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SCLITARY-WAVE SOLUTIONS FOR SOME MODEL EQUATIONS FOR
F¥AVES IN NONLINEAR DISPERSIVE MEDIA

J.L. Bonat D.K. Bose* T.B. Benjamin

Fluid Mechanics Research Institute,
University of Essex, Colchester, UK.

1. Introduction

Solitary waves were first observed and described by Scott Russell
{n the early 1840's. He witnessed the generation and evolution of a
single-crested steadily propagating wave of elevation when a barge came
to an abrupt halt in a canal in Scotland. The observation of this phen-
omenon in nature inspired him to conduct a sequence of careful labora-
tory experiments on the generation and properties of such waves.

The existence of a solitary wave, as reported by Scott Russell in
1844, could not be explained in terms of the then current theories for
surface waves. Boussinesq (1871) was able to give zn approximate exp-
lsnation by means of a system of nonlinear model equations which now
bear his name. Rayleigh (1876) also gave an gpﬁrokimate é;pfeééioﬂ fo?
the solitary wave. The matter was elucidated further by Korteweg and
de Vries (1895), who derived a model equation for the uni-directional
propagation of long surface waves in a uniform rectangular®channel.
Their equation has an exact solution in the form of a steadily-trans-
lating single-crested wave of elevation. For surface waves in a channel,
Friedrichs and Hyers (1954) extended the approximation of Boussinesq
end Rayleigh and proved existence of small amplitude solitary-wave sol-
utions of the full equations of motion (the Euler equations with non-
linear boundary conditions at the free surface).

In the late 1950's and in the 1960's several other physical sys-
tems were shown to manifest solitary waves (e.g. rotating fluids, bub-
bly liquids, crystalline lattices and density stratified fluids). In
the late 1960's a formalism relating to the Korteweg-de Vries equation
¥as developed by Gardner, Greene, Kruskal and Miura (1967, 1974) which
indicates that, for a large class of initial wave profiles, solitary
vives play an important role in the solution of the pure initial-value

problem. Experimental evidence (Hammack 1973 and Hammack and Segur 1974)
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for water waves in a channel are more or less consistent with the gen-
eral conclusion described by this formalism, that the long-term evolution
of an initial wave profile of elevation leads to a sequence of solitary
waves. (Firm conclusions on this point appear, however, somewhat pre-
mature in light of the evidence 'so far available.)

It is now generally understood (cf. Benjamin, Bona and Mahony 1972,
section 2) that equations of the Korteweg-de Vries type will arise in
first-order one-dimensional approximations for uni-directional prop-
agation of waves whenever the dominant physical consideration is, on
the one hand, a balance between small nonlinear effects that tend to
steepen the wave profile and, on the other, smooth dispersive effects
which tend to spread the profile. At this level of approximation many
physical systems lead to the Korteweg-de Vries equation or to the alter-
native model proposed by Benjamin et. al. (1972). However, for long-
wave models in which the dispersion relation is not a C? function near
the origin, a generalized version of these equations obtains, namely

' = 1
U +u, v uu oy Hu, o, (1)
or, with allowance for other forms of nonlinearity,

u, + Hw_ + Hu = o. (2)

Here, u = u(x,t), where x and t are real variables representing space
and time respectively and H is a convolution operator determined by the
dispersion relation. More precisely, °

e ’ ~
Hulk) =  all) utky. (3

where the circumflex denotes Fourier transform. Such models were first
considered by Benjamin (1967). In the case a(k) = k2, the equation
studied by Benjamin et. al. (1972) is recovered from (1).

In two instances, for the class of internal waves treated by Ben-
jamin (1967) and for a model suggested by Whitham (1967) to simulate the
peaking and breaking of surface gravity waves, explicit solutions of (1)
representing waves propagating steadily without change of form have been
given. In various other theoretical discussions (cf. Leibovich 1970,
Leibovich and Randall 1972, Smith 1972, and Pritchard 1969, 1970) sol-
itary-wave solutions of models in the form (1) have been assumed to ex-
ist. Such waves have been produced in the laboratory by Pritchard (1969)
who observed them travelling along the vortex of a rotating fluid, a
system for which the symbol a(k) = k(1 + K,(Ik[)) in suitably scaled
variables(here Ky is the zeroth order modified Bessel function). Hence
a significant question naturally arises: under what conditions do equ-
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If such a

» 8 potentially important
aspect of the physical situation is lost and the model may be judged to

be inadequate. The qQuestion can be formulated for (1) or (2) with res-
pPect not only to the solitary-wave problem on the infinite domain R but
also for a spatially periodic version of the same problem. (For the
original equation of Korteweg and de Vries, solutions representing per-
manent periodic wave trains were called cnoidal waves on account of their
representation in terms of the Jacobian elliptic function cn.)

Sufficient conditions for the existence of solitary-wave solutions
of (1) have been derived by Bona and Bose (1974), using an extension of -
the positive operator methods of Krasnosel'skii. A feature of the ana-
lysis, which recurs below, is that there are two trivial solutions to
the problem and the object is to establish a third, non-trivial solution.
Here a different approach to the problem is considered.
for periodic waves is settled first by means of a variational argument,
and then it is shown that as the wavelength becomes largé, the periodic
wave-train tends to a solitary wave in an appropriate metric.

One possible advantage of developing the proof as outlined below
is that stability to perturbations periodic of the same period of the
waves in question may be inferred. For it is shown that solutions to
(1) or (2) that are the counterparts of cnoidal waves Tealize a maximum
of a certain functional, subject to constraints on another functional.
Such a situation has been exploited by Benjamin (1972) and Bona (1975)

in a proof of the stability of the solitary-wave solution o
de Vries equation.

The question

f the Korteweg-
0f course it is a long way from the variational prin-
ciple to a complete proof of stability, but nevertheless such an approach
seems to be the best technique available in this type of problenm.

In section II the periodic problem is discussed._ Section III is
devoted to the solitary-wave problem. To keep the technical details at
a minimum, attention is restricted to equation (1).

II. The problem of steady periodic waves

The question of existence of solutions u(x,t) = ¢(x-1t) to (1)
such that ¢ is a periodic function of period 2¢ is now considered. A
solution of this problem has already been sketched by Benjamin® (1974).
Benjamin's method and results along with a few ex

tensions, will be brief-
ly recalled.
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When the desired form of solution is substituted into (1) and the
equation is then integrated once, there results the ‘ordinary' pseudo-
differential equation

(g +HE) = ¢+ hot 4

By inversion of the operator I + H in (4), a Hammerstein integral equa-
tion is obtained.

M= Ke(ge bg?) | &

where ?(k) = {1 « a(k)}-l, a being the symbol of H, and * denotes con-
volution over the entire real axis. Henceforth it is assumed, in keep-
ing with most of the applications in view, that a(k) is even, non-nega-
tive, increasing on. R*, that a(0) = 0 and that {1 + a(k)}™1 = o(|k{™®)
wWith 8 > 1 as |k| + +=,

Equation (5) is appropriate for steady-wave solutions of arbitrary
period 2% and also for solitary-wave solutions of (1) (since the Green
function obtained by inverting I + H subject to periodic boundary con-
ditions of period 22 is simply the periodic function Ky(x) = Z:“,_:
K(x + 2me)). Subsequently it will be desirable to fix t and view (5)
only on the fundamental period interval [-l,L]. If g ii a periodic func-
tion of period 2, then Keg(x) = 3£?(x-y)g(y]dy = ‘{Kl(x-y)g(y)dy,
hence (5) is equivalent to

2= KA 40%) . ®

where the convolution is now understood to be over the interval [-2,1].
' Following Benjamin (1973), the operator X is now split into pos-

itive square roots. More precisely, let M be defined by'ﬁ(k) =

{1 + u(k))f!. Then if By = Mey (convolution over R) and Blw = Mz'w

(convolution over [-2,%]) where M, is defined from M as K, is from K,

(5) and (6) become respectively

2= BUpeag) M g =Bigr kY o

where B2 means the operator B applied twice.
tution ¢ = Bzo.

In (7) make the substi-
The corresponding equation for periodic steady waves

‘becomes

A = B ( By + LB YY), '- ®

and similarly for the equation for solitary waves. The functionals
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V(u) = ju“(x\dx and W(up‘f

-2
-2

are well-defined on the Hilbert space .4 of periodic square-integrable
function on Rwith period 2%, Moreover, both these functionals possess
a gradient at any point of ® and (8) is identical with

- ) (9)
’)\Gv(‘\") Gw(‘P)

where the operators Gy and Gw are the respective gradients of V and W.Be-
cause of the assumed growth condition on a, B, maps L2 continuously in-
to the Sobolev space HB/Z. Since 8 > 1, both LZ and L3 are compactly
imbedded in Hs/2 and it follows that W is a weakly continuous functional

on’H.

Hence if the constrained maximazation problem

<

£
f @'+ 5(8u)° 3de

maximize WU, subject v Viu) < &, (10)

‘ls'posed, standard results insure that this problem has a solution, say

by It is straightforward to check that ¥y, cannot lie in the interior
of the ball {u : V(u) < R2}, and hence the usual theory (Vainberg, 1964,
chapter IV) implies the existence of a constant i, such that

L - (11)
265 = G ().

There are two trivial solutions of (11). One is the function™ iden-
tically zero, which is excluded since it lies in the interior of the
ball {u : V(u) < R%}. The other, representing a so-called conjugate
flow (cf. Benjamin 1971), is the constant function b, = R/VZL , corr-
esponding to which Ay =1+ iwo. By considering the second derivative
of W at V,» Benjamin showed that for ¢ larger than a certain critipal
value lc; dependent only on a, ¥o does not achieve a maximum of W on
{u: v(iu) ¢ rR2), Hence ¥y is a non-constant 2f-periodic solution of
(8) and accordingly ¢y = By¥, is a non-constant 2t-periodic solution of
(6).

Various additional properties of wl' and so of ¢y, may be establish-
ed by use of the extremal property of ¥y« On the additional assumption
that the kernel M of the operator B is a non-negative even function,
nonvincreasing on [0,=), so that similar properties accrue for Mt on
the period [-£,2], it may be inferred that the following conditions can
be satisfied by a maximizing function.

(a) ¥y 2 0 and ¥, may be normalized against translations in X SO

o
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that it is even and monotone non-increasing on [0,t]. (Other possible
solutions of (8) whose fundamental period is a fraction of 2t, which )
+will realize only a conditional stationary value of W, will not have - C = {u€T(R) : 1
this property.) Because of the assumptions made concerning the operator

and let

B, it follows that by = Blwl may be chosen with the same properties. ' The sets C! and
(b) The 'Lagrange multiplier!' Xl satisfies 1 < B, & xl Sy <+ closed cones. 1
for all ¢ > Lc' The constants M, and ¥y depend only on & and not on t. entirety of R.
(These bounds on AL are obtained by evaluating W for particular functions which includes
in the ball {u : V(u) < Rzl‘) . it can be consi:
Finally a standard 'bootstrap' argument shows that ¥, must be an mapping of thes:
H® function on [LL,L] (i.e. an LZ(-l,l) function with derivatives of preparatory lem
all orders which are also in L,(-2,2)). e
LEMMA 1.
111. Existence of solitary waves t >0, acontin
and r in (0,1},
The facts outlined in section II will be used to show that, as the subset of C, (T
period of the steady periodic waves tends to infinity, the wave profile
A relatio

converges, in a sense to be described below, to a solitary-wave solution
of (1). That is, there is a finite constant X > 1 and a non-negative mappings T, :C ~
even C~ function ¢, defined on R, which is monotone decreasing to O as
X + + = ajid satisfies equation (5).

Let €(R) denote the class of continuous real-valued functions

. p . 01u)(1)
defined on R. €(R) is given the structure of a Fréchet space by intro- N
ducing the semi-nerms : |
p.(u) = Sup jueal . “an ‘
} ~jexe)
The corresponding metric may be taken to be, for example, G&V)tl\
(-
1 Plu-v) “
i = b L 12
d(u)v) 2 2 1+ p(u-v) (12)
0 i t
Thus the statement u, * u in the metric d means that {un} converges to u l
pointwise, and uniformly on compact subsets of R. The notation B_ will | These =
be used for the ball {u€€(R): d(u,0) £ r}. Note that B = ¢(R) . .
Now €(R) has two properties of particular importance in the present | _ e

context. First, the periodic permanent-wave solutions of (6) and soli- v
tary-wave solutions of (S) are all members of €©(R) . Secondly, the op- '

eration of convolution with the kernel X is a compact mapping of certain , ‘*~\\\\\\\H
convex subsets of C(R) which will be defined below. For t > 0, let

CL = {uEC(R) : u is non-negative, 2%-periodic, even and monotone non-
increasing on [0,2]},

T T S TR T 9 TS TR - T T T = ——tr e et TR T — T ST v T
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and let

C = {u€C(R) : u is non-negative, even and monotone non-increasing on
[Oo")}-

The sets Ct and C are closed and convex in €(R) . In fact, they are
closed cones. Let Au = Ke(u ¢+ iuz), where the convolution is over the
entirety of R. Of course, A cannot be defined on the whole of CT(R) ,
which includes functions unbounded at infinity, but, since KE.LI(R) ,
it can be considered as a mapping of C or of Cl for any £ > 0. As a
mapping of these cones, A has some useful properties summarized in a
preparatory lemma.

LEMMA 1, A is a continuous map of C into itself and, for each
£ > 0, a continuous map of CL‘into itself. Moreover, for fixed £ > O
and r in (0,1), A(le\Br) (respectively A(Cr\Br)) is a relatively compact
subset of CL (respectively C).

A relationship between the cones CL and C is now needed. Define

mappings r,:C - C, and s,:C, » C as follows. For u€cC.and v€C,,
| 2 L L7V L

uiy for -sx2,

0}“)(1) = .
u(nL-w) for (DR € s ()L N
M3,

vix) for -l xel,
Lext.

(510
vid) r'or

These maps are pictured in the accompanying sketch.
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LEMMA 2. Let 2 > 0. Then r!:C - CL
with respect to the relative topology induced by C(R)
rlnél equals idg,, the identity mapping of c,.
stant and £€Cl, then sl(yf) -_ysl(f)u

In topological language, the mappings T, and S,
the cone CL by the cone ¢ (cf. Granas 1972).

Let AL denote the restriction of A to Cl.
Ke(u ¢ ju2) = Kye(u + Ju?), where the first convolutio
the second over [-2,2£]. The composition SyAyT, maps C
over, SLAzrl *Aon Cas 2 + +a,

LEMMA 3. Let r€(0,1) and € > 0 be given.
!o(e,r) such that if ¢ » lo'

d(Au, S Au) < €

for all u in Cr\Br.

A few additional pieces of information are needed concerning the

periodic permanent-wave solutions ¢y

Parameter R, namely the Lz(-l,z) norm of $y» and let 2
a member of CL and

Nt s KA(g+40) = Ag .

When this relation
that

A~ o 4
1 = K(o) = LKLy)dg B LK‘(y)dj

and that 0 ¢ °z(x) K3

Al -1g ¢l(0). It is also easily confirmed that

-1
$(0) € (A-1) K, (0) "¢1“:=(,,Il ,
and the right-hand side is bounded above by a constant
endent of ¢ > lc.
Because of the growth conditions assumed for a, we have
KELI(]R) . Combined with the positivity and monotonici
two properties inply KL(O) is finite and that KL(O) des

as &t + +=.] These results are Summarized in the next 1

e T T

and sl:CI + C are continuous
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are an r-domination of

IflJGCL, then Alu =

More Precisely, we have:

There exists an lo =

determined in section IT,

is evaluated at 0, and account is taken of the facts

$,(0) for all x, there appears the lower bound

[The only term requiring further comment is KL(O).
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6, denotes a periodic steady-wave solution of (6) of fundamental period

2¢ and with “‘z'h?(-z 1 " R, determined as in section II.
’
LEMMA 4. There are constants u, and N, independent of t 3 Lc» such
that
< &3
M, < ¢£(0) N (14)

for all ¢ > L.

Armed with these facts, we are ready to consider the existence
problem for solitary waves. Define
#, %) for ~R<xst,

15
pl(x) F (23)

o otherwise, .

Then pLELz(m) for ¢ > ¢ and ||91”L2 (R) " R. Here is the main result.

THEOREM. There is a non-constant H.(BU function ¢ in the cone C
and a finite constant A > 1 such that A¢ = A¢. This function is the
limit, uniformly on compact subsets of R » of a sequence (¢lm}m - T of *
periodic functions satisfying (6) for zm + +w, Moreover, the associated
cut-off functions fo, }m‘_ ; defined in (15) converge to ¢ in L2(R) and

= .
so [l¢]l,2 (r) =R

Proof. The conclusion (14) of lemma 4 may be interpreted to meaa
that ¥, € p1(°t)5 N for all ¢ > L.. Hence also My § p1(5l°1),5 N. Ref-
erring to the definition (12) of the metric on E(R), it is concluded
that there are constants 6 and A with 0 < § < A < 1 such that § <
d(slo,,O) < A, provided 2 > Lc. In particular, s£¢!§CnBA for £ 3 Lc.

Let € > O be given, Lemma 3 implies that there is an L, such that

ifl.>,!.o.

€ > d(Au,3, A, W) frall win CnB,.

Now, slAlrz(sl¢l) -

SLAL¢£ = sl(AlQL) = Xl(slol). Thus for ¢ > ll =
qax (lo.tc),

€> d(Aslqbi,s‘Piqs‘%)' = d(A‘31¢p%S,_¢1). ' Eas
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Since € is arbitrary, it can be concluded that ASL°L - slol + 0 with
respect to the metric d as L -+ +w,

Lemma 1 implies that A(Cr\BA) is a relatively compact subset of C.
A subsequence {lm)m_; of wavelengths can therefore be found, with lm <
£m¢1' lm + 4o as m + +=, together with an element ¢ in C, such that if
b = S, 01 , then Awm + ¢ in the metric d. Since 1 < Hy € A, & My it
may be AssUmed there exists a A such that {2 }m-l’ thh Ap " Agpe has
An + X as m+ +=, Obviously 1 < uy € Aoy, In consequence of the
conclusion (16), Awm - Amwm + 0 with respect to d as m + +=. Hence

lmwm + ¢, with respect to d as m + +=», or, since Am + A in R, Yo *

X-lv = ¢, say. As A is continuous on C, Awm + A¢ for the metric d. But
Ay, * v = 2¢. Hence A¢ = 2¢. Note that ¢ is non-zero since § ¢ d(wm,O)
for all m. Further, the convergence of the sequence {wm}, with wm -
Sp?ps to ¢ uniformly on compact subsets of Rimplies that the sequence
{¢m} also converges to ¢ uniformly on compact subsets of R, for Sn
alters ¢, only outside the fundamental period [-lm,Lm] of ¢;. Thus it
is proved that there exists a non-zero solution ¢ of (S) in € which is
the limit of a sequence of periodic steady-wave solutions of (6).

Let Py = plm be the cut-off functions associated with ¢y 3S in (15).

View {pn} as a sequence in Lz(m). Then llpmHLZ (R) ™ R for all m.
Moreover, o, + ¢ uniformly on compact subsets of R, hence certainly
pointwise. Fatou's lemma implies that ¢ €L2(R) and that Py ™ ¢ in LZ(R).
It follows that ”‘l'LZ(m) = R, This incidentally shows that ¢ is not
the trivial (conjugate flow) solution ¥o (x) 2(x-1). Since ¢ is not the
zero~-function or the constant function ¥o» ¢ cannot be a constant func-
tion.

Finally, since ¢€L2(1R) and ¢ is bounded, it follows that ¢2€L2(R).
Therefore A¢ = Kﬁ(m“z)éﬂl(m),whence LY Hl(IR). Continuing-this argument
shows that ¢ €EH”(IR). This concludes the proof.

A computation using the Fourier transform shows that ¢ is a solution
of the pseudo-differential equation (4), and hence ¢ provides a perm-
anent-wave solution ug of the evolution equation (1) by setting us(x,t)-
$(x-at).

The approach to the problem presented here is to specify the total
‘energy' of the wave in question (the L2 norm of the wave) and to then
determine a wave-speed for the resulting solution. The approach followed
earlier by Bona and Bose (1974) was to specify the wave speed. The view
taken here seems to be the right one from the experimental sténdpoint.
The possibility of establishing a stability result by means of the var-
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iational method is also inviting., Note
ial case where the symbol & of H is hom
of variables of the form ¥ (x)

» incidentally, that in the spec-
ogeneous of degree o > 0, a change

= 2¢(bx), where a and b are positive and '
satisfy a(A-1)+1 = albg, converts the solution ¢ of (5) to a solution "]
of (5) with 2 replaced by a(i-1)+1,

In conclusion, it deserves remark that the approach presented here
can be carried over to certain two-dimensional problems, notably internal
waves in heterogeneous fluid flows along a channel and rotating flows
down a bipe. The details are naturally different,

but the main outline
and general conclusions are the same.
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