} (8.13)

v(x,0) = €¢ (ekx).

For fixed € > 0, proposition 13 assures existence of smooth solutions of (8.18) obtain for given
data ge H™, m > 2. Hence exactly asin lemma 2, smooth solutions to the regularized initial-value
problem (8.12) obtain without further difficulty. '

Derivation of e-independent bounds for the solutions of (8.12) is actually much easier with the
dissipative term included. However, if a—independent' bounds are desired one must proceed as
hefore in §4. But for a fixed level of dissipation; the following stmpler arguments are available.
Suppose g€ H® so that # is 2 C= function of both variables all of whose derivatives are in Jo.
Then upon multiplying the regularized equation by sy fork =0,1,2,..., and integrating over
R and [0, ¢], and after appropriate integrations by parts, there appears

© o . : @ Erw
[ttt 2 [ stmanar - [7 (et +egtion) ax- G

. - (8.14)
For k = 0 (8.14) is the analogue of (8.10), namely

@ § foo - w© . ’
j (02 + ea2) dx+ 20 f I u2d = J (g +cg2) d. (8.15)
—ea g —o —0 .
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From this, independently of ¢ in. (0,1] and of £ = 0,
o
e < Cq, -fnf_wugdxd'r < Gy, (8.16)

where_C‘o = Cy(llg| +¢] &']) which can be taken to be positive without loss of gencrality (the case
£ = 0 being trivial in all aspects}, Now let & = 1 in the master relation (8.14). Then

«© [ -]
L= [ wrat)areos [ wacar
-~ 0) —w

. w . tro
=f (g7 +egs.) dx—2 f f gty dxdr|
— . 0 ~»
, |
<Cr2 ol Jued fufudr (8.7)

; |
< O+36, | ] e

gc'+2c,,( f:uuxjﬁod%f[:llum_%nzd,r)%’ - _J

making use of (8.16) and the Schwarz inequality applied once in each variable. Now use the
elementary inequality, valid for all y > 0,

24B < yA2+(1y) B2 (8.18)
Then the estimate (8.17) continues as follows. :
' 20, [t o o (¢ '
A o T % N ¥
Now from (4.5), ]l < flug)) ). Thus applying the Schwarz inequality and (8.18) again,

withy = 4CHa? . o
B L= (43 +eud,) dx+ 2r.'cf f uay dxdr
0 —m.

403 (8 o [
<0G ([ Indpdr+ 2 [ fufear)

t fo C4ptro
< C'-!-osz _ uixdxd‘r+4'—§ff wtdxdr
. 0J —e _ *Jod —

<C+4—3-+ocff 42, dxdr.
o 0J —w

: @ ffro el .
. Thus in sum, f (ud +eu2,) dx-f—ozf f ey dadr < C+ 45—;’ = Cy, (8.20) -
. —o0 0/ — -

where C; = Cy{|gll; +6] g"])). It follows now that independently of ¢ in (0, 1] and of ¢ > 0,
© tro
f 2dx < C,, f f 22, dxdr < C.. | (8.21)
— 0J — _
One may proceed i_nduct_ively to deduce the bounds |

d tfeo ’ BRI
j H?k) dx = C}‘;_, fof u?]ﬂ_l) dxdr < Ck’ (8_22)
—w —® .
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forallk = 0 where C;, = Ci(lglx €l Zurol) isindependent of ¢ in (0, 1]and ¢ > 0. Note that these
bounds are not restricted to finite time intervals as were the corresponding bounds in proposition 4
for the regularized K.—-dV. equation with no dissipation.

Passage to the limit may now be effected by the methods of § 5 or of appendix A. We may
suitably pass over the details, which parallel those already set down except for the additional
linear term — a,,, which causes no difficulty. Uniqueness is established just as before. We sum
up the situation as follows. '

Turorem 7. Let ge H™, wherem > 2. Then there is 2 unique solution # in &'y, o 1O the dissipa-
tive K.-dV. equation (8.2) with initial value g. # depends continuously in &,  on g in H™

Further ‘interior’ regularity results may be derived for ¢ > 0 by usin'g Fourier analysis and

~ general regularity results for the non-homogeneous heat equation. This point will not be dealt
 with here however. - ' '

For many physical systems therc can be direct external forcing of the waves. Mathematically,
this leads to the nonhomogeneous model problems ' '

. ut+um+uuz_'uw:nt =f(x:t): . : . (823)
and ' Uy + Uy o+ Uthy F gy = f(%,1). - (8.24)

Of course dissipative effects can be combined in these models with the forcing effects if desired.

" As demonstrated in the analysis leading to theorem 7, dissipation makes matters better in general.

An advantage of (8.28) over (8.24) is that weaker assumptions appear to be needed on the
forcing function in order to insure a given smoothness of solutions. Tt would be expected that
fneed be only as regular as the least regular term on the left hand side of cither (8.23) or {8.24).
This obtains for (8.23), but we have only been able to prove a weaker result for (8.24). Examina-

" tion of the linear problem obtained from (8.24) by dropping the nonlinear term suggests, but does

not prove, that perhaps the stronger assumptions made below on Fin order to treat {8.24) are
just in the nature of things. In any case, here are statements of the precise results we can establish.

ProposiTioN 14, Let ge H®, s > 1 and fe a5 for some T'> 0. Then there exists a unique
solution # in #% to (8.23) which takes the initial value g Furthermore, d,ze 5 and if
i fe st for some non-negative ! < s—1for alljwith 1 < j < m,then ue#Pifor2<k<m+1.
The solution # depends continuously in 2% on gin Heand fin H5L

Prorposrrion 15, Let geHS s 2 3, and let fe #% and also fye 7. Then there is a unique
solution u in 3% to (8.24) with initial value g. Further, if fe £ ¢ (see (2.4)) then ue & 1. The
solution  depends continuously in #% on gin Heand fin 3% 0 G0, T; HY) (vesp.in & pong
in Hsand fin &, 7)-

Proposition 15 may be viewed as an improvement of the results for (8.24) announced by
Kametaka (1969}

We content ourselves with a few remarks concerning the proofs of the last two propositions.
Proposition 14 requires only a mild extension of the theory developed for (8.23) by Benjamin ¢l al.
(1972, theorem 2). The extension is made along the lines of lemma 1in § 2, by using an associated
integral equation. '

The proof of proposition 15 is essentially the same as the proof given in 884, 5 and 6 of theorems
1 and 4. We note a few of the more interesting changes.
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Proofof existence for a regularized version of (8.24), obtained by passing to moving coordinates
to dispense with the term u, and then adding the term —€llygy, is effected by the change of
variables (3.2) and the result of proposition 14, The derivation of ¢ priovi bounds undertaken in
propositions 2, 3 and 4 proceeds as before except the identities change slightly and the bounds
necessarily depend on the forcing function £, For example, the identities corresponding to (4.2) -
and (4.8} in proposition 2 now take the following form '

w© @© i ro o
f (w®+ eul) dx =f (g +eg?) dx+2ff ufdxdr, . (8.25)
-0 — 0 : 0) —c0

and f_m (ug—%ué)dhf_w (gg_§g3)dx+f:ff (21, f— 42— 2eu £) dxdr

26| L5 0) e 0) £, 0) e, 0)] v, (5.2

From thesc two identities it follows much as in proposition 2 that » is bounded in % indepen-
dently of ¢ in (0, 1] Similarly the analogue of (4.9) in proposition 8is ~

e . .
V(t) - V(O) B f f (3%&!‘?“‘ + 32‘!2”;1: Ut Gum Ure u.'z:'t) dxdr
‘WSO —a . ’
{ro ’ ) -
: : + f f (udf+ 3u2 f— 613 f— bun, f +*2u,, Jzz) dxdr, (8.27)
. 0J —m ’
where as defined below (4.8)

V() = f B [(3—36u) udy —Bud + Juf v eu ] dv, . (s.28)

The assumptions on f coupled with the already derived A bound on u suffices to bound the
‘second integral in (8.27) on [0, T] by a constant independent of ¢ in (0, €,] where ¢, is to satisfy
(4.10). Thus (4.17) is recovered where the constant € now depends on _f as well as i glls- Now
differentiating the regularized equation with respect to ¢, multiplying by %, and integrating
over R and over [0, £] yields the analogue of (4.19).

B0 < B0+ [ Ik PO+l B0E ey

where asin (4.18) B(x) =fw {uf +eu2,) dx. _ : (8:.30)

B?(0) is estimated as before in lemma 4 and then (4.17) and (8.29) are played together to obtain
that for any 7" > 0, u is bounded in #7 independently of sufficiently small ¢, Further bounds
analogous to those obtained in proposition 4 follow by arguments which differ little from those
presented in the proof of proposition 4. ' _
At this juncture, the arguments of § 5 may be imitated to conclude existence of smooth solution
as advertized in proposition 15. It is required to regularize the forcing function fin both x and ¢,
but this presents no difficutty. Continuous dependence results now follow readily. '
Other generalizations of the basic K.~dV, model or the model (1.1) can be handled by the
same methods, For example, much more general nonlinear terms can be handled and more
general dispersion relations can be accommodated. Tt is not intended to explore these possibilities
here - the problem of more general dispersion in particular, while interesting for both modelling .
“and mathematical reasons, would lead rather far afield,
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APPENDIX A. AN ALTERNATIVE PROOF OF THE CONVERGENCE OF $OLUTIONS
OF THE RECULARIZED PROBLEM TO SOLUTIONS OF K.-pV.

Here we consider some mathematical refinements of the theory presented in §§3-5 and

examine an alternative approach to the K.—dV. initial-value problem. The methods call upon

additional results from functional analysis, but allow the range of admissible initial data to be
extended slightly. '

TueoreMm 8. Let ge H¥, where k > 1 is an integer. Then the K.~dV. equation has a solution

~in L*{0, o0; H¥) with initial value g. If£ > 2, then the solution is unique in this function class.-

Remarks. The prcsent_'_notaﬁon for function spaces follows that of Lions_& Magenes (1968,
vol. 1, ch. 1). If k < 3, the fact that u is & solution of K.~dV. may have to be interpreted in the

* distribution sense. Note that from the differential equation, u;€ L*(0, c0; HE%), s0 that u is in

C(0, c0; H*-#) (Lions & Magenes 1968, vol. 1, p. 23) and therefore the initial condition is satisfied
in a meaningful manner. If % > 3, all the derivatives in question in the K.-dV. equation exist
almost everywhere and the equation is satisfied pointwise almost everywhere, Of course ifk =3,
the solution must be the same solution obtained in theorem 1, by the uniqueness result, and
hence is a classical solution for & > 3. -

The result of theorem 8 is an improvenicnt on theorem 1 for k£ < 3. For the particular case
% = 2, the present results, expounded in theorem 8, will be improved subsequently in this
appendix.

Progj. The proof is made in two steps. First, existence of smooth solutions of K.~dV. corre-
sponding to smooth initial data is established. Then a limit is taken through smooth solutions of
K —dV. to infer existence of solutions corresponding to data in H%, '

Accordingly, let ge H and let 4, be the smooth (it is C= with all its derivatives in Ly, by the
corollary to lemma 2) solution to the regularized initial-value problem. Then proposition 4

assures that for any T > 0, 5 > 0 and independently of ¢ in (0, 6] #, is bounded in L*(0, T; He).
It follows from the regularized differential equation that O;u, is bounded in L*(0, T; H?) for all -

T > 0, s » 0andindependent of ¢ in (0,¢5). Thusa diagonalization argument allows the conclu-
sion that there is a sequence ¢, ¢ 0 and a  which is L=(0, T He), for all 5 2 0, such that
Uy =, —~u weak-starin L*(0, T} H9), |
0,4, ->u, weak-starin L*(0,T; Hs),}
forall T > 0ands > 0. Note that from the first line of (A 1), 8;u,, > dyuin 2'(0, T; H*), hence the
weak-star limit in the second line of (A 1) necessarily converges to ;. Note also that here and
below, the taking of subsequences turns out not to be necessary for £ » 2. For the uniqueness
result will allow the conclusion that any subsequence of {u,} has a further subsequence which
converges to the unique solution z of the equation. It follows that {u} converges to u as e} 0.

LEmma 7. Suppose #, —u weak-star in L2(0, T} H¥) where s > } and 8;u, 8,2 weak-star in

13(0, T; Hr) for some real r. Then there exists a subsequence {u;} of {,} such that #->u pointwise

A1)
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-almost everywhere in [0, 7] x R and %0, % ~>uu, in £’ ([0, T] x R) in the usual sense of distribu-
tions (ux, is interpreted as $0,(#?) in case s < 1 and similarly for #0,u).

Proof. Let {Q,} be an increasing sequence of bounded open intervals in R with J,,2,, = R,
and let H%(£2,} be the Sobolev space of order s, defined for example in {Lions & Magenes 1968,
vol. 1, ch. 1, §9). Since {#,} must be bounded in L={0, T; H?), it follows that {u,} is bounded in
L2(0, T; H*(2,)) for all m. Further, for all m, {u,} is bounded in L2(0, T; H"(£2,,)) where, without
~loss of generality, r < 0. (Here and below, #, = 0,u,.)

As 2, is bounded and s > 0, H5(£2,) is compactly imbedded in L,(£,). An application of
Lions ‘1969, ch. 1, théoréme 5.1 shows that L2(0, T; [7%(£2,)) is compactly imbedded in

L3(0, T5 Ly(02,)) = Ly(Q,,), where @, = [0, T'} x 2, for each m. By using these compact imbed-.

dings and an additional diagonalization argument, it is concluded that there is a subsequence

{u;} of {uﬂ} such that for all m, L
' el strongly in L¥}Q,)- (A2)

Hence a further d1agonahzat10n argument leads to a further subsequence {u,} such that (A2)
' holds and

To establish the claim, it will suffice to'show that uf—>u? in Z'(Q) since differentiation is
a continuous operation in 2'(Q). Hence it must be demonstrated that

T rw . .
J‘O_I_m(u?—uz)cpdxdt—>0 as [->o0, ' (A4

for any test function ¢ in 2(Q). Since s > }, H%¢, Lyand so L*(0, T H®) ¢ L2(0, T; Ly) = L*(Q)
Therefore {1} is bounded in L=(0, T; H*} implies {} is bounded in L=°(Q), say

".ul"Lm(Q) g M for aIl L. ) V . (A 5)
Then |(u? —u%) ¢| < 2M% and from (A3) (4f —u®) ¢ -0 pointwise almost everywhere in Q.

Lebesgue’s dominated convergence theorem now establishes (A 4) and completes the proof of

the lemma.

The lemma is applied to the sequence in (A 1) to obtain a subsequence {;} such that for all

T'>0ands>1 U->u weak-star in  L=®(0, T; H9),
u >u'  weak-starin L={0, T; H9), . : (A 6)
yty, —~>uk, in  2'(Q).

It follows immediately that at least in the sense of distributions {u} converges to a solution u of
the K.—dV. equation. Since all the % have the initial value g, a simple argument (Lions 1969,
ch, 1, p. 14) shows that z does as well and therefore u is a solution of the K.-dV. initial-value
problem which lies in L=2(0, T; He), for all 7'> 0 and s > 0. It then follows inductively from the
differential equation that  is a C* function of (x, #) all of whose partial derivatives belong to L,
for each fixed t > 0.

For such smooth solutions of K.~dV. there is at hand the whole range of polynomial invariants

Iy(w), I,{n), ...in (6. 36) Proposition 6 thus shows that #1s bounded, with all its partial deer&thCS
in H* zmzﬁ:rmly fort >

Now we pass to the Second stage of the proof, where it is supposed gisin H% for some £ >
Let {g,,} be a sequence in H® such that g, —g strongly in H* (cf, proposition 5 for an exphcn

69 _ : © Vol.278. A.

Uy, pomtw1se almost everywhere in Q@=[0,T]xR. - (A3) |
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-construction of such smooth approximations). Let #, be the smooth solution of the K.-dV.
equation with initial data g,. It follows from the strong convergence of {g,} to g in H* that

I(ga) +1i(g) for 0<j<k (AT)
as n— 0. Furthermore, from theorem 2, for any ¢ > 0, _
Li{n) = 1;(gn)- | (A8)

It then follows that, independent of z and of ¢ > 0, I;(x,,) is bounded for 0 €5 < £ By usmg the
general form of I; given in (5.36) and proceeding inductlvely from j = 0 asindicated near (5.87)
it may be concluded that [z, is bounded, independent of 7 and of > 0. Thus {x,,} is a bounded

~sequence in L®(0, co; H¥) and hence as in (A 1) and lemma 7, there is a subsequence {u,,} of {z,}
and a » in L*(0, oo; H*) such that '

un—~u - weak-starin < L*(0, 00; H¥),
Uy —>u'  weak-starin L®(0,c0; H*3), (A9)
Uy lg~> U, In D'([0,00) x R).

It follows that « is a solution of the K.—dV. equation and moreover u(x, 0) = g(x) as one sees by
deducing from (A 9) that u,,(x, 0) - z(x, 0) weakly in H*~3 (cf. again Lions 1969, ch. 1, p. 14) and
then recalling that u,(x, 0) = g, (%) > g(x) strongly in H¥.

- Uniqueness for the casc £ > 2 follows the standard lines given already in the proof of theorem 1.
Forthecasek = 2,2 slight amount of care is needed to interpret the argument, but we may safely
refer to the remarks of Temam (1969, pp- 170-171), made for the periodic problem, which carry
over without change to the present situation. The proof of the theorem is now complete.

COROLLARY 1. The solution # guaranteed by theorem 8 is, after possible modxﬁcaﬁon on a null
set of te R, weakly contmuous from R+ to H,

Proof. This follows by first mterpolatmg to see that z is in C (0, c0; H*%) and then applying
Lions & Magenes (1968, lemuma 8.1, ch. 3, p. 207) and the fact u e L=(0, co; I7%) to 1nfer the stated
weak continuity.

To obtain the strong continuity in time of the above solution, as in theorem 1, one could use
the first stage of the proof of theorem 8 to establish existence of smooth solutions corresponding
to smooth data, and then use an argument analogous to that given in proposition 5 (e.g. use
(5.10-5.11), etc., with ¢ = & = 0) to show that solutions «,, corresponding to smooth data g,
which approximate g in,H" appropriately for & > 2, are Cauchy in C(0, T H¥) for all T > 0.
It follows that u, - u strongly in C(0, T H¥) for all T > 0 and thus # is strongly continuous (it is
the same  as obtained in theorem 8 by the uniqueness result).

Itis of some interest to note that if the argument for existence is made as last outlined, theorem i
may be improved by taking account in this way of initial data in H2 We thus obtain a slightly
strengthened version of theorem 1 which is stated formally as another corollary.

CoroLLary 2. Let geH* for an integer £ > 2. Then there exists a unique solution # in
Gy(0, c0; H¥) to the K.—dV. equation with initial value g.

Proof. The improvement comes about from the superior H? estimates one obtains by first
passing to the limit of the regularized equation as e 0 for H® data and then using the K.~dV.
invariants for @ grieri bounds rather than the direct derivation of H2 bounds given for the regu-
larized equation in proposition 3.
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Specifically, let g€ H? and let g, be defined as in (5.1) and let #, be the solution of the K.—dV.
initial-value problem for the H* initial data g,, guaranteed by theorem 1 or 8. Then as in the
argument proving theorem 8, the first three polynomial invariants for smooth solutions of K. —dV
can be used to deduce that 1ndependent1y' of ¢in (0,1] and of t

. "uellﬂ = M. ' (A10)
From lemma 5 and further polynomial invariants,
ledes < Me¥e as o, | (A11)

forallk > 0. Let T > 0 be fixed. Then {ue} is Cauchy in C(0, T; H2), To see this, let u = u, and-
v = u; where ¢ > § > Osay, and let w = z~v. Then just asin (5.11), for any j 0

© o t o 3
- f ulydx = f By dx—2 f ) f (w0 -+ }0%) gy i i, (A12)
" where h{x) = u(x,0) —v(x,0) = g.(x) — ga(x). From lemma 5 it appears that .

- Wllos = o(ct) for k=0,,2. - (A13)
AppIymg (A 10) to (A 12) with § = 0 leads to _ ' | '
fw widy < ij wzdx+f k2 dx, (A 14)

where Cy = Cy(full, Jo]2) is bounded independent of ¢ in (0, 1]. From this it is deduced
] < 4] e2C6® = o(e¥), - (A15)

uniformly for'¢ in [0, T] asel 0. (A12) W1th J = 1can be expressed as
4Gk =f°°w wldx :f_mhmdx—zfof_m (G + 82, 02 + 2y 0] e .-
This generates the inequality o
| B2 <O+ Cf e dre 2 il o] ar

¢ t
2+Cf Vi(r)2dr+2 sup ful; sup ||w||f V() dr..

o<isT o<i< T

Here C; = Cy(jjully, [v]a) is bounded mdependent of ¢ in (O 1]. Now sup ||u[s = O(e~?) whereas -
sup |wf = o(e¥) as ¢} 0. Hence, umformly on[0, T -

RO < ROG[ Rrpdreo) [ dn  (aie)
{A 186) then implies immediately the inequality
lwoal) = Vi(2) < o) €294 +o(ed) G (e — 1), (A17)
valid for ¢ in [0, 7. (A 13) now comes to our aid and yields
o = o(e) as edo, | (A1s)

uniformly on [0, T]. F inally for j = 2 in (A 12}, there appears, as in (5.13-5.14),

=s]
Va(t)? = f wl, dx = f Ry dx— 2f f S(uy+w,) wlh, + Sumxw Wop + ua,mwwm] dxdr.
6g-2
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There follows . | | |

RO <0+, B2 46 e Bl 42 oo
where C, is bounded independent of € in (0, 1], But from (A1), (A15) and (A1s), .

sup ool < sup Juls ] = O(ed) o(ed) = of1),
osigT ot T o

ase 0. Simﬂarly_, SUP |ty ] = O(et) 0(eh) = o(1),

b<tST
as e 0. Hence uniformly on {0, 77, .
¢ ‘:
R0 = 10+ Gy [ ryaroy [ e e
o 21
from which we have g = ¥alt) < 2] €3C27 4 g(1) Cyl(edaT - 1),

Now (A13) gives - [wes =o(1) as €}o0, (A 19)
uniformly for ¢in [0, T7. o _ : I :
~ Then (A15-A18, A19) taken in conjunction yield the desired property of {u.} and it is
concluded that u,->u in C(0, T H%). The argument of theorem 2 then assures that the first three
invariants, Io(u), I,(u) and I(x) do not vary with time, It is then just an application of proposi-
“tion 6 to conclude u€(y(0, 00; H2). The proof of the corollary is complete. ' '

Continuous dependence results for the H? case are derived exactly as in theorem 4, and we
may suitably pass over these details. Further existence results can be derived for initial data gin
H¢ where s > 1 is not necessarily an integer. Results in this direction have been given by Saut
(1974) making use of the nonlinear interpolation theory of Tartar. Additional results will be _
given in a forthcoming publication in which it will be shown thatif ge Hewhere 5 > 2, then there
corresponds a unique solution of K.~dV. which lies in the function class C(0, T ) for any
finite 7'> 0. The proof relies on the present theory and an extension of Tartar’s theory,

AP.PENDIX B. THE PERIODIC INITIAL-VALUE PROBLEM
An entirely parallel development can be given for the periodic initial-value problem for the
K.-dV. equation (again expressed in moving coordinates)
Upt ity sy, = 0, u(x,()) =g(x), o (Bl) .

. where g is a given periodic function with period Z, say. It is not intended to present details of
this development, which differ only slightly from the details of the theory for the pure initial-
value problem already considered. However, it may be worth while indicating the outcome of -
the analysis and comparing it with the previously obtained results for the periodic initial-value
problem, outlined already in the introduction. In contrast to the pure initial-value problem,
where previous results had lost some control of the spatial derivatives in obtaining a solution,
solutions u in Z*(0, T3 H) corresponding to periodic Hf, initial data have been shown to
exist, where £ > 1 and T is positive and fixed, but otherwise arbitrary. We shall be able to
Strcngthen this conclusion, inferring the solutions are in Gy(0, co; HE) for periodic A, initial
data, £ > 2. The analysis begins with a new periodic result for the model equation (1.1),
preceding which the spatially periodic versions of the function spaces that have figured thus far
are defined. : _ ' o
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_ By Hf, = H%(R) is meant the class of real-valued functions defined on R whose restriction
" toany bounded interval Iisin f7%(1). An element gin Hi%, is periodic of period Lifg(x) = g(x+L),

and the collection of all such g is herein denoted Hf. If g is in Hf, then ¥g(x) = ¢/g(x+ L) for -

0<j<kand conversely, an element fin H"([G L]) which satlsﬁes these £ periodicity conditions

has a unique extension to an element of Hf. The norm on HY is the norm of H%([0,L]). Let

v% = C(0, T; HF) and more generally & = CY0, T; HE).

Prorosrrion 16. Let g€ Hf where k > 1 and let 7 > 0. Then there exists a solution # in ¥'§®
to the periodic 1mt1al-value problem for (1.1). Furthermore, ue ¥'%, and forj > 1, djue ¥ iitl=,

 The proof of proposmon 16 proceeds exactly as in Benjamin ¢t al. (1972, §3) supplemem‘ed by
our remarks in § 3. The Greén function for I— 02 on HF is the same as the Green function on H¥,
and hence the periodic initial-value problem can be recast as an integral equation

o) =g+ [ [ Ke-pugn ricwmyagar, @

where K is as defined in (8.4) and (B2) is wewed as an operator equation in 7%,

The method of proof is to demonstrate existence of a solution in ¥}, for #, sufficiently small by

means of a contraction mapping argument. This solution in the small is then extended to a global
solution in #7, by use of the integral invariant

E !t) =J.0L [uz(x: t) +u§:(x: t)] dx = E(g) | ' . (BS)
forallz = 0.

Finally this weak solution is shown to be an element of #%® by bootstrap arguments as given.

.in Benjamin ¢f al. (1972, §3) and in the present § 3.
With proposition 16 in hand, define a regularized ‘periodic initial-value problem, just as
before.: :
ub+uuw+um‘p—eum¢ =0, u{x,0) = g(x), ‘ - (B4)
where g is specified in Hf. The transformation (8.2) sends « to a solution v of the perlodlc initial-
value problem, with period M = e~1L,

Uy + [ +U?)m __ﬂth = 0, ”(xa O) = Eg(eéx)ﬁ (B 5)

where the initial data in (B 5) is 2 member of Hjy. Existence of solutions for the problem (B 5) is

concluded by appeal to proposition 16. By following the inverse transformation from (B 5) to
(B 4), existence of solutions « in ¥"% to the periodic initial-value problem (B 4) is obtained.

Now the plan is, as before, to derive a priori bounds for smooth (i.e. HF) solutions of the regu-
larized problem (B 4). This proceeds exactly as in § 4 with no changes worthy of comment. Then
suppose g is specified in Hf, & > 1. Regularize g by a multiplication operation on its Fourier
coefficients. If g ~ Z; @, €™ 5L, then define :

85w} ~ Ty p(edk) gy emmikAT, (B 6)

‘in analogy with (5.1). g, is in HZ. A periodic version of lemma 5 holds for the {g,} of course, and
hence the solutions #, of (B 4) posed with initial data g, are smooth and satisfy estimates as in
corollaries 1 and 2 to lemma 5. We may then pass to the limit as € 0, cither weak-star in
I=(0, T; Hf) as in appendix A (only the argument is easier this time since the underlying spatial
domain [0, L] is bounded) or strongly in ¥% asin §5 and, for the case k = 2, appendix A.

' 63-3
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A solution # is obtained to the periodic initial-value problem (B 4) for g. Moreover, u depends
continuously in ¥% on g in Hf, as one sees by miimicking the developments in § 6. We have
outlined the proof of the following resuit

TuEoREM 10. Let ge HE, where £ is a positive integer. Then there exists a solution z, Wlﬁch is
in L=(0, T; Hf), for all T' > 0, to the periodic initial-value problem (B 4) for g. If £ > 2, then is
unique and xe¥%. Furthermore, if £ > 2 and T is fixed, # depends continuously in ¥% on

 gin HE.

The further developments of § 8 may now be carried over for the perlodlc initial-value problem
with no essentlal change in detail.
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