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Improvements are macde on the theory for the stability of solitary waves
developed by T. B. Benjamin. The results apply equally to the Korteweg—
de Vries equation and to an alternative model equation for the propagation
of Iong waves in nonlinear dispersive media.

1, INTRODUCTION
A theory is developed. relating to the stability of solitary-wave solutions of the
Korteweg-de Vries equation and of an alternative model equation for uni-
directional propagation of long waves. The analysis contained herein is inspired by
the work of Bonjamin (1g72) and attempts to improve upon his results in several
aspects.

The accomplishment of the above mentioned paper is considerable, giving &
precise formulation and proof of the stability of the shape of solitary-wave solutions
of all amplitudes of the Korteweg-de Vries equation. Benjamin’s proof deals with
the full nonlinear problem, calling upon interesting ideas from functional analysis
combined with refined estimates of certain integrals made by use of spectral theory.
The proof leads therefore to a much more satisfactory theory than the linearized
perturbation analysis of the same problem given earlier by Jeffrey & Kakutani
(1970).

The methods used here simply exploit the machinery erected by Benjamin, no
essentially new idess being required, Nevertheless the results presented here are
congiderably sharper and roore satisfactory than those given by Benjamin. The
improvement on Benjamin’s results takes essentially three forms. First, it is
assumed by Benjamin that solufions to the model equations under consideration
are O™ functions all of whose derivatives decrease sufficiently rapidly to zero at
infinity. This hypothesis is replaced by the much more modest assumption that the
initial date is an L, function whose first two derivatives are also in L,. Secondly, an
error in inference is corrected by the derivation of an additional & priori bound.
Lastly, an ad hoc conjecture made by Benjamin near the culmination of his proof is
replaced by inequalities which imply the desired result. This latter is important,
for the conjecture is not established by Benjamin, and indeed it appears on careful
consideration that the conjecture itself is unlikely to be valid. The proof as conceived
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After a few preliminary remarks in §2, Benjamnin’s theory is briefly outlined in §3.
The refinements of the Benjamin theory are then given precise formulation and
proof in the final section.

2. NOTATION AND PRELIMINARY RLUMARKS
Consideration is given by Benjamin principally to the stability of solitary-wave
solutions of the Korteweg-de Vries (1895} equation
Ntg = g+ o+ Wiy + U, = O, (2.1)
though solitary-wave solutions of the alternative model equation
N = vy 0+ Wtk — Uy = 0, (2.2)
proposed by Benjamin, Bona & Mahony (1g72) are also shown to be stable by an
almost identical analysis. For the Korteweg—de Vries (K.—dV.) equation the
solitary-wave solution is written explicitly as u (®,{) = gz~ Ot) where C = 1+,
U > 0,and A
$(z) = 3C sech® (JC¥z), (2.3)
while for the equation (2.2) the solitary wave takes the form #@(z,1) = d(x—Ct)
with & as before and |
Blz) = 3C sech? [Chef2(1 + C)H]. (2.4)
Of course, an arbitrary translation of ¢ or § may also be uged to define a solution

of the respective equation.
The stability problem in question refers to the pure initial-value problem for

(2.1} or {2.2} posed on the domain {(x,1): zeR, 1 > 0}:

Nu =0, ulz,0)=y), 2.5
and Na=0, d,0)=i). (2.5)

Suppose that ¥ is close enough to @ (respectively i is close enough to ¢) in a certain
sense. The conclusion in view is that the solution u (respectively &) of {2.5) is then
close to u, (respectively ), in an appropriate sense, for all £ > 0. To give precision
0 the above statement, there must be defined messures of distance between elements
of various function classes.

Let L, be the measurable functions from R to R which are square-integrable.
L, is given its usual norm, denoted by | -||. Let & be a non-negative integer and let
H* denote the Soholev space of L, functions whose (generalived) derivatives up fo
order k are in L, This space is given its standard Hilbert space structure with norm

k i
Ltk = X g

For k as above, and T either a finite positive number or +o0, let #F = C(0,1'; H¥)
be the functions u: R % [0, 7] -+ R such that «(-,#)cH* for each ¢ and such that the
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As pointed out by Benjamin ef al. (1972) it is not true that, because an initial
wave profile lies close to the profile of & particular solitary wave, the corresponding
solution of K .~dV. or (2.2) will continue to lie close to the solitary wave in question
a8 it evolves in time, This owes to the fact that the solitary wave and the perturba-
tion may have different speeds of propagation. The proposed global stability result
sherefore takes no notice of the spatial placement of the waves in question. Mathe-
matically, this is reflected in the introdaction of a ‘gliding’ metric. For f, ge H?

define
d(f,q) = jﬂﬂ £+ —g(*)s (2.6)

Then d is a pseudo-metric on H* and defines a proper_metric on the quotient space
HY@, where @ is the translation group in R. d(f,g) being small means that a transla-
tion of f lies close to g in H' norm. But if A& H?, h is & bounded and continuous
funetion with
sup |hx)| < & (2.7)
ae (iR

go, if d(f,g) is small, it is further implied that a translation of f lieg pointwise uni-
formly near to g: that is, f and g have nearly the same shape. The stability theorem
formulated by Benjamin, in the notation of (2.5), says essentially that if y—¢
(respectively 9 — ) is small in H* norm then d(g, u) (respectively d(¢p, @) is small
for all ¢ 2 0, so that for all later time, w (vespectively @) has practically the same
shape as the original solitary wave to which it was compared at } = 0,

The qualitative results for the initial-value problems (2.5) will be needed in the
development of the present theory. These are stated below for convenient reference.
Proofs may be found in Bona & Smith (r975).

Propostriox 1. Let ie H* where s > 1. Then there exists a solution u in
L.o(0, co; H*)

to the initial-value problem for K~dV.If s > 2, wis unique, 4 &3/ and Aune A2
for { such that s — 3 = 0.

. Let -, and i, be elements of H* where 5 > 2 and let u, and u, be respectively the
associated solutions of the initial-value problem for K.-dV. Let T > 0 be given.
Then there exist constants M, k = 0, 1, ...s, such that

1o —waly < Myl ¥i—Vslle (2.8)

for all £in [0, 7]. The constants M depend on 7', || and l¥alleif & > 2, and on T,

[¥4]ls and [Yre]a if & = O or 1.
If s > 2 and ¢ and w are as above, then

Vi) = _[: Wz, )de and M(u) = J ’:{u;-iusmx 2.9)
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ProrposiTioN 2. Let e H* where s 3 1. Then there exists a unique solution % to
$he initial-value problem for (2.2) which Hes in 3 and for each T >0, in H.
Further for all I > 0 & w lies in #5} and, for each 7' > 0, in 71,

Let 1, and ¢, be elements of H* where s > 1 and let u, and u, respectively be the
associated solutions of the initial-value problem for (2.2). Let 7 > 0 be given. Then
there exists constants N, k = 0, 1, ..., s such that

ey = uglly < Nellyry~ bl (2.10)
for all ¢ in [0, T']. The constants N, depend on T, [y, and |iy]y for & > 1 and X,
depends on 7', [y, and [[¢y];.

If 5 » 1 and ¢ and w are as above, then both

0

Elw) = f : (wt+u2)dxr and M(u) =f (mk— fud)de (2.11)

-
are independent of { = 0.

Remark. There is & sequence of integrals of polynomials in « and its spatial
derivatives which, for sufficiently smooth solutions of K.~dV., do not vary with
time (cf, Miura, Gardner & Kruskal (1968); Kruskal, Miura, CGardner & Zabusky
(1g70) and Bona & Smith (1973)).

The following theory applies equally well to K.~dV. or (2.2) with only minor
differences in detail. The results will be proven in detail for K.~dV. with the modi-
fications needed for {2.2} then briefly indicated.

8. OUTLINE OF BENJAMIN'S THEORY
Benjamin begins by considering the solution « of the initial-value problem (2.5)
for K.~dV. with initial dats denoted here by o, i will be assumed for the moment to
lie in H* = E %, Tt is further supposed that V(i) = V(¢), an extra side-condition
Je=1
which is easily dispensed with later. Define
Rz, ) = u(z, i) - dla +a), (3.1)
where @ = a(f) is to be chosen subssquently. Since V(u) = V{y) = V(¢) for all
¢t = 0 from proposition 1,
J‘ {29k + R = 0, (3.2)
0

g0 it appears that
AM = AM(g,h) = Miw) —M($) = J' (hi+(C—-phe— Ji¥]de.  (3.9)

The usefulness of AM derives from the fact that it does not vary with time since
M{x) is independent: of £ from proposition 1. It follows that

AM < f Y (k2 Oty +} sup |;&;|:f” mde < miBI+3R),  (3.4)
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The difficult part of the proof is concerned with estimating an effective lower
bound for AM. Benjamin proceeds by breaking 4 into even and odd parts. For a
fixed t > 0, let

B, ) = f(@) +9(2), (3.6)

where f(x) = f(—=) and g(z) = —g(— ). Writing A in this manner allows AM to be
written as

A =2 [ 1f2+ 9N+ 2 [+ c-pmaa—3[” pax @0

The contribution to the quadratic portion of AM from the odd and even portions of
h may therefore be estimated separately.
Benjamin shows, by adroit use of the spoctral theory of the eigenvalue problem

P +[208ech?(y)+Alp = 0,
p'(0) = 0, p bounded on [0,c0),

that [ prro-prarsa|” greomarcli, (37)

where ¢, and ¢, ave positive constants which depend only on (¢, whichisfixed throngh-
out the discussion by the choice of the initial solitary wave. The inequality (3.7)
is derived by using the side condition (3.1) but without. having to specify the
translation constant @ appearing in. the definition of &.

Next the contribution to AM from the odd part of 4 is estimated. For this purpose
let & = a(f) be defined by

f ® [u(z, ) - P +a)Pde = inf f f [l ) — ¢l +y)Pdz. (3.8)

Benjamin claims st this point that the infimum is attained st a finite value of y
simply because » and ¢ decay to zero at co. This inference is incorrect as it stands.
If % < 0 everywhere, for example, the infimum plainly occurs only at +oo, It
may be argued that as long as  resembles even roughly the solitary wave ¢ the
infimum will surely be taken at finite values of y, but this leads to circularity. What
is required is some definite means of agsuring the infimum is taken on at finite values
of y. A method of guaranteeing this will be given in the next section.

On any time interval in which the infimum in (3.8) obtains at finite values,
Benjamin’s arguments will apply. In particular the definition (3.1) of & will make
gense and

[y = Jlu(-,8) = ¢(- + )y > dlw. §) (3.9)
by definition of 4. On differentiating (3.8) with respect to a, the condition

o
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appears. This condition is used, together with another application of spectral
theory, this time applied to the eigenvalue problem
6" + () + AC)6 = O,
8(0) = 0, 0 bounded on [0, co),
to deduce that
5 | , 1= .
|7 wro-oae s 1[7 wrromassaldt @10

-t

where ¢y = $ min (1, 0). It follows from (3.7), (3.10) and the estimate

: J ’ h“clxﬂ%ﬂk“lfm B da
) J -

that AM 2 e b3 — bl JR]® = calB]2—csl R, (3.11)
where ¢, and ¢, are positive constants depending only on €.
A
4 °5
ey
1 a
¥ %

EE—*E{?} | \ -

Frovrs L. Graph of the polynomial in (3.12).

Benjamin now supposes that 14]y is varied continuously in time and that
[ —¢lly = dis small, It follows from (3.4) that AM < md?+ 4d%at £ = 0. Since AM
ig independent of time, the same inequality holds for all ¢ > 0. Combining this with

3.11) yield g s " :
(3R V@) = m8*+ 300 > o b - g hl. (3.12)
The cubic polynominal p(z} = ¢,a?—ca® whose value at [Af, is on the right of
(3.12) has a graph as shown in figure 1. Since [A]; > 0 always, if ¥ < 4¢§{27¢}, and
|%]+ is & continuous function of ¢, it follows from (3.12) that
€ = &(y) = [y

where e(y) is the smallest positive root of

p(e) = 7.
¢ may be made as small as desired by taking y small, and from (8,12), vy is small for
& small enough. (3.9) thus implies that for all { > 0,

€ 2 dlu, o)



The stability theory of solitary waves 369

The problem with this argument is that |k,|| must be assumed to be a continuous
function of ¢. This is not established by Benjamin, and moreover seems unlikely to
be true because, according to (3.8), the constant o = e{t), and therefore A itself, is
defined only in terms of the L, structure of z and ¢. It will follow, as in the next
section, that }|A|| is a continuous function of time, but there is nothing in the deter-
mination of b which would keep [|A[}; from shifting discontinuously in time by means
of & sudden change in |4, This is & point which will be resolved in the next
sechion,

Finally the assumption that V(i) = V(4) is removed by a simple application of
the triangle inequality for the pseudo-metric d. Suppose - is arbitrary with [|yr— @i,
small. Let ¢, be the solitary-wave solution of K.-dV, such that ¥(g,) = V(). Then
du, §) < diu, y) + d{ @y, $). Now d(, ¢, ) isa constant which is small if | V(¢) — V(¢h)|
is small. The latter is true if |y — || is small. Moreover, the above theory applies
to u viewed as a perturbation of ¢, and shows that d(«, ¢,) is small provided | — ¢yl
is small, which s the case since both |y —¢{; and |~ ¢,f|, are small.

This completes the argument given by Benjamin. The proof is very elegant and
the final result provides a satisfactory solution to the question of the stability of
solitary-wave solutions of the two model equations for long waves considered. The
next gection is devoted to the previously mentioned improvements and eorrections
of Benjamin's basio argument,

4. STABILITY OF THE SOLITARY WAVE

This section contains the major contribution of the present paper. As in the
previous sections, ¢ denotes a solitary-wave solution of K.~dV. (while ¢ denotes a
solitary-wave solution of (2.2)) with wave speed 0 = 14+C where C > 0.

Tazoram 1, Let e > 0 be given. Then there exists & > 0 snch that if - € H?, with
« the solution of K.~dV. correspcding to the initial data ¥, and | —- @], < &, then
d{u, @) < eforall i > 0.

TarorEM 2. Let € > 0 be given. Then there exists § > 0 such that if e H,
with # the solution of (2.2) corresponding to the initial data ¥, and |- §|; < 3,
then d(#, @) < e foralli > 0.

Remark. The theorem for the model equation (2.2) is slightly better than the
result for K.—dV. in that the initial data is only required to lie in H*. The H? result
is plainly optimal in the present context. The lack of a continuous dependence result
in H! is the reason for the failure of the stability theorem for K.~dV. in H! (cf.
proposition 1 and compare to proposition 2).

Proof. Suppose initially that yre H= so that « and all its partial derivatives are
elements of #3 for any T > 0. Following Benjamin, supposeslso that V() = V(¢).

Mo 4homesm jo Grok ackahlizghad far $hia vamr amvanth sifnatice Whithaot Thos of
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Let (2, t) = ¢{a~ Ctyandw(z,l) = w@,§) - uy(z, ). By the continuous dependence
result in proposition 1, for given 7 > 0 there exists & = 3y(Zj, @, |¥[ ) > 0 such
that if |yr— ¢, < &, then N
for t in [0, Ty]. (4.1) has an important implication given in the following lemma.
Lavma 1. Let oz, §) = ¢(z — Ct-+b) and  a solution of K.~dV. corresponding to
initial data ¢, Suppose for some ¢, = 0, i} —v(*, &) < 2V(g). Then
*
inf | {ulx,ty) —Ple+y)tde 4.2
veR J —m

is attained at finite values of y.

Proof. Let & : .
/ sl = [ (et =g+ da. (4.3)
p 15 a continuous function of y and lim p(y) exists. In fact
Yk o
im plyy=| ui=bp)de +f ¢t dx = 2V (). {4.4)
y—rtm T —

But by assumption, at v, = Cly~b,
o) < 2¥(9). (4.5)

The continuity of p coupled with (4.4) and (4.5) imply the desired result.
Because of (4.1) and lemma 1 applied to u, and %, the infimum

inf [z, &) — gl +y) P dw (4.6)

pelR ) —=
is takert on at finite values of y throughout the interval [0, 7,]. Henco the definition
bz, &) = ulz,t)— P(z+a), (4.7)

where a is a number at which the infimum in (4.6) is taken on, is meaningful. The
infimum {4.6) being taken on at finite values means that Benjamin’s estimates
(3.11) hold on [0, Ty]. Thus for ¢ in [0, T3],

AH 2 coffh|§—cg 2l |A{* (4.8)

where again, ¢, and ¢; are positive constants dependent only on €, which is fixed in
this discussion. Define

« L 4=A()=[4] and B =B()= (|l (4.9)
Then (4.8} implies
AM = c (A2 + B2%) —c5(d + B) AL {4.10)
Lanma, 2, Aty = ‘irrﬁl.% U:a [u(z, t)-—q&{xwlsy)]gdm}%
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Proof. If £, &, = 0, then
= inf inf e, by — G + ) = Nus(+, ta) — B( - +2)]|
< Inf inf (u(,4)-u(", &) +i$( +3) - (- +2)}

= JJu(- t) —ul- ).

The solution = is known to be a continuous mapping of [0, 0} into L, from proposi-
tions 1 or 2. Henes the continuity of 4 is established.

iA(tl) "‘A(tﬁ)l =

Remark. Let of = {¢{- +b):b&R}. o is a bounded subset of L, and A(f) is simply
the distance of u{ , f) to & in Ly, Viewed in this light, the proof of lemma 2 reproduces
a well-kmown fact from metric space theory.

Suppose now that |~ @]y = 8, where the restrictions on 4 will now be deter-
mined. Because of {3.4), for any ¢ such that the definition of & makes sense

AM < R+ 4 A3
At t = 0 it may therefore be inferred that
AM € mét+4+38% =y(8) =1, (4.11)

and this inequality holds for all ¢ > © for which % is defined since A M is invariant in
time. Writing out this inequality,

F (A2 -+ (O — )t — Hi] dz < 7.

Hence Bt = : Rde < y+ :[51,,8.;‘(@5-0)};2]@1
< y+}sup EMF hﬂdmwr Bas | (12
< y+HA + B4+ 2045, )
gince ¢ € 3C everywhere in R. Solving the quadratic inequality in B above, there is
implied B < }3A®+[3A%+4(y + }A? + 20428} = F(4). (4.18)
By using (4.18) in {4.10),
y 2 AM > o A2+ Bt —c A+ F @4)]*4“} 4.14)
> 4o~ PA)] - 6s 4 = O(A). “

LS U - 7 PN Y b am m e Ve -
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the graph of G is depicted in figure 2, ag may be confirmed by a careful study of the
function & on the positive real axis. From lemma 2, 4 is a continuous function of
time. Hence the Liapunov-type argument given by Benjamin, which was outlined
near figure 1, may be used to assure that so long as
¥ < Gy (4.18)

then As 4, {4. 17)
where 4, is the smallest positive root of G(4) = v, independent of £ > 0. (N.B

depends on y of course, but @,, increases as y decreases o zero, 50 the comhtion
{4.16) can be met for sufficiently small y.)

A

Gm Es

Fraune 2. Graph of the function @,

With a bound on 4 in hand, return now o the first line of (4. 14) to infer a bound

on 5. e, B2 < yrofd + F(A)]4? < y +ed, + F(4,)]43. {4.18)
Hence in sum, for y satisfying (4,15) and (4,16),
HA[8 = A%+ B2 < A5+ (1fe,) [y +esld, + F(4,)]43}, (4.19)

independent of ¢ > 0, so long as the infimum in (4.6) is taken on at finite values of y.
By taking ¢ small, v as defined in {4.11) may be made small and hence 4, may be
made as near zero as desired. In particular, by taking § < 8, say, it follows that

A3+ {rodd, + F(A)143) < &2 (4.20)

Let 4, be such that if 8 < &, then (4.15) holds and 4, such that if § < &5 then (4.16)
holds. Let § = min {&;, &y, 8y, 8,). Note that &;, §, and &, depend only on ¢ and C while
8, depends on. ¢, ¢ and |y, (for K~dV., and on ¢, @ and ||, for (2.2)). If & < 5,
then [[A]3 < ¢ so long as the infimum in (4.6) ja attained at finite values of y, and
gince § € &, this ocours at least on [0, 7] from {4.1) and lemma 1. Hence as long as
the infimum in (4.6) is attained at finite values, the latter inequality and (3.9) imply

a(w,9) < Wl <e. @)
Let & = {t: the infimum in (4.6) is atfained at finite values of y}. .%° = [0, T;) from
above. Let 7} be the largest value such that &% = [0, 4}) and suppose T} < +¢0.

Then for ¢ < T
Il
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Now A is 8 continuous function of ¢ for all £ > 0. Henee there is 2 7'> 0 such that
Alt) < 2V()
for tin [T}, 75 + T'). But then lemma { implies the infimum in (4.8} is taken at, finite
values of y in [7}, T} + 7"] and this contradicts the choice of 7). There is left only the
conclusion T} = +co and the stability, conditioned on the auxillary requirement
V() = V(g), is established for smooth data.

To remove the condition that V() = V{¢) requires only an application of the
triangle inequality for 4. This has already been ontlined at the end of §3.

The removal of the smoothness condition relies on the continuous-dependence
result in proposition 1 once more. Specifically for K.-~dV., let a solitary wave ¢,
¢ > 0 and YreH? be given. Let § = 8(¢, ¢, [i¥l]s} be as provided by the foregoing
analysis and suppose i — ¢y < 3.

Let {§r,J_1 be a sequence of H functions such that

o>t in H2, as a—00,
l¢—vuls <8 foralln, }
[#alle € [#llz forallm.

The construction of such a sequence presents no problem (ef. Bona & Smith 1973,
lemma 5). Lot u, be the solution of K.~AV. associated to the initial data ¥, for
n =12 ... Then since ¢ -], < S forallt > 0

d(tt,, @) < 6 (4.24)

for all n. Note that & works for y, since |1,y < |¥]s for all n. The continuous-
dependence result of proposition 1 implies that for any finite T > 0, u, > in 7.
In particular, for each £ > 0, #,(*,t)—u(-,%) in HZ2, and therefore certainly in H2.
Tt follows that d{ts,, ¢)—-d(u, $) for each ¢, Therefore

diu,d) < e (4.25)

for all £ 2 0. This completes the proof of the theorem 1.

(4.23)

The proof of theorem 2 follows the same general lines, with the qualitative results
in proposition 2 used in the place of the results of proposition 1, Given & solitary
wave ¢, consider first the special case of initial date ¢ & H such that B() = H($).
Let 4 be the solution of (2.2) with initial data ¢ and let k(x,#) = @(2,f) — $z +a),
where & is determined subsequently. Corresponding to (3.3), there appears

AM = M@)-H@) = [ [(1+0+(O- PR -3l
— 00
Again AM does not depend on . An upper bound on AM is available as in (3.4).

The estimates from below for AM proceed as hefore by breaking & into even and odd
nara and determinineg hounds on the even and odd vart of the auadratio vortion of
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of lemma 1 follows exactly as before while the result (4.1} hag an analog that derives
from proposition 2, The rest of the reasoning is as above except that proposition 2
replaces the reliance on proposition 1. The removal of the side condition E(y) = E(g)
ig effected by the triangle inequality for d as before. Weakening the assumption that
i € H® requires another application of the continuous-dependence result in proposi-
tion 2. Singe for (2.2) continuous dependence holds with regard to H* perturbations,
the final conclusion is that d{#, ¢) < & provided only that JreH® and [ 4|,
is small enough.

In summary, the stability of the shape of solitary-wave solutions of the Korteweg—
de Vries equation is egtablished for H2 perturbations which are small in A norm,
For golitary wave solutions of (2.2), stability in shape is proved for H' perturbations
which are small in ' nerm.

The present theory is restricted to the two model equations (2.1) and (2.2).
However, questions of the stability of solitary-wave solutions of other one-dimen-
sional mode] equations for long waves, or indeed for the full equations of surface
waves or internal waves in stratified fluid, to name just o fow examples, appear to
present many of the same sorf of problems already encountered for (2.1) or (2.2).
Hence the ideas of Benjamin exploited herein may have wider scope than the
present context.

The author wishes to thank Professor T.B. Benjamin, T R.8., for helpful
comments on the manuscript. He iz indebted to the Science Resesrch Council,
U.K. and to the National Bcience Foundation, U.8.A., for support during portions
of time when the present research was carried out.
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