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Global existence, uniqueness and regularity of solutions and continuous dependence
of solutions on varied initial data are established for the initial-value problem for the
coupled system of equations

Ny + Uy + (un)a; - %ﬁ:mt. =0,
U+ 9+ UU, — %(ut + ”z)xm = 0.

This system has the same formal justification as a model for the two-way propagation
of (one-dimensional) long waves of small but finite amplitude in an open channel of
water of constant depth as other versions of the Boussinesq equations. A feature of
the analysis is that bounds on the wave amplitude % are obtained which are valid for
all time.

1. Introduction. In the scientific literature on water waves there are numerous
model equations which approximately describe the two-way propagation of long
surface waves in constant depth open channel flow in regimes where the competing
effects of nonlinearity and dispersion are of the same small order (Boussinesq(4),
Byatt-Smith(5), Long(7), Madsen and Mei(8), to cite but a few). One reason for this
variety of ‘Boussinesq’ equations is that the zeroth order approximation (the one-
dimensional wave equation) made without regard for non-linearity or dispersion can
be used to change the form of the first-order terms, added to account for nonlinear and
dispersive effects, without changing the overall formal level of approximation (cf.
Benjamin, Bona and Mahony (2) for similar remarks regarding one-dimensional equa-
tions for uni-directional propagation of water waves and Peregrine (10) for remarks
toncerning ‘ Boussinesq’-type equations). For example, in dimensionless coordinates
Scaled so that the size of individual terms is shown explicitly, the model derived by
Long (7) is

N+ Up+e[Uny— 10+ §06e] = O(€?),

Ui+ 0+ e[ — Une+ 39 0] = O(e?),
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as € 0, where 7 is the wave height above the undisturbed depth (taken to be 1), U the
horizontal velocity at the bottom of the channel and e typifies the ratio of the dimen-
sional wave height to the water depth. For this model, the approximate identities
N+ Uw = O(C) and th+77x = 0((')
as ¢ 0 are formally valid. These may be used systematically to alter the nonlinear
and dispersive terms without changing the basic O(e?) formal approximation.
Another reason for the variety of model equations lies in the large choice of
relevant dependent variables available to describe the basic physical situation (cf.
Peregrine (10)). In Long’s model above for example, the dependent variable U can be

replaced by some other velocity, such as the velocity u at a height y above the channel

bed, A
w=U _EyzUmm + 0(62)

as €| 0 where 0 < y < 1+4¢7, the velocity at the free surface
w=U—5(1+67) Uy +O0(c?)
or a velocity based on the flow of kinetic energy

146 %
([ )’ = U+ ethUn =40+ 0
0

as e 0. These do not exhaust the possibilities. Thus from Long’s model many different
models may be devised, all with the same formal error O(¢?) as ¢ 0. The particular
choice y = 1/,/3 above leads to Boussinesq’s original formulation

M+ 20, +e(w),, = O(6%),
Uy + 7, + CUU, — %Euwwt - 0(62)

in which the dispersion term — }eu,,, is appended to the momentum equation in the
usual shallow water equations.

This degree of freedom in the choice of the model system may be used to ensure the
system has the correct sort of qualitative mathematical properties for the modelling
job at hand. As pointed out by Benjamin ef al.(2) and by Benjamin (1) for the case of
uni-directional long-wave models, this is not just an academic exercise. For while it is
true that a physical long flat initial wave profile is not expected to come upon sub-
sequent singularities, such as breaking or the channel bed running dry, the corre-
sponding property for the model system should be proved rather than assumed. In
fact, such qualitative information about a model system is one of the important ways
available for judging the model.

In designing a model equation for long waves it appears desirable that the model
should not respond too strongly to shorter wave components. For instance, if an

approximation to the solution of a model system is attempted by an explicit finite-
difference scheme, the scheme may present stability problems if the model responds
violently to waves as short as the grid size being used. (For references to work on
numerical solutions of Boussinesq-type equations together with & wide-ranging dis-

cussion of model equations for water waves, see Peregrine(9).) A heuristic way of
assuring a suitably weak response to short waves is to build the model system in such
a way that the dispersion relation determined by the linear terms of the system is
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particularly well-behaved for short-wave components. The dispersion relation for

Boussinesq’s model is

WP with oy T
T 1+ Lek? dk T (1+ ek}’
and it follows that large wave-number components simply lead to standing oscillations
of finite frequency. Tt happens that the dispersion relations for the model proposed by
Byatt-Smith (5) and for the model subscquently studied in this paper are identical
with the dispersion relation for Boussinesq’s model. The dispersion relation for the
model used by Madsen and Mei(8) is

(1 + Lek? 1,72 1 274
=f ( +1.=,f,f ) with dw _ 2 1+ Lek? +{5e%k

L+ fel? dk (1 + 3ek?)} (1 + Jek?)t

and large wave-number components propagate without distortion with group and
phase velocity 3-%, which suggests that the long term effect of order ¢ non-linearities
might be to cause discontinuities on a time scale of order e~*. The dispersion relation
for Long’s model has two branches:

w2

0 = 2114 b & {(1+ bk — §ek}]

and on the upper branch large wave-number components have large phase and group
velocities making it conceivable that short waves in far-separated places could come
together on a time scale of order 1 causing a discontinuity (of. the critique of the
linearized Korteweg de Vries equation in the paper of Benjamin ef al.(2)).

Another useful property that a model system might have is an ‘energy’ conserva-
tion law, or more precisely, a functional which, when applied to solutions of the system,
is positive and is conserved as time evolves. Such a conservation law has many useful
implications for both formal and rigorous investigations of the model. For example,
while it is relatively easy to conclude local existence (existence over a sufficiently small
time interval) for many of the choices of equations for the two-way propagation of
long waves, the more interesting questions concern global existence results, together
with uniqueness and continuous dependence on the prescribed data. In order to
establish existence and other qualitative aspects of global solutions, some sort of
a priori knowledge is generally required, an energy invariant being one of the simplest
examples of such information.

The two constraints discussed do not uniquely determine the model, but the model

system Mg+ Uy + (W) — s = 05

'u’t+77a:+uua:— -'l!('“'t—”_ﬂz)zx = 0’ (1)

n(, 0) = f(a’)> u(w, 0) = g(x),
has the added features of retaining the non-linear terms of shallow water theory and of
having a velocity u with a simple physical interpretation (namely velocity at the free
surface level). Here the variables are dimensionless, but unscaled since in the rigorous
théory the small parameter plays no explicit role.

The main accomplishment of the following sections is to prove that the model (1)
has global solutions corresponding to appropriately restricted initial data. It is further
shown, for such data, that the wave height is bounded, solely in terms of the data, for
all time. Section 2 is devoted to definitions and a few elementary lemmas. In section 3
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Table of function spaces

Space Defining properties of the space Norm
= o]
L, g: R - R that are square integrable llgll? = f g(x)?dz
— o
H: L,-functions whose derivatives up to order s also g
S st Vit llglls = .ZOHQ(””a
j=
(o ¢: R — R that have s continuous and bounded s )
derivatives lgllcs = 2 sup |g¥()]
j=0xzeR
L u: R x[0,T] - R such that u( -, ¢) e L, for each ¢ in g, = sup (-,
[0, 7] and such that ¢+ u( -, ¢) is continuous from 0<t<T
[0, T] to L,
Hr 7: R x [0, 7] - R such that (-, t) e H! for each ¢ in i, = sap (-, e,
[0, 7] and such that ¢~ (-, £) is continuous from 0<i<T
[0, T'] to Ht
A, 7: Rx[0,7] - R as above with H* replacing H1, 17l = sup (-, ),
(Thus L, = 5 ¢ and HG = L) O<t<T
K5 7: Rx [0, T] - R such that &J7 is in 2, for r
z e e T L Il = 35 l04lrs,
j=
€5 u: Rx[0,T] > Rsuch that «(-, t) € C§ for each ¢in llullgy, = sup [fu(-, t)lics
[0, T'] and such that ¢—>u( -, 2) is continuous from o<isT
[0, 7] to C3
Eor w: Rx[0,77] - R such that dfue®?, for 0 <j < . 2
H (Thus €30 = &2 ) i Iellege = 3 104 ey
=

the question of uniqueness is settled. Section 4 turns to existence theory of weak solu-
tions over small time intervals while in section 5 the smoothness properties of weak
solutions are investigated. Global existence is covered in section 6 and the question
of continuous dependence of solutions on the initial data is addressed in section 7.
Section 8 touches briefly on further ‘Boussinesq’ equations to which the theory pre-
sented in the earlier sections is applicable and closes with a few remarks concerning
other model equations in the literature.

2. Definitions and elementary results. Let R denote the real line. To describe the
initial conditions imposed upon the model (1) use will be made of the Hilbert space
L, = Ly(R), the Sobolev spaces H® = H%R) and the Banach spaces C§ = Ci(R). To
describe the evolution in time of the waves three analogous families of Banach spaces
will be used, namely %, #°% and €%". For future reference, these spaces are defined
above.

The notation |uf, ]y, ete., will be used subsequently instead of ||u(-, O, llu(-, 0|4,
etc. There should be no confusion associated with this shorthand sinee norms are
always applied either in the spatial variable or in both the spatial and temporal
variables.

An inequality that will be used several times in the sequel applies to functions fin HY,
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Such functions are necessarily in C, and moreover | f| s, < 27| f|; (a variant of this
result is proved as the first step in Theorem 3). From this there follows instantly that

if ye S, then €%, and 17len < 2-H7]e
T 7

The first step in the analysis of the initial-value problem (1) is to establish unique-
ness and existence over a small time interval. This is most easily accomplished by
recasting (1) into a coupled system of integral equations. Write the system (1) in the

form
(1—303) 1 = — [w(1+9)],
(1— %3;) Up = — N — Uy + %"Izzz"

and invert the operator (1—102) subject to zero boundary conditions at +co. If a
formal integration by parts is performed and the resulting system integrated over [0, {]
there appears

7(x, ) =f(x)+ftK=ii{f!-(] +9)}dr

0

t . (2)
u(w,t) = g(x)—f Ny r£'r+__~).[ {K wu?}dr

0 2Jo

where # denotes convolution over R, that is,

Kvw= " Ka-yu@ndy,
and K(z) = §sgn (z)exp(—4/3 |2|). (3)

It is essential to understand the way in which convolution with K maps various
function classes.

ProPosITION 1. Conwvolution with K has the following properties:
(i) if veL,then KxveH' and |K=v||, < 3|v|,
(ii) if v, we L, then Kx(vw) € Ly and | K+(vw)| < 2|v| |w],
(iti) if ve Cf then K+ve C5t and | K xv||cg+1 < My|v]|cs where the constant M depends
only on s,
(iv) if veC, and v—0 as x— + oo, then K+v—>0 as x— + 0.

Proof. For (i) utilize the fact that convolution reduces to multiplication in the
Fourier transformed variables and that

=5 [ twpar, 1t = g [ wre fopa

where 7 (k) = J‘In e~ f(x) dx
denotes the Fourier transform of f. Thus
ik ... |2
[Kwoll = [ (14| 2000 | ak

OkR(1442) 1 [
<sup s [ bk = oo
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(ii) follows from the elementary convolution inequality

\f+gll < 17190z

the Cauchy-Schwarz inequality and the fact that | K| = 3%/2 < 2. The bound (iii) on
¢ = K+v follows from’the inequality

”f*g”Cb < ”f”Cb ”g”L1

used in conjunction with the formulae
¢'=K'%v+3v and @&+ = 3¢® 1 Zyh+D),

for k= 0,1,.... Finally (iv) may be established by using the inequality

4]
[(K#v) (z)| < e—‘/3|”|f $eV3el |u(z)| dz+ /3 sup |v(z)|
— 18l Edld]
valid for |z| > |£|. The second term on the right may be made as small as desired by
choosing |£| large. For fixed £, the first term on the right is then asymptotically null
as |&| -+ o0, and the result follows.

The following result is a generalization of the lemma in appendix 2 of Benjamin
et al.(2).

PrOPOSITION 2. Let s be a non-negative integer. Then

(i) if veCy™ and v(x)—>0 as |&| >+ (e.g. if veL, for some p in (0,00)) then
v(x) >0 as |z| >+ for 0 < j < s,

(ii) of ve H** then dMv(x)—> 0 as |z| >+o0 for 0 < j < s,

(iii) of weBH! and u(x,t)>0 as |x|>+o00 (eg. if ueLy) then Bu(,t)—>0 as
|| =+ 00 for 0 < j < s uniformly for t in [0,T),

(iv) if we Y then o u(x,t)—> 0 as [x| >+ o0 for 0 < § < s uniformly for t in [0, T].

The proof of (i) is a straightforward adaptation of the last quoted reference.
(ii) follows from the Riemann-Lebesgue lemma. The rest is a simple extension of
(i) and (ii).

3. Uniqueness.

TurorREM 1. There is at most one solution pair 7, u on R x [0, T'] to the integral equa-
tions (2) such that n € 4% and we Fy.

Remark. In order that such an 7, u exist, it must be the case that fe H! and g€ L,.
This latter fact follows from the integral equation by taking the limit £,0, but is without
crucial significance in the proof of uniqueness.

Proof. Suppose 7,, u, and 7,, u, are two solutions of (2). Let y = 9, —, and
w = u; —u,. Then y, w satisfy the following coupled system of integral equations:

t
y =fOK*(w<1+m>+uzy)dr,
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i t
w = —f 'ymd'r+1f K % ((uy +ug)w)dr.
0 2)o

The properties (i) and (ii) of convolution with K expounded in Proposition 1 can be
used, along with the estimates

[l < [lw] sup [9u(@)] <[] [l
TER
(4)
lugll < llwall 7],
to derive the integral inequalities
t
I7l: < 3f0(IIWII [l alla + el 1) dr,
(5)

11
Jol < [ o+ ol + ol o]

Let C= su<pT B(1+ (|7l + [ wf] +1l2eaf))

Ris

< 3+ [mlp +all 2 + el 2)-
Because of the regularity assumptions made on #, u, and u,, C is finite. Upon summing
the two inequalities in (5) and making the obvious estimates, there appears

&
o+ < © [ (ful +Evhh) (®

valid for ¢ in [0, T']. Gronwall’s lemma implies immediately that |w| +|y|, = 0 for ¢ in
[0, 7] and uniqueness is established.

An analogous uniqueness proof can be given for solutions of (2) in €% x €. The
estimates are the same except that (iii) of Proposition 1 and the inequalities

o]y < Kl

wxllvlen (7)
are used instead of (i)—(ii) of Proposition 1 and the inequalities (4). The inequality (7)
is valid for u,ve %% where K, is a constant depending only on s.

4. Existence for small time intervals. It is now established that for given initial data
there exists a time interval [0, 7] and a pair 9, « defined at least on [0,7'] which is
a solution of the integral equations (2) satisfying the hypotheses of Theorem 1.

ProposiTioN 3. Let feH' and geL, and let b =|f|,+|g|. Then there exists
T = T(b) > 0 such that the integral equations (2) have a solution (3, w) with 7€y and
ey,

Proof. Write the pair of integral equations (2) symbolically as (y,u) = A(9,u).
Looked at in this way, A is seen to be a mapping of the product Banach space
E = H#, x %y (with the product norm |[(n, w)|| g = 7], +| 4| #,) into itself, by appeal
to the properties (i) and (ii) of proposition 1 and the fact that if w is in #7, or £ then

t
f w(x, 7) dr is as well (cf. Hardy, Littlewood & Polya(6), p. 148 or Yosida(11), ch. 5,§5,
0
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the Bochner integral reducing to an ordinary integral in these circumstances). A solu-
tion to the pair of integral equations with the regularity stated in the proposition then
corresponds to a fixed point of A in E. The contraction mapping principle will be used
to show that by taking the parameter 7' small enough, the mapping A has a fixed point
in B. To this end the following estimates are established.

Let (3,, wy) and (775, u,) be any two elements of the product space. By proceeding as
in the proof of theorem 1, there appears

¢
1A Gz 52) — A, ug)]p = H [ st 14+ - myuar

Hp

]

t
[, = et 4 5o 4 ) (= wrar|

< 3T 1wy — %y 2y (1 4|72 i) + 8T |44 o | 74 —Nafl sy
+ T”"?l - 772]!#1' it T(”u1”$11 + ”""'2“2’7') ”ul e u2”-71'
< 3T+ myf| sy + [ 9] o -+ |all s, || (715 1) — (19, 2a)| -

Suppose now that both (5, u,) and (7, u,) lie in the closed ball By, of radius R about
0in E. It then follows that

| A1, 1) — A(g, )| g < T(6R+3) 11, ) — (92, o) -
Thus, if ® = T(6R + 3), then

A (g, %) — A, uz)”E < 0| (71, uy) — (925 uz)”E (8)

If ® <1 and A maps By into itself, the hypotheses of the contraction mapping
theorem would be satisfied and the desired conclusion would then follow. By applica-
tion of (8) to (7, u) in By and (0, 0),

”A(ﬂ’ u)”E = “A(”’ u)— A(O;O) + (.f’ g)”E
< || Ay, %)= A0, 0)| z + ]| (£, 9)]| =
< O, w)| g +1f1:+9]
<

Thus if b<(1-0)R, (9)

then A maps By, to itself. It remains only to choose 7" and R so that ® < 1and (9) holds.
One choice that satisfies the two criteria is B = 2b and T' = 4(6R + 3)~L. This yields
© = } and therefore assures that (9) is valid. The proof of the proposition is now
complete.

A completely analogous proof can be made in the case where the initial data fand ¢
are known only to be smooth and bounded functions, not necessarily tending to zero
at infinity. If fe Of and g € G, the operator A in the last proof is viewed as a mapping of
the space %, x € and (iii) of proposition 1 and the inequality (7) above are used instead
of (i) and (ii) of proposition 1. Indeed if more generally feC5t! and geC§ then by
considering A as a mapping of the space €5 x €% one can establish existence of a
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fixed point of A in €% x €%, (i.e. a solution with the optimal regularity) provided 7 is
sufficiently small. These remarks are summarized as a corollary to the proof of the
last proposition.

COROLLARY 1. Let s > 0 and suppose fe C5t' and g C§. Let b’ = || f|ca+1+ 9] 5. Then
there is a T = T(s,b') such that the integral equations (2) have a solution in €' x €.

Similar results hold good for data in higher order Sobolev spaces. Again the same
contractive mapping argument applies to the operator A viewed as a mapping in an
appropriate product space.

CoroLLARY 2. Let s be a mon-negative integer and suppose fe H+' and ge Hs. Let
b" = ||glls+ |/l ss1. Then there exists T = T'(s,b") such that the integral equations (2) have
a solution (n,u) in SEGFL x A%

5. Regularity of solutions. A more subtle point than that dealt with in the last two
corollaries is now examined. The question under consideration is as follows. Suppose
that (7, «) is the solution of (2) in 7 x &£ corresponding to the initial data (f,g)
and suppose further that fe H'n Cit' and geL,n Cj. Can it be inferred that
(9, u) €65t x €% For Tj small enough, Proposition 3 and Corollary 1 assure that A is
contractive in suitable balls about zero in both #7, x Zp and FH! x €%,. It follows
therefore that at least on the time interval [0,7}] there is a solution which lies in
(op, N CHY) x (Lp, N €7,). This solution must coincide with (7, ) by Theorem 1 and
80 the conjectured regularity obtains at least on [0, 7], but as yet there is no guarantee
that T}, can be taken as large as 7'

The argument above may be iterated. More precisely, the contraction mapping
argument may be applied again to (2) with initial data f,(x) = y(x,7,) and
g1(x) = u(x, T,). The conclusion is that the additional regularity for (5, ») will continue
to hold on the time interval [T}, 7}] where T} > Tj. Continuing this line of reasoning
leads to a sequence {T}}3>,, with T}, > Tj, of times over which the additional regularity
of (3, w) may be imputed. The problem is that 7}, ; — T; may shrink to zero very quickly
as j grows. According to Proposition 3 and Corollary 1 the time step 7}, — 7 depends
onb; = || fill.+ ;]| and on b; = || f;|l c3+: + || 9] o3, Where f; = #(-, T;) and g; = u(-, T}). The
numbers b; are known to be bounded so long as 7} < 7' since (7, u) € #7 x Zp.. If there
were available a priori bounds on ||| ¢4+ and || u[|4,, then b would be bounded indepen-
dent of j and a positive lower bound could be inferred on 7}, ; — 7}. It then follows that
the above outlined contractive mapping argument would establish the conjectured
regularity on [0,7'], in a finite number of steps. The derivation of such bounds will
therefore prove most of the following result.

THEOREM 2. Let (9, u) € H#p x L be the solution of (2) on [0, 7] corresponding to the
initial data (f, 9). Suppose fe H' n O3t and ge Ly n C5 for some integer s > 0. Then
(m,u) also lies in €51 x €5>.

Proof. In the first place, to show (7,u)e €%t x €% it suffices to derive a uniform
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bound on |9||¢4+2 'and ||u] ¢y for ¢ in [0, T'], as has already been remarked. The proof of
these bounds may be made by induction on s, the case s = 0 being in fact entirely
typical of the general calculation.

Therefore assume first that fe H' n C} and g L, n ;. Differentiation of the integral
expression for 7 in (2) leads to

t t
’Ila,,=f'+3f0u(1+7])d1'—3f0L*{u(1+17)}d1', (10)
where L(z) = ‘/73exp (—+/3]2]). (11)

Since 9 € #7, 9 € € so 1 is bounded over R x [0, T']. The relation (10) implies therefore
that
172l 5 < 15y + 3T [ ull (1 + 11l rg) + BT | L+ {1 + 1)} . (12)

The Schwarz inequality gives
3t
|L+{u(t+m}| < | [t +)| < 5 10+l ] 2

valid for any z in R and ¢ in [0, T']. Letting C;, ¢ = 1, 2, ..., denote various {-independent
constants, (12) is more plainly written as

”ﬂa:”(i’(, < 01+O2Hu“ Cp* (13)

Estimating in the second equation in (2),

t 1t
(o< Iobop+ [ Ielcy -+ [ R

But |u¥| < |u|g,| %], as long as u is bounded and ¢ < 7', so in sum

i 13
e, < ot [ Inaley ar+Cu [l dr. (19

Using (13) in (14), there appears

4
Il < Co+ o Il ey

where C; and G are constants independent of ¢t < 7', but dependent on £, g, | % o, 17|l s,
and 7. Gronwall’s lemma now allows the conclusion

Jullop < Cye%% < Cpedor

valid so long as ¢ is in [0, 7']. This is the required bound on ||u/ ¢,. A bound for ||| ¢, on
[0, T'] now follows from (13).

The situation for general s now follows inductively. Suppose the theorem is valid
for s < k where k& > 0. The result for s = k+ 1 may be established as follows. Differ-
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entiating the integral equation (2) and using the properties of the kernels K and L,
there appears

¢
Naero) = fED+3( —F g + 3f0{u(1 +9)}dr, |
fork=0,1,2,...,
t
Ugeyn = 9+ 3(U— ) +f0 {3m09— s + 2o} A, \ (15)

fork=1,2,...,and

t t

Uy =g _f Nz AT +;f {u?— L*(u?)}dr.
0 0

Using Leibnitz’s rule to perform the differentiations of products, the induction hypo-
thesis, the hypothesis on the initial data and, in the case k = 0, the mapping properties
of L, the supremum over R of most of the terms on the right-hand sides can be bounded
outright. There remains

7@l 0y < Cr+ T|ugo) (1 + 7] o) < G2+ Cyllugo| oy
! (16)
ey < ot [ Inasalcydr

A further application of Gronwall’s lemma to (16) gives the desired bounds for s = &
and completes the induction.

It is now concluded that (5, u)e€5 ! x €5. The differentiability in the temporal
variable is easier to establish. Since, for example,

t
7 =f+f K «{u(1+9)}dr,
0
the fundamental theorem of calculus guarantees 7; exists and that
7y = Kx{u(1+7)} (17)
Since u(1 +7) e €5, 7,€ 65 * from (iii) of Proposition 1. Similarly
Uy = — Ny + 3Kxu? (18)

Again because 7€ €5 ! and u?e €%, u € €. Differentiating (17) and (18) with respect
to t, one may show inductively that o"+1y and 97"« lie in %" and € respectively, for
each m. This completes the proof of the theorem.

Remarks. The solutions may in fact be confirmed to be analytic in their ¢ variation.
The proof proceeds by majorizing the formal power series expansion of 9 and » in their
temporal variable, but this aspect is passed over here.

If fe C} and g € C, then it follows from the simple properties of the kernel K (cf. (10)
and Benjamin et al.(2), p. 60) that (y,%) is a classical solution to the initial-value
problem (1) (i.e. all the derivatives expressed in the differential equation exist and are
continuous).

Theorem 2 may be based on the existence of a solution pair (7, u) in €% x € (rather
than S, x %) as well.

12 PSP 79
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A closely analogous argument can be used to establish additional L, regularity of
solutions of (2) in 5, x &, corresponding to the initial data belonging to more restric-
tive Sobolev classes. This result is stated as a corollary to the proof of Theorem 2.

CoROLLARY 3. Let (3, w) € H#7 x Ly be the solution of (2) on [0, T'] corresponding to the
wnitial data (f, g). Suppose fe H5+1 and ge H® for some integer s = 1. Then

(m, u) € SA5TL™ x A5,

6. Global existence. The stage is now set for an attack on the global existence problem
for the initial-value problem under study. According to the previously derived results,
for any given time interval [0, 7'] existence and regularity on [0, 7'] will follow as soon
as bounds for ||, and |u| on [0, 7] are obtained. The principal tool is the invariance of
the following non-linear functional of the solution pair (7, u):

B(t) = By, u,t) = f () u it 32 e (19)

—

This invariance is demonstrated in the following lemma.

Lumma 1. Let (y,u) be a solution of (2) with e #y 0 €% and we Fypn €% Let E(t)
be defined as in (19). Then E(t) = E(0) for all t in [0, T).

Proof. Form the approximation

R
B(t) = f {1+ m)u+ 7%+ 4§z} dw.
-R
Differentiate £, with respect to ¢:

1 d i
3 el = f_R{uut(l +9) + 39w + 0+ 30,00} d

)
= f_R{ut(u(I +9) = $0at) + 760 + 3R — Fue + 1)) + 3w ) + $(7,),} dev.

The present hypotheses and the remarks at the conclusion of section 5 imply that (y, u)
is & classical solution of the initial-value problem (1). Hence the differential equations
(1) may be used to eliminate u, and 7, outside the parentheses in the first and second
terms respectively under the integral. When this is done, there appears
R

%%ERU) = f_Rax{ = (0 3% = 3w+ 90)0) (w1 +9) = $000) + S0 0+ §e7, .

(20)
Now because € #7 N €3 and u € £ N €% are solutions of (2), it follows from Theorem 2
that 9, € #7 n €% and u,e £ N €%. It is then a consequence of Proposition 2 thateach
of %, Ngs Nazs Me> Nats U Uy, Uy CODVerge to zero at + oo uniformly for ¢ in [0, 7] as it
happens. Integrating (20) over [0,¢] for ¢ < 7', there appears

t
Byt) = Ex(0)—2 f L0+ 30— = 1) (0 00— $1) = 07, e
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Letting R—+ o gives simply E(t) = E(0), valid for ¢ in [0, T]. This is the required
invariance result.

TrEOREM 3. Let fe H 0 G, ge L, n C} and suppose that for all zeR,

@ 2
foy > —1 and BO)= [ {@+pg+fHA Yo < (21)
Then there exists a unique classical solution (7, w) to the initial-value problem (1) which,
with its temporal derivatives of all orders, lies in Hop, x o, and in € x € for each T > 0.

Proof. From Proposition 8 and Theorem 2, it is inferred that there is a classical
solution pair (9, u) in # x %y for T' = T(b,) where b, is an upper bound for || f{; +]|g].-
Since € #, |9, is a continuous function of time so that at least for some small time
interval, say [0, t,], 1+7(x, t) > 0. Hence on [0, ]

nz(w,t)=f g da’ — f mrzdw’<f_ || da’

<L rrpmar < Lo = Lo =0t < 1

X
because of the last lemma and the assumptions (21). Thus on [0, {,] at least,

sup 9] € @ < 1. (22)
zeR

Since inf, g 7(x,%,) = —o > — 1, this argument may be repeated with the general

conclusion
1+9(@,t) 21— >0 (23)

as long as the solutions continue to exist, independent of ¢ > 0. Hence,

bl = [ttty de < pEG) = ABO) = 13 (24

where # = max (3, (1 —«)~1) and the last equality is meant to define b,. Thus it appears
that| u| -+||7||, is bounded above by b,, independent of ¢. Hence the contraction mapping
argument of Proposition 3 may be repeated, taking #(x, T') and u(z, T') for initial data,
to extend (5, u) to the interval [0, 27'(b;)]. Continuing in this manner, a global solution
to the integral equation is thereby defined, which in consequence of the bound (22), lies
in 3, x L. The fact that the temporal derivatives of (y,u) lie also in 5, x £, now
follows by a direct inductive argument based on successively differentiating the
integral equation with respect to . The further regularity is a consequence of
Theorem 2.

Remarks. (a) Additional regularity of the initial data, in either Cf or H*, yields
additional regularity of solutions by way of either Theorem 2 or its corollary,
respectively.

(b) Existence of global solutions consequent on weaker assumptions on the data can
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be established. This will follow from the conclusions econcerning continuous dependence
of solutions on the initial data, to be discussed in the next section.

(¢) The fact that g € 7, implies that 7 is bounded for all time with a bound dependent
only on the initial conditions. This is a satisfying result when interpreted in the under-
lying physical situation, for it says that the wave height is bounded, for all time,
solely in terms of the initial state of the system.

7. Continuous dependence on the initial data. When the initial data satisfies the
hypotheses of Theorem 3 it is a simple matter to adapt the uniqueness proof to demon-
strate that solutions depend continuously on the initial data. Let (7, %) and (1,, us)
be two solution pairs corresponding to initial data (f,,g,) and (fs, gs) respectively. Let
f=rfi—f.and g = g, —g, and as before y = 5, —y, and w = u; —u,. Proceeding exactly
as in the uniqueness proof, the following integral inequality is derived:

t
7l +lwl < If 1+ gl +0f0(|17||1+IIWII)dT,
where the constant C' can be bounded independently of time in terms of

By us) = B(fp95), J=1,2.
It then follows that for ¢ in [0, T'],

Il +lleell < (1f 1+ gll) o7 (25)

This shows that on time intervals of finite length the solutions of (1) depend continu-
ously in #7, x % on the data measured in H'x L, (and in fact the continuity is
uniform on bounded subsets of H' x L,). The solutions also depend continuously on
perturbations in more restrictive function classes. This may be established by an
adaptation of the inequalities derived in the proof of Theorem 2, yielding the following
result.

TrEOREM 4. Let s be a non-negative integer and let T be a positive number. Solutions of
the initial-value problem (1) depend continuously in (5 N €5Y) x (Lp 0 €5) (respectively
HG x H'y) on perturbations of the initial data in (H: n C5+) x (L 0 CF) (respectively
Hst x H¥). In all cases the continuity is uniform on bounded subsets of the space from
which the data is selected.

This result may be used to establish existence of weak solutions to the initial-value
problem (1). Taking for instance data (f, g) in H* x L, satisfying (21), let {(f;, 9r)} be
a sequence of smooth functions, say, satisfying the hypotheses of Theorem 3, which
converge to (f, g) in H* x L,. The classical solutions {(5,, )} associated with the data
{(fx>9)} are seen, by use of the result of Theorem 4, to form a Cauchy sequence in
Hp x ZLp. Let (1, u) denote their limit. By direct appeal to the differential equations (1)
satisfied by (7, ), or by use of the integral equation, (3, %) is seen to be a (distribu-
tional) solution to the initial-value problem. Moreover, by taking the limit of E(7,, Uuy,)
as k— oo, it appears that K(y, u) is invariant with time and hence by the arguments of
Theorem 3, (7, u) € #,, x Z,,. Uniqueness follows from Theorem 1.
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Proposition 4. Corresponding lo data (f, g) in H* x L, there exists a unique distribu-
tional solution (1, u), which lies in ., x £, to the initial-value problem (1).

7. Other model equations. The analysis in the previous sections goes through, with
only minor modifications, for the family of model equations

N+ Uy + (uﬂ)z— (%y2_ %)ﬂm&vt = 0;} (26)

Uy + Ul Uy — (%yz - %) Uzt — (yz - %) Nozx = O’

provided only that y > §. This restriction is needed to guarantee that the associated
energy invariant

f:{(l U+ P+ (- §) 93} do

is composed of positive terms. In the model (26) 5 is the wave height and u the velocity
at a height ¥ above the channel bed.
The single scalar equation

o 2
Wt M= N 4o+ [ Nter)” =0 (27)
x xx

derived by Byatt-Smith(5) is amenable to an existence theory, by a contraction
mapping argument as presented here, over a time interval which is inversely propor-
tional to the wave amplitude. Introduce the auxiliary dependent variable

M=watdx’.

Then (27) is equivalent, for waves with zero curvature at infinity, to the coupled
system of integral equations

i
N=f—f M, dr,

y (28)
M=g+f K +{N +{N?+ M2 dr,

0

where f and g are the initial values of N and M, respectively, and the kernel K is as
in (3).

Interesting non-linear and dispersive phenomena do just occur on the time scale of
the inverse of the wave amplitude, but it would be preferable if solutions could be
controlled on longer time scales in order to be able to follow the evolution of the
non-linear and dispersive effects. The analogy of the conserved functional (19) for
(28) is

F(t)=F(N,Jl[,t)=fOo {(1+3N) N2+ M2 4+ 1 M2} dz. (29)

If it is assumed that N > — 3 then the results derived in the previous sections may be
carried over to prove existence, uniqueness and continuous dependence on initial data,
for the initial-value problem for (27). Unfortunately the invariance of the functional #
cannot provide such a result and we have been unable to discover a class of initial data
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for which the assumption N > — 3can be established a priori. However, as N represents
the wave height in the model (27), the equations have long since ceased to be valid once
the channel runs dry, so there is implied the practical constraint N > —1. Even so,
there is still not then implied an upper bound on the wave height independent of time.

Another way in which the present theory might be used in investigations of other
similar model equations is to view the alternative models as perturbations of the
present model equations (1). This would be in the same spirit as the analysis in (3) for
models for one-way propagation of waves. For example, reverting to variables which
make explicit the ¢ order of the individual terms and defining & = (1 — 1€02) 7, then the
results of this paper give an existence theory for a perturbation of Boussinesq’s

equations:
gt +a, + e(ug)x a %ezax{u(i * é)}’

Uy + G+ eva, — deu,y = 0,

where the convolution kernel L has Fourier transform £%(1 + }ek?)~. One possible way
in which an existence theory for the exact Boussinesq equations might be developed
would be to use the function pair &, u as the starting point for a contraction mapping.
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