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SOLUTIONS OF THE KORTEWEG-DE VRIES EQUATION
IN FRACTIONAL ORDER SOBOLEV SPACES

JERRY BONA AND RI.DGWAY( SCOTT

1. Introduction. : :
In Bona and Smith [3], it is shown that for k& an integer larger than 1, the
pure initial-value problem for the Korteweg-de Vries equation .

D wtuntu. =0, ue0) =@, R (30

has a unique solution % in Cy(0, «; HY corresponding to initial data gin !;he
Sobolev space H*. Recently J.-C. Saut {10] has extended this result to non-
integral values of k using a non-linear interpolation theorem of Tartar [11). He
showed that if r > 3, u = [r] + 1 — r and 9 € H™"*"* for some ¢ > 0, then for
each T > 0, u liesin L*(0, T;H"). Forthecase2 < r < 3, Saut has the slightly
weaker result that if g & His then for each T > 0, u lies in L@, T; H").
Thus it would seem that some spatial’ regularity is lost in solving (1.1) for
initial data in non-integral Sobolev classes. The purpose of this note is to show
that this is not the case, namely, that for data in H *, 8 > 2, the solution to (1.1
liesin C(O, T; H*) for all 7 > 0. There is in general no smoothing action in
solving other similar model equations for non-linear dispersive waves in the
absence of dissipation (cf. Benjamin and Bona [2]), so the results presented
here seem likely to be best possible in terms of the relation of the smoothness
of data to the smoothness of the solution. In addition to showing that no
smoothness is lost in solving (1.1), it is also demonstrated that the solution -
depends continuously on the data in the sense that, for all T > 0 and s > 2,
the mapping ¢ — u is a continuous map of H* into C, T; H*). Thus the
initial-value problem (1.1) for the Korteweg-de Vries equation is classically
well posed in all the Sobolev spaces H' fors > 2.

The proof that the solution to (1.1) lies in CQ0, T; H *) for data in H* relies
on a simple extension of the previously mentioned interpolation theorem of
Tartar [11). The continuous dependence also Telies on an interpolation theorem
for continuous non-linear operators. These preliminaries concerning abstract
interpolation theory are presented in section 2. In section 3, we return to the
Korteweg-de Vries equation and apply the ideas of section 2 to obtain the
results stated above.

2. An interpolation theorem for non-linear operators.

Recall the K-method (or real method) of interpolation (cf. Butzer and Berens
[4]). Let B, and B, be two Banach spaces such that B, C B, with the inclusion
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map continuous. Let f € B, and define .

@.1 K@, o = inf {[If — glls. + ¢ llglls.},

where ¢ > 0 and || ||, isthenormon B, , i = 0,1. For0 < 0 < l.and 1<
p < « define

(22)  [By,Bi)s, = By,

= e it - ([ Ko, e a) " < .

with the usual modification for the case p = «. Then B, , is a Banach space
with norm || |[5, ,. Given two pairs of indices (8, , p,) and (82, p2) as above,
then

0, <8, or
2.3 (8:,p) < (6,,p,) means { ! 2

6p=26, and p, > p,.
If (6, , p1) < (6,, p;) then B, ,, D B, .», with the inclusion map continuous.

Prorosition 1. Let f € B, ,0 < 8 < land1 < p < . Suppose that
forall ¢ > O there are g.(¢) € B, such that{ = go(e) + g:(e) with {lg.(e)||a; < Gi(e)
and such that

@ . t/»
M, = (f Gie)%' =1 de) < 4o
o
fori =0,1. Thenf & B,.,and

111, <AMo' "M,

Proof. This is lemma 3.1, chapter I in Lions and Peetre {6] except that the
factor of 2 does not appear because the definition of interpolation spaces used
there is slightly different from the definition adopted here. The two definitions
are equivalent (cf. Peetre [9]). ‘

ProrosiTion 2. Let f € B, and fe € B, satisfy the inequality
2.9) ilf = flls. + € llfdla, < 2K, ¢

for some € > 0. If f € By, for some 6 and p with0 < 6 < 1 and 1 <p< o,
then

2.5) Wfllza, < 3 {Ifllss., -

Proof. Let 8 > 0. As appears from the choice g = {.in the definition (2.1)
of K, .

K., 8 < 8 [lf.lls. < 22K, 9.
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Now, forany f € B, , 'K f,e&isa non-increasing function of e. Hence

K({f., 9 <2K(, 5

. provided § < e,

For any y € B, , ¢
K., ) < lf. ~ gils. + & [lg]]a.
' S e = fllse + 1lf — gl
Taking the infimum over g € By, it follows that
K., 8 < |If. ~1lls. + K0, 9)
, < 2K({, & + K, 9).
But for_ any fixed f € B, , K(f, ¢) is non-decreasing in ¢, so
| K(., 5) < 3K(f 9

ot 5 llglls, -

provided & > e,
Thus whatever be 5§ > 0, K (f., 8 < 3K(f, 5). Since the norm of a function h
in B, , is simply the norm of §~'K (h, 8) in L*(R*; de/e), (2.5) follows.

With these preliminaries in hand, the abstract result on boundedness of
mappings of intermediate spaces can be established.

THEOREM 1. Let By’ and B,' be Banach spaces such that B, D B," with
continuous inclusion mappings, j=1,2. Let\and q lic in the ranges 0 < A < 1
andl1 < ¢ < o, Suppose A is a mapping such that

) A:B.) > Blandjor f,g € B,
HAf — Aglls.s < colllfllor.e + [lgllsn.e) |If = gl[s.s

and
ii) A:B,' — B,* and for h € B,

[1AR] |5+ < ci(l[Bllss. o) |1A]ls,e

" where ¢; : R* — R* are continuous non-decreasing functions, s = 0, 1. Then if

(01 p) Z (X, 9): A maps B',,l wnlo B._: and fOTf e Bg,,l

1Afllsa.e < cCllfllan.e) [Fllsnse >
where, for y >.0, c(y) = 4ca(dy)' eu(37)".

Remark. This result is idéntical with theorem 2 of Tartar [11] except that
Tartar makes the more restrictive assumption that the constants ¢, and ¢, depend
only on the B,' norms of the functions in question. The proof given here is
modeled on the proof of Tartar, the difference lying in the use of proposition 2 ’
rather than the elementary analog |[f.}ls., < 3 |If]|s. of (2.5) for functions f,
satisfying (2.4). '
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- Proof. Let f € B,.,' and for each ¢ > 0, choose . € B,' such that
W~ fllee + ¢ Wl < 2KG, 9.
(8, p) > (), ¢) implies f € B,.,' and proposition 2 therefore yields
HicHas. o < 8 1Ifllas. o -
Combining this with hypotheses (i) and (ii) yields the following inequalities:
HAf — Afls.s < co(lfllma. e + [lfillsn. o) [If = fullse
< 2eo(4 [[f]l5s. K, ©)
and’
¢ [1Afllsr < eilllfellss. e |lfells.s
< 26,3 [Iflles, DK, €.
Thus the decompo‘sition Af = (Af — Af) + Af, satisfies the hy’potﬁeses of
proposition 1 (with go(¢) = Af — Af, and ¢g,(¢) = Af.) since :
Mo =264 = ) Wil ([ KO, o757 a5)

= 2¢((4 — 1) W”Bx.") ”f”a'.-‘ ’

t =0, 1. An application of proposition 1 establishes the stated conclusion.

Attention is now focused on the question of continuity of A as a mapping
of intermediate spaces, assuming A is known to be continuous as a mapping
of the initial spaces. For this the following notion is useful.

Definition. Let B, and B, be Banach spaces with B, continuously included
in By. Let @and p be as usual. We say the pair B, , B, has a (8, p) approzimate
identity if there is a family of continuous mappings S, : By, — B, , for 0 <
€ < 1, such that

1) [18llz,., + €7 [ISflla, < clllls,., forall§ € By, and ¢ in (0, 1], and

2) lISd — fllzs., + € |ISf — f|ls. > 0as e | O for f € By, , and uniformly
on compact subsets of B, .

Ezample. Take B, = L* = L*(R) and, for k a positive integer, B, = H*
= H*(R), the Sobolev space of L? functions whose first k derivatives lie in L.
It is well known that [L*, H*),., & H' with s = 6k (cf. Magenes {7]). Hence
there are constants M, and N, such that

(2.6) M, ”u”u.'.tl*u.. < |fully-

(]:: (1+£) 2@ dE)‘ SN, lullizs ..
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where 4 denotes the Fourier transform of u. Let ¢ be a C7 function such that
0<¢<1,¢=1in[—1, 1] and ¢ = 0 outside of (—2, 2). Define S, by

Sa(®) = ¢("Da.
Clearly |[S.ul|lue < {lullis since |¢| < 1. Also,

Sl = [0+ %" @ d
' <sup (600 + ) [+ 9 e d
EER iad
< 0 Julfhe -

This shows that S, is a continuous mapping of H* to H* and cstablishes propérty
1. Ior any real r < g,

[e — Sl

_[: 1+ 81 — ¢(e”)) [a@)|” de
: ‘/I.Elz._-/t (A +£) @l d

< o 10+ [ A e

IElZe™t
S cé—:(r-l)/k f (1 + 22)3 ]12(£)|sz.
. 15121-'_/*
Asel O,

‘/I‘EI> -k A+ &) ad—o

uniformly on compact subsets of H*. Thus
“u - s'u”H' — O(E(.-.r)/lz)

as ¢ | 0, uniformly on compact subsets of H*. Specializing to the cases r = 0
and r = s yields

lu — Saulles = o(') and Jlu — S|y = o(1)

as ¢ | 0, uniformly on compact subsets of H*. This establishes 2, and shows
that {S.} is a (8, 2) approximate identity for the pair L*, H* for any 6 in (0, 1).

Tueorem 2. Let B!, B)', B, B/, \, ¢ and A be as in theorem 1. Assume
additionally that the pair B,', B,' has a (6, p) approzimate identity {S.} for some
8, p) > (), ¢) and that

ill) A is continuous as a map of B,' to B,>. Then A is a continuous map
from By, to B,,%.
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Proof. 1t is first demonstrated that AS,f — Afin B, " as ¢ | 0 uniformly
for f in compact subsets of B, ,'. Proposition 1 will be used to obtain an estimate
of ||AS.f — Afl|s, .. First for each 5 > 0, let /; € B," be such that

I = fillse + 8 [lfslls < 2K, 9).
(K" refers to the pair B,', B,".) From proposition 2,
fllzre < 3 Ifllsn. 0t »
forall 5 > 0. Fix ein (0, 1). Define ¢,(3) by _
(s = {ASJ —Af, if 5<e¢ and
‘ 0 if 6>e
Then g¢,(8) € B,* for each § > 0. Se.t 90(8) = AS.f — Af — ¢,(8). Fors < ¢
[go(3)|{5.s = [|Afs — Aflls.
< cold fllan. o) [lfs = fllsas
< 2¢o(4 |[fllsr. K'(, 9).

o

Go(8).

For s > ¢,
[1go(®)l2,s = ||ASf — Af]|5..
S collI8fllsn. e + [lfllen. ) [Sd = fllss
< eol@ + e{Ifllse.,) HSS = llue = Gud),

where ¢ is the constant in condition 1 of the definition of an approximate identity
and ¢’ is the norm of the inclusion B,,' C B,,". Thus

mir = [ " G875 ds

(2'7) = 2”60(4 IUHBL.')D ./: Kl(/) 5)’,5‘0’—1 d&
+ Co((l + C)C' Hf”s"v,)" “S‘f _ ﬂlB.‘v E;?
Since

Wllor = ([ &G, o757 as) ",

the tail integral
f Kl(f, 6)1:5—0»—1 d5
0

tends to 0, as ¢ | 0, uniformly on compact subsets of B, ,'. Condition 2 of the
definition of approximate identitics assures that the second term on the right-
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hand side of (2.7) tends to zero uniformly on compact subsets of B,,'. Thus
’ M(e) = 0,
as ¢ | 0, uniformly on compact subsets of B,,,'. Now consider 9:1(8). Fors < ¢,
l19:®)ls.s = [|ASS — Afi]ls.. |

< [1ASSlls.s + ||Af]]5.0

< aleellfllss.,) 1SSl + i@ 1[fllan. ) |lfslls.e
cileellfilan.)ee’™ |iflls, 0 + 26,(3 HFlles. K, 8) 67
G.(9). '
Since g,(8) = 0 for 5 > ¢ let G.(8) = 0for 5 > ¢. Then

Mi(e) = (/: G (3)5- "7 db)w

,

IN

]

= allillar.) =555 [las..

+ 2¢,3 I[fllnx,.')( fo ' K'(f, 8)P5~""! da)w.

Thus 3,(e) is seen to be bounded on bounded sets in B,.,}, hence certainly on
compact subsets of B, . .
Proposition 1 allows the conclusion

IAS.f — Afllss.» < 2 Mo(9)~"M,(e)".
Thus AS.f — Afin B, .,*, uniformly on compact subsets.

With the last piece of information in hand, it is easy to show A is continuous,
Let {f.}.." be a sequence in B,.,' and suppose f, — fin B,,'. Then if ¢ > 0,

Af = Afillas o < ||AF — ASfl[4y o + ||AS.f — AS1| 5,0 »
+ ||ASf. — Aflls, e .

Let y > O be given. Since the set MY ifain=1,2 -} iscompact.in B, .},
there is an ¢ > 0 such that

IAf — AS.fllss.s < 3y and (|Af. — ASufillsr < By

forn = 1,2, --. . Condition iii assures that A is continuous from B,' to B,
Since S,, is continuous from B,,' to B, the composition AS, is continuous
from B, ,' to B,>. Hence there is an N so that n > N implies

IAS.f — AS.fullss.,» < ¢ ||AS.f — AS. fullss < By
where ¢’ is the norm of B, C B, ,%. Thus if n >N, ’
[1Af — Aflls, » < v,

and so A is continuous as a mapping of B; ! to B,.,~
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Let B be a Banach space and T > 0. Denote by C(0, T; B) the Banach space
of continuous functions from [0, T] to B with norm given by

il 72y = sup s -
01T

When T is understood, the notation will be shortened to simply C(B).

- In the application of the above theory to the Korteweg-de Vries cquation, the
following simple fact about interpolation between spaces of the form C(B)
will be used.

PropositioN 3. Let B, and B, be Banach spaces with B, included continuously
in By . Let 0 and p lie in the ranges 0 < § < land 1 < p < . Then for
any T > 0,

[C(BO)J C(Bl)]ﬂ.v C C([BO ’ Bl]&.v)v
- with the inclusion mapping continuous.

Proof. Let K° be the interpolation function for C(Bo), C(B;). That is,
for f in C(B,) and ¢ > 0,

K(f, e = eicl(lfz , {Hf — gllceas + ¢ llgllcesnl-

Let K denote the interpolation function for B, , B, as before. Then certainly

for f € C(By),
K(f, ¢) > sup K(f(0), ¢
05tsT
for all e > 0. Hence

”’”(C(Ba).C(B.)IL, Z 0

2‘:‘?1 HOHise. 8000, = Wl Base.sires -
Thus
[C(Bo), C(B))s., C L™([Bo, Bils.s),

with the inclusion mapping continuous.

But theorem 2.1, chapter III, in Lions and Pectre [6] implies that C(B,) is
a dense subspace of [C(B,), C(B\)}., . Since C(B;) C C((By , Bils.,), then
certainly C([Bo, Bils.,) N [C(B,), C(B)]s.» is a dense subspace of [C(By), C(B1)]s.»
as well. Since C([B, , Bi)s.,) is a closed subspace of L™([B, , Bils.,), the result
follows.

3. Application to the Korteweg-de Vries equation.

We turn now to the application of the results of section 2 to the initial-value
problem for the Korteweg-de Vries equation. Let ¢ € H' where s > 2, and
let 4 denote the unique solution of the initial-value problem (1.1) posed with
initial data g. The results of Bona and Smith {3] establish that if s = k is
an integer, then for any finite T > 0, the mapping g — u is a continuous mapping
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of II* to C(0, T; H"). This conclusion is now extended to non-integer values
of s.

THEOREM 3. Let T > 0 and s > 2. Then the mapping g = w s continuous
from H' 1o C(0, T; H"). Moreover, there is a continuous non-decreasing funclion
R = R such that if ¢ € H*, then

(3-1) Nullco.rin < co.r(lgllira) ol
where [s] is the largest integer smaller than s.

Proof. Denote by Ag the unique solution u of (1.1) corresponding to initial
data g. From [3] it is known that if k is an integer greater than 1 and T is a
finite positive number, then A is a continuous mapping of H* to C(0, T; H*).
Further, as will be shown subsequently,

(3.2) HAgllew.rimey < ealllgllun-) Tlgltne

where ¢, : R* — R* is a continuous non- -decreasing function independent of T.
Assuming (3.2) is valid for the moment, the proof of theorem 3 is complete
for s an integer larger than 1.

Now suppose that k& — 1 < s < k where k is an integer groator than 2.
Theorems 1 and 2 will be applied with

B)' =1’ BS=C0T;L), B'=H, B*=C0T;H,

)\=k;kl, q=2, 0=£and p =2
The example in section 2 shows that the pair L*, H* admits a (6, 2) approximate
identity. Hence to draw the conclusions of theorems 1 and 2 in this situation,
it is sufficient to confirm conditions i, ii and iii of these theorems. Condition iii
is known already from [3). Condition ii is simply (3.2), whose validity will be
established below. Condition i states, in this case, that A maps H*' to
C(0, T; L”) and that if f, g € H*', then

('3-3) “Af - Af/”('(o.r:v) < CLT(H]”H'" + ”!]”n‘-‘) Hf - !f”m .

Since & > 2, it has already been observed that A maps H*™' continuously to
C(0, T; H"") and so a fortiori A maps H*™' to C(0, T; L*). Since A is continuous,
it =ufhce< to prove (3.3) for f and ¢ in some dense subset of H*™'. So suppose
io€EH andletu = Af,v = Agand w = u — v. Then w satisfies the initial-
value problem

w, + 3w + vw), + w,,. =0,
w(z, 0) = f(z) — g(z).

T urthormoro u v and thereforc w are C~ functlons all of whose partial derivatives
are in L® in the spatial variable. Multiply the differential equation by w and
integrate over R. Because of the smoothness properties of u,
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F4

f ww,,, dr = —/ waw,, dr = —% f a.w' dr = 0,
R R R

and

L:}Z [(u + v)w]w —L% |(u 4 vywlw, dc = ——i fn(u + )3’ dr

i fR (u + v),w* de.

Using the elementary Sobolev inequality [{h]|.« < [|A]]u , there appears

1d
2.dt Jx

w' di

‘l"f (u + v),w’ de
4 Jr

IN

PRSI [R W de.

1 (Ul

Applying (3.2), it follows that

L ollet < elllfllae + lollen [olias?
where ¢(N) = Ac,(V). By Gronwall’s lemma,
e, Ole® < Jhe(-, 0)]]us"e™
Writing ¢o.»(A) = ¢V taking the square root and taking the supremamm
over tin [0, T of the last inequality, it is verified that
[1A] = Agllew. e S con(llae + lgllud [If = 4l

and this certainly implics (3.3).

Finally (3.2) is established.  Recall that there is a sequence of functionals
{1,,.0" for which £,(u) is independent of ¢ > 0 provided w is a solution of the
Korteweg-de Vries equation. These have the form

13!

1w = [wde, 160 = [ w3 ds,
R R
and in general for j > 2,
I(w) = [ ‘umz + a,uuu~1>2 + Q. u, -+, ug-n)} dr,
Jr

where g, is shorthand notation for 8,™u, «, 1s a constant and Q, is a polynomial
in j — 1 variables with Q,(0, --- , 0) = 0. Each monomial term in Q; has
‘rank’ j 4 2 ,where the rank of the monomial we,“ g, -+ we, " is defined
to be Z,_..’ (1 + i72)a, . (These invariants were first discovered by Miura,
Gardner and Kruskal [S]. See also Kyuskal of al. [5]) More preeisely, J,(u)
is indepetcdent of ¢ 2 0 Tor win CQ, 75 H7) provided that » 2 2, wis a solution
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of the Korteweg-de Vries equation and 0 < j < 7 (cf. theorem 2 of [3]). From
the invariance of I, , forallt > 0,

3.5 [lellze = Hlgl]a

From the first invariant and the afore mentioned Soboley inequaiity,
fufdx= lfu“cbc+f(g’)’dz—lf.a’df
R 3 R R 3 R

< Hlelle [lelle? + |lg]],.2 + 4 gl gl
Adding |[u][,.? to both sides, and using (3.5), the last inequality comes to

Wullee® < 4 Uullas Hlgllee® + Holl® + 4 {lg]]e Iglle.?

< &bl + 4 Hlglles + [lglle® + & |1g](m? + gl .
Subtracting } |[u]|,.”, there appears

uile® < % lHolle + % “9”51'.2
(3.6) <alliglle)? 1gm?,

where ¢,;(\) = [$(2\% +- . The general case is handled by induction. Suppose
(3.2} is valid for k < m where m 2 2 and that I,.(x) is invariant, First the

integral of Q,, is estimated. This is a sum of integrals of monomials of

the form
Ue)"" e Ugpngy T

- Since the monomial has rank m + 2,2< 3..0"%a, <

m + 2. Hence by an elementary use of the Sobolev inequality mentioned
earlier,

/];u(o—)-. e u(-_n--—.) dr S (“u“”__l)Z.-. B o

Hence for some numerical constant 8,, ,

L Qm(um) y T Ummzy) A2

< Ball A [fullmms") [fua] .

similar estimate holds for the monomial «,uu’ (m=1) -

Thus utilizing the
duction hypothesis,

I.(w — /;u‘,,.,’ dz

S B (Jullum-s™) i yaos?

< e'(Hgllam-1) |lg)lan-i2 -

I

Lum,z dz — I.(u) + I.(g) — j;(g(m))z dz

< 2e"(lgllmm-1) [lgllm-s* .

Ugmy” dr — f (¢'™) dzx
. Jr

S
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Hence if cn(0) = (1 + 2c./00) + sy (V)1
(el < enlllgllin—) lallim |
proving (3.2).

Thus all the hypotheses of theorems 1 and 2 are valid in the context undor-

constderation here. It follows that
ALY HY,, —[CO, T; L, C, T; HY], ,
continuously. Now [L?, HY ., = H and, by proposition 3,
(CO, T; L7, €O, T; HY), . C CO, T; [L?, HY),.,) o O, T; H).
Hence A : H" — (0, T; H') continuously. Finally, by theorem 1,

: N, 1
Agllen s < 572 a5 lllan-) gl
where¢, ,(\) = 2c2.7(40)"%¢,.(30)° and M, , M., and N, are defined in (2.6).

Remark. It seems likely that the last inequality should hold independently
of T, asin the case s = & is an integer. Qur proof does not lead to this conclusion
since the Lipschitz constant ¢2,7 depends on 7. Indeed, it is known that A
is not Lipschitz continuous in L? with a Lipschitz constant which is independent
of time (cf. {1, section 4] or [3, section 6]), so the method of proof adopted
here cannot establish such a time-independent. estimate.

More recently, in collaboration  with R. Teman, Saut has obtained an
existence theorem similar to the one presented here, by using a fractional Jorder
Leibnitz rule. This work will appear in the Israel Journal of Mathematics.
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