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An initial- and boundary-value problem for a model equation for small-am-
plitude long waves is shown to be well-posed. The model has the form u, +
u, + U, — Vit — Pty = 0, where x€[0,1] and ¢ > 0. The solution
u = u(x, t) is specified at ¢ = 0 and on the two boundaries x = 0 and x = 1.
Unique classical solutions are shown to exist, which depend continuously on
variations of the specified data within appropriate function classes.

{. INTRODUCTION

An initial- and boundary-value problem for a model equation for uni-
directional propagation of waves is investigated here. The equation in question,
which incorporates nonlinear, dispersive and dissipative effects, has been sug-
gested as a model for surface water waves in a uniform channel (cf. [1, 2, 4, §,
10]). It has the form

U+ Wy A Uy — Vg — aUpy =0, (1.1a)
for x, te [0, 1] X R*. The equation is subjected to the auxiliary conditions
2(0, t) = A1), u(1, t) = g(¢), 0L,
(0, 2) = A(2) ) (1.15)
u(x, 0) = f(x), 0<x<1.

Here a >> 0 and v >> 0 and the consistency conditions

#0,0) =f(0) =h0) and  u(1,0) =f(1) - £(0) (1.2)

are also imposed.
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For the application to surface water waves, the dependent variable u represents
the location of the frec surface, relative to its undisturbed position, while the
independent variables x and ¢ are proportional to distance along the channel
and to elapsed time, respectively. The constant v expresses the relative import-
ance of the nonlinear and dissipative effects and « plays a similar role regarding
nonlinear and dispersive effects. Various hypotheses go into the derivation of
(1.1a) as a model equation for water waves. These will play no role in the mathe-
matical theory, except that a certain smoothness of the initial and boundary data
will be assumed. This smoothness is entirely appropriate to the physical situation
being modeled. Naturally, the specific hypotheses underlying the derivation of
Eq. (1.1a) will be important when comparison with experimental observations
is attempted. The theory developed here will cover the wave regime relevant to
such observations. As regards comparison with experimental data, note that a
simple change of variables allows the apparently more general equation

u, + ﬁ": + yuu, — Uy — ssuut =0,

posed on 0 < x </, to be reduced to the form given in (1.1).

It will be shown that the problem (1.1) possesses a unique classical solution,
which depends continuously on variations of the data £, g, and & within their
respective function classes. Moreover, the solution depends continuously on
v 2 0. Thus a non-dissipative model is recovered in the limit as v tends to zero.

A similar program has already been carried out for the pure initial-value
problem for (1.1a), with v =0, in [2], with » 2> 0, in [5], and with » =0, for
the initial- and boundary-value problem posed on the quarter-plane x, ¢ >0
in [3]. The periodic initial-value problem for this equation has also attracted
attention (cf. Medeiros and Menzala {8], Showalter [12], and the Appendix of
[J]). For the initial- and boundary-value problem in hand, existence and
uniqueness of solutions has been demonstrated by Showalter [12] and by
Medeiros and Miranda [9]. These works consider variously the cases v = 0 and
v = 0, with more general nonlinear terms and with a forcing term added, but
with homogeneous boundary conditions A = g == 0. The present analysis could
incorporate broader classes of nonlincarities and a forcing term without essential
difficulty, but the resulting complication appears not to be worth the gain in
generality.

It should be pointed out that weaker forms of some of our results can be
abtained via the following observation. Let v(x, t) = xg(¢) 4 (I — x) A(t) and
let w := u — v, where u is a solution of (1.12)-{1.1b). Then w satisfies

w, 4 w, + ww, + (vw), — v, — oWy = &, (1.3)
where

£ =§(x, 1) = —[v, + v, -+ v}, (1.9

and (0, 1) = u(l, 1) = 0. Converscly, a solution « of (1.3)«(1.4) determines a
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solution % of (1.1). The variable-coefficient problem (1.3)~(1.4) does not fall
within the scope of [9], but Showalter’s theory [12] very nearly covers this
situation (the problem lying in the term vto, , where v depends explicitly on x;
cf. (3.11) in [12]). The arguments in [12], which are based on Showalter’s general
theory for Sobolev equations [11], can be extended to establish the existence of a
weak solution of (1.3)(1.4), and hence of a weak solution of (1.1). This solution
may be further inferred to be such that each term in (1.1) lies in Ly(0, 1), for
almost every ?, using Theorem 6 in [11]. The physical regime that (1.1) is
intended to model does not encompass the formation of singularities such as
shock formation or wave breaking. Hence classical solutions are to be expected,
and are provided by the rather specific approach presented here. Moreover, the
continuous dependence of the solution, within smooth function classes, on all the
data, including v and «, follows readily from the methods developed below, and
consequently they have been favored over the general theory currently available.

The two-point boundary-value problem for (1.1a) suggested here is worth
studying for several reasons. First, any numerical scheme for (1.la) must
inevitably be posed on a bounded domain, even though the pure initial-value
problem or the quarter-plane problem may be in view. Hence the scheme will
in fact be an approximation to a problem of the form (1.1) with some specified
boundary conditions (the periodic initial-value problem is different in this
facet). Second, as explained already in [3] and [4], the initial- and boundary-
value problem is more amenable to direct comparison with experiments per-
formed with water waves in a channel than either the pure initial-value problem
or the periodic initial-value problem.A disturbance created at onc end of a
channel by a wavemaker may be measured at several stations down the channel.
Two of these measurements may be used for g and / in (1.1) (with f = 0, say,
corresponding to the liquid being initially at rest). A numerical prediction may
then be made using the model (1.1). This prediction may then be compared
with measurements taken at a third station situated between the two stations
used to determine g and 4, and the outcome used to judge the accuracy of the
model. The model written here is suitable for modeling the propagation of
waves moving to the right. Consequently, it is appropriate to have h(t) deter-
mined by a measurement taken near the wavemaker and to allow the cxperiment
to run until the distrurbance has reached the right-hand end of the channel.
Taking the right end of the channel at x = |, in suitably scaled coordinates, it
follows that g(t) = 0 throughout the experiment. Note incidentally that the
possibility of having nonhomogeneous boundary conditions is crucial for the
application of (1.1a) to the expcrimental situation envisaged here.

It is noteworthy that the Korteweg-de Vries equation, with or without the
dissipative term —wu,,, is not well-posed with the conditions given in (1.1b).
A third boundary condition must be specified (e.g., u, could be specified at
x = 0orx = 1).If, as described above, a limited-time cxperiment is in question,
in which the disturbance created by the wavemaker does not reach the station
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down the channel used to determine g, so that g(t) == 0 for all the relevant ¢ > 0,
then an obvious candidate for a third boundary condition would be u(l, t) = 0,
fort > 0.

The dissipative term —wu,, incorporated in (1.1a) is only a model term. The
proper dissipation for shallow water waves in a uniform channel, consistent with
the level of approximation already inherent in the modeling of the nonlinear and
dispersive effects, has been discussed by Kakutani and Matsuuchi [7]. Its non-
local form requires a more refined analysis, particularly for the boundary-value
problem studied here. If the disturbance has most of its energy concentrated in a
single wavelength, as is the case in the periodic generation of small-amplitude
long waves by a wavemaker located at one end of a channel, the damping given
here can be argued to be quite a good approximation to the dissipation provided
more exactly in [7], and consequently to the actual dissipation experienced by the
waves. This point has been discussed in detail in [4], where comparisons of the
model (1.1a) with experimental data are reported. Comparisons of solutions of
(1.1a), in case v = 0, with experimental data have also been made by Hammack
(6]-

The plan of the paper is as follows. In Section 2, the mathematical notation to
be used subsequently is introduced. Section 3 is devoted to a local existence and
uniqueness theorem for (I.1), and to the regularity theory for solutions. In
Section 4, the local solution established in Section 3 is extended to a global
solution defined for all # > 0. The last section contains the results of continuous
dependence.

2. Nortation

Throughout the paper, all functions are assumed to be real-valued. We will
denote by C*, or by C*(a, b) the Banach space of k-times continuously dif-
ferentiable functions defined on [a, b}, with the norm

i flie = i o)
ocick

The L,-norm of a function f which is square-integrable on [0, 1] is denoted by
Ifll. Form =0, 1, 2,..., H™ = H™(0, 1) is the Sobolev space consisting of those
L, functions whose first m generalized derivatives also lie in L, , with the usual
norm,

11 = g T

There will also be occasion to use the spaces C(0, T; X), for X = C* or
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X = H™. In general if X is any Banach space then C(0, T X) is the Banach
space of continuous functions u: [0, 7] — X with the norm

li #llco.r0 = sup I «(t)ix.
KT
The abbreviation €}+* will be employcd for the functions : [0, 1] X [0, T]— R
such that 8,3,7ue C(0, T; C® for 0 <j <k and 0 <i <[ This space of
functions will carry the norm

Il ”?;" = Z I at‘az’u “C(O.T:C') )
oIk
0i!

The space € will be abbreviated simply ¥ .
An inequality that will be used several times below is contained in the following

lemma (cf. Sobolev [13]).

Lemma 1. If fe HY0, 1) then f is equal almost evervwhere to a bounded con-
tinuous function f and there is a constant c.. such that

[ fllge < €y Iy - (2.1)

It follows that if ue C(0, T; H'), then u is equal almost everywhere to a
bounded continuous function 4 € C(0, T; C°) and that

os<|:l<)1 I a(x’ t)l < C* “ u "C(O.T:Hl) G (2‘2)
0T

Subsequently, whenever a function fe HY0, 1), or u € C(0, T; H), presents
itself, it will be tacitly understood that the continuous representative has been
selected from the equivalence class of functions equal almost everywhere to the
given function.

3. Locar ExXiSTeENCE THEORY

A solution of (1.1) is shown to exist over a positive time interval. The regularity
and uniqueness of this solution are examined. The existence of a solution is
established by converting the differential equation into an integral equation and
applying the contraction mapping theorem to the integral equation. The regu-
larity then follows from the fact that any solution of the integral equation is
exactly as smooth as the data afford. The argument thus closely parallels that
worked out in detail in [2] for the pure initial-value problem and we may there-
fore justifiably omit many of the detailed calculations.

https //reader.elsevier.com/reader/sd/pi/0022247X80900980?oken=48... B84ECT45F7F87559A54675FB02A7073DDEA3C5647ETAECE 1EABE9 1308F2E8C51CB Page 5 of 21




=== S0

Pil: 0022-247X(80)90098-0 | Elsevier Enhanced Reader 10/24/19, 5:19 ppy

508 BONA AND DOUGALIS
Write (1.1a) as
(1 —a?0,)uy = —up —utty + v,

Invert the operator 1 — %3, subject to the boundary conditions (0, t) = &'(¢)
and (1, t) = g'(t) implied by (1.1b), to obtain formally

u(x, 1) = K (8)$y(x) + £'(t) $a(x) — f: P(x, £) [ue(&, 1) + u(§, 1) u(é, 1)) d¢

+v [ s O uelt, e, (3.1)
where
__sinh((l — x)/) __ sinh(x/a)
$ == %0 = e (32)
and
e 1 = x -~ [
R e L P
+ exp((2 — [ x — £ [)/a) — exp((2 — (* + €))/a)}.
Note, for later use, that ¢, , ¢, > 0 and that
$:0)=1, &(l)=0, supgx)=1,
et (3.4)
$:0) =0, ()=1, sup dy(x)=1. '
oK=L

Since P(x, 1) = P(x, 0) = 0, for all x € [0, 1], the first integral on the right side
of (3.1) may be integrated by parts to reach the integral

J; " K(x, £) [W(E, 1) + WE. )] dE, (3.5)

where

1
K68 = afexpia -

— sgn(x — £) exp(] x — £ |/o) + sgn(x — £) exp((2 — | x — £ ])/a)}.

gy (—exp(ls + €)fa) + exp(@— (x+ ) (36

Similarly the second integral on the right side of (3.1) may be written

— B finh () (s, ) — snh{(1 — #)) ) = snb(ce) )

+ 2 [ Pl &) ute, ) e, (3.)
a”Jdp
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by two integrations by parts. Putting this together, and with further simpli-
fications, yields

ux,t) + :—, u(x, t)

= (W) + 2 ) &) + (£'0) + —72()) ) (38)

1 v 1
+ f., K(x, §) (a6, 1) + 1026, 0)) dE + 5 fo P(x, £) u(¢, 1) dE.

Now view (3.8) as an ordinary differential equation, in the temporal variable, of
the form

%, + ::Lg' u =¢(x: t)'

This may be solved explicitly for u, and upon substituting the expression for ¢
implied by (3.8), one obtains the integral equation

(s, 1) = exp(—t]a?) f(x) + () A1) + $o2) 0) + BW) (. 8),  (39)

where
B(u) (x,t) = J: L ' exp(—Ht — 7)/a?) K(x, £) [u(¢, 7) + 3u*(¢, )] dé dr

25 [ [ exp(rte = o)) Ple, € ) d (3.10)
and
h(t) = h(t) — —vt/od) h(0),
) = M) exp ) HO) -
2(0) = &(t) — exp(—ja) g(0).

‘ This is the integral equation promised earlier. Note that any classical solution of
‘ (1.1) does indeed satisfy this integral equation, since all the steps leading to the
derivation of (3.9) may then be justified.

|

i

‘ Propostrion 1. Let f& C%0, 1) and g, he C%0, T) for some T > 0. Then
‘ thereisan S = S(|| fllco, | glico s | Bllco , &, v, T) in (0, T) and a unique function u
i in C(0, S; CX0, 1)) that satisfies the integral equation (3.9). Moreover, for any
| T, < T there is at most one solution of (3.9) in C(0, Ty; C*(0, 1)).

Proof. For v in C(0, S; C7) define

Ao, 1) = exp(—vt]o®) f(x) + $i(%) A(t) + $:(x) £(t) + Bolx, 1),  (3.12)
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where Bisasin (3.10). Let € = C(0, S; C°), where S remains to be chosen. Note
that, if v € €, then Av € € also. Moreover, if v, w € ¥, a straightforward estimate
shows that

| Bu(x, t) — Be(x, t)|
SaSllwe —ele(l + Hlwle + il olle)) + ¢Sl @ — v,

(3.13)

where

coth(l /o) — csch(l/x)

3

1
o =c(@) = sup [ | K §)ldf =
0<z<1 70
and
=¢ ( — bl 'd P d d
g = ey, v) = Swp | P(x, §)] d€ = — (1 — sech(1/24)).
It follows, by taking the supremum in (3.13) for x, ¢ in [0, 1] X [0, S], that

| 4w — Avlle <flw — vlle ([o(l + Miwle + o) + ] S} (3.14)

In particular, for we ¥,

" .415 “f g. ”fléco + 2“ h HC"(O.S) + 2 “g "CQ(O,S) + ” Aw = Ae"q ’ (3'15)

where 6(x, t) = 0. The inequalities (3.14) and (3.15) are enough to justify an
application of the contraction mapping theorem. Consider 4 as a mapping of the
ball By of radius R about zero in €. Define

Then if v, we By, (3.14) implies that
Il dw — dolle < S(e(l + R) -+ &)l w — vile = 5(R, S) @ — vii¢. (3.16)

Hence (3.15) implies
1 Awlie <7(S)+ Ra(R, 9). (3.17)

The contraction mapping theorem applies to A, considered as 2 mapping of B,
to itself provided R and S can be chosen so that #(R, S) < 1 and (S) - Ry(R, S)
< R. These may be simultaneously satisfied by choosing R = 2r(S) and then
choosing S small enough that y < §. That is, choose S in (0, T] such that

|
SO F 2O Fea)

s (3.18)
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The question of uniqueness is easily settled. Suppose there were two distinct
solutions x and v of (3.9) in C(0, Ty; CY). Since u and v are continuous there is a
point £, in [0, T}) such that u = v for 0 < ¢ < ¢, and on no interval [y, £, + €]
is this still true if ¢ > 0. Hence the integral equation
wfx, 1) = (%, 1) + [exp(—vtfot) — exp(—vtofat)] f(x) + $:(=) [A() — A(to)]

+ ¢a(%) [8(8) — £(t)] + Bu(x, t) = Aufx, 1),

where

wo(x, 1) = u(x, ;) + J:. ¥t 7) J: K(x, &) [u(¢, 7) + $u¥(§, 7)) df dr

+4 fo ot ) j: P(x, £) u(¢, 7) dt dr,
y{t, 7) = exp(—v(t — 7)[a®) — exp(—u(t, — 7)[a?),

and
$ 1
Bow(x, 1) = L exp(—¥(t — 7)/a?) J; K(x, ) [w(é, 7) + 3wi(é, 7)] dé dr

+ 2 [ explrte — )ed) [ Pls, &)t 7) dt
te 0

has two distinct solutions, which we denote by # and v again, though they are in
fact u and v restricted to [¢, , 7;]. Moreover, while these solutions agree at ¢,
they do not agree identically in any neighborhood of t, .

The existence argument presented above is easily adapted to show that, for R
large enough and for ¢, = #,(R) close enough to #, , A is a contraction mapping of
the ball B of radius R centered at the zero function in C(t,, t,; C°). But if

R 2 max{}i ¢l ;c0 0 |V et :cob

then A has the two distinct fixed points # and v in B, . This contradiction
forces the conclusion # = v on [0, 7}], and the proposition is established.

Let ue C(0, T; C°) be a solution of the integral equation (3.9). Suppose f, g,
and & are only continuous, but not differentiable. Is it possible to conclude that u
is smoother for t >0?

Suppose indeed that % is continuously differentiable with respect to x and ¢.
In any case, if ue C(0, T; C9), it is easy to see that B() is continuously dif-
ferentiable with respect to both x and ¢. Hence u — Bu is differentiable with
respect to x and z. But according to (3.9)

u — Bu = exp(—vtfod) f(x) + $(x) F(2) + () £,
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where ¢, and ¢, are linearly independent C functions which are non-zero on
(0, 1). It follows that £, g and k are C* functions, a contradiction. This argument
may be used to show that generally the solutions of (3.9) can be no more regular
in x than f, and no more regular in ¢ than g and & (see, however, the remark at the

end of this section).
So the only hope for a smoother solution is to assume smoother data. Here is a

result of further regularity for solutions of (3.9).

ProrosrrioN 2. Let fe CH0, 1) and g, he CY0, T) satisfy the compatibility
conditions (1.2). Then any solution u in C(0, T; C°) of the integral equation (3.9
lies in €7 and is the unigue classical solution of the initial- and boundary-value
problem (1.1) on the interval [0, T].

Proof. Since u is a continuous function, Au is differentiable with respect to £,
Since u = Au, it follows that u, exists and is given by (3.8). Hence u, € €r since
g and i’ lie in C%0, T) and u is in €, .

By dividing the interval of spatial integration at £ = ¥ and considering each
of the resulting pieces separately, it is verified that u, exists and is given by

u(x, t) = exp(~wtfo®) f'(x) 4 $1(x) h(t) + $3(x) &(1)
5 [ explorte — et [t ) + 1o )] e
- f f exp(—H(t — 7)fo?) M(x, €) [u(é, 7) + 4u¥(¢, 7)) d€ dr
. fo ‘ J’o " exp(—s(t — 7)/a?) O(x, &) u(é, 7) d¢ dr, (.19)

where

M(e, §) = ey = P + )+ exp((2 — (¢ + )
’ 3.20
+ exp(l x — £1/0) + exp(2 — | — £ )} o2

and

1
0 §) = gy =Ty P + D) — (@ — G+ V) ()

— sgn(x — §) exp(| x — £ |fo) + sgnlx — £) exp((2 — | x — £[)/a)}-
From (3.19) and the assumptions on f, g, and &, it is apparent that ;€ €.

Once this is appreciated, then the right-hand side of (3.19) can be seen to be
differentiable with respect to both x and ¢. Upon differentiating the right side of
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(3.19) with respect to ¢, it appears that u,, € . Again dividing the spatial
integrals at £ = x, it is determined that

u(x, £) = exp(—vtfad) f*(x) + $1k + 438
51 [ explor(e = a2, (1 + o) dr
+14 jo‘ j: exp(—(t — )lat) K(x, §) (u + 1u%) d¢ dr
+2 J’o ‘ J; * exp(—wt — r)fa?) P(s, £) u(é, 7) d¢ dr

t
- al‘- exp(—u(t — 7)/a?) u(x, 7) dr.
0
This may be simplified, using the original integral equation for 4 and the rela-
tions o?d] = ¢, , § = 1, 2. With these observations u,, may be expressed as

e, 1) = exp(—21]e) f*(¥) + o5 f: exp(—H{t — 7)fe?) [y -+ ta15] dr
+ 2 ulo, ) — 5 exp(—tfat) (2
-5l ' exp(—{t — 7)ot u(x, 7) dr. (3.22)

Since u, is in €, so is the right side of (3.22). Hence u,, is in € . Additionally,
#,. is differentiable with respect to ¢, and upon performing this differentiation,
simplifying the resulting expression, and multiplying by of, it is verified that u
is a classical solution of the differential equation (1.1a).

From (3.9) it is clear that u(x, 0) = f(x) since A(0) = (0) = 0. Also, since
K(0, & = K(1,£) =0 and P(0, §) = P(1, £) =0, for 0 < £ < 1, and because
of (3.4),

4(0, t) = exp(—t/a®) (f(0) — A(0)) + A(2),
and

u(1, t) = exp(—vt/o®) (f(1) — £(0)) + g(2)-

Thus the boundary conditions in (1.1b) are satisfied by virtue of the compatibility
conditions (1.2).

The uniqueness assertion follows from the uniqueness of the solutions of the
integral equation, and the fact that any classical solution of (1.1) satisfies the
associated integral equation in the form (3.9).

CorortAry. Let fe CY0,1) and g, he CX0, T) where 1 >2 and k> 1.
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Suppose f, g, and h satisfy the compatibility conditions (1.2). Then any u in €y that
satisfies the integral equation (3.9) corresponding to f, g, and h lies in €%* and is the
unique classical solution of (1.1) corresponding to f, g, and h.

This is a simple extension of the methods employed in Proposition 2. Note
that further compatibility conditions on f, g, and A are not needed for the further
regularity of the solution. This is due to the presence of the mixed spatial-
temporal derivative in the model equation. In the special case when v = 0, the
solution of (1.1), corresponding to data f, g and 4 as in the last corollary, has the
additional property that

d/ue C(0, T; C#1)

for I <j < k. This follows from examination of (3.8), with » set to zero.

4. GroBAL EXiSTENCE THEORY

Here the result of local existence, established in the last section, is extended.
The method is to iterate the local existence result. This is effective because of
the following a priori bound on the growth of the solution.

ProposITION 3. Let fe C¥0, 1) and g, h€ C\0, T) and suppose the compa-
tibility conditions (1.2) are valid for f, g and h. Let u be the classical solutson of (1.1)
corr ing to the data f, g and h. Then

Nulh, <Cllfly+D 4.1)
Jor 0 < t < T, where C and D are positive constants depending on o, T and on the

CY0, T)y-norms of g and h.

Remark. 1In the special case where g = 0, bounds that grow in time only
as rapidly as the energy supplied from the left-hand boundary may be obtained.
This is a point which may be of some interest in the application of the model
equation (1.1a), but we pass over this aspect here,

Proof. Let o(x,1) =xg(t)+ (1 —x)k(t) and let w=u—9. Then w
satisfies (1.3)-(1.4) with

w(x, 0) = f(x) — [xf(1) + (1 — %) f(0)] 42)
and
2(0,1) = w(l, t) = 0. (4.3)

https://reader.elsevier.comvreader/sd/pi/0022247X80900980 ?token=4.. . BO4EC745F 7F87559A54675FB02A7073DDEA3C5647E7AECE 1EABE9S1308F2E8C51CB Page 12 of 21
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Multiply Eq. (1.3) by w and integrate the resulting identity over [0, 1]. Integra-
tion by parts, and using (4.3), yields

}%J:[w'—}-a’w,’]dx-{-vfw,’dx

1 (4.4)
= [ twae— ;j:v,w'dx <l €11l + 31 2@l + 1A I it
For n € HY0, 1), define the auxiliary norm
il = | [ 0+ ot de]
Then for n€ HY0, 1),
%nm <llnllh < @l (4.5)

where ¢(a) = max{], «~1} and ¢"(«) = max{l, «}. The inequality (4.4) yiclds

b5 ok, 0013 < A, Dl + Bl ol 0 (46)
where, from (1.4),

A= Ahg T)
= osgfr I €0 <N g lloyory + 1 lirom + (18 lico.ry + 1l Allaey)?

and

B =B(hg T) = Hilglicoory T+ | Blicoge,m)
From (4.6) it follows that
il (s, )y < & M () Ol €8t + AB-Y(e?* — 1),
for 0 < t < T. An application of (4.5) gives
| wo(-, Ok < €'(c) €% wo(*, O)lly + o) AB-Ye — 1),

for 0 < t < T, where ¢'(«) = max{«, «~'} and ¢(«) is defined below (4.5). Since
w = u — v, the finishing touch is supplied by the triangle inequality;

| ) < Cilflh + D,

409/75/2-15
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for 0 <t < T, where

C = Clag, b, T) = c/(e) T
and
D = D(a,g,h, T)

= c'(@) T || 0", O)lly + c(e) AB(ePT — 1) + sup || ¢(+, 2)ll -
oT
This establishes the proposition.

The main result of existence may now be proved. The result is stated for f
in C¥(0, 1) and g, & in C}(0, T), but the corollary at the end of Section 3 shows
that if f, g, and & are smoother, then so is the solution obtained herein.

Tueorem 1. Let fe CX0, 1) and g, he CY0, T) where T > 0. Suppose that
/. & and h satisfy the compatibility conditions (1.2). Then there exists a unique
classical solution in €7 of the initial- and boundary-value problem (L.1).

Proof. Uniqueness has already been dealt with in Proposition 2. Existence
may be established by iteration of the local existence theorem proved in Proposi-
tion . Such a method is effective because of the a priori bound (4.1). This bound
shows that on any finite time interval [0, T), |l u(-, t)|l, , and hence || (-, t)|lco , is
uniformly bounded. But g and % are uniformly bounded, on [0, 77, by assump-
tion. Therefore the function

1S) = N (s thlgo + 201 Ailcoy, 1.5y T 118 lgogs, e 90

analogous to the function 7(S) defined above (3.17), is uniformly bounded for
0<t<Tand t <t+ ST But 7,(S) determines, via (3.18), a lower
bound on how far a solution, defined already on [0, ¢], can be extended by an
application of the local existence result in Proposition 1. As 7,(S) is bounded
above, so from (3.18) this extension length is bounded below by a positive
constant. It follows that the solution may be extended to [0, T] by a finite
number of applications of Proposition 1.

5. ConTiNuoUs DEPENDENCE RESULTS

An important aspect of a model equation for waves where singularities in the
flow are not expected to develop is the solution’s continuous dependence on the
prescribed data. Such a property is crucual if laboratory measurements are to be
compared to numerical approximations of solutions of the model. The following
theorem shows that the present model has a satisfactory property of continuous
dependence of its solutions on the data. When combined with Theorem 1, this
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continuous dependence result confirms that the model is well-posed in the
classical sense.

Tueorem 2. The mapping U: (v, f, g, k)~ u that maps v > O and the data
for (1.1b) into the corresponding solution of (1.1a) is continuaus from R* x C¥0, 1)
X CY0, T) X CY(0, T) into the solution Banach space 67",

Remarks. Let & denote the product C¥0, 1) X CY0, T) X CY(0, T). Then
R X Z is given the product Banach-space structure with

"(V)fv g. h)"“xg' == | 14 | + “f“C'(O.l) + " g I‘C‘(O.T) + 11 h HC'(O.T) .

The space €3 is defined in Section 2. The proof given below actually shows
that U is a local Lipschitz mapping between R X 2" and ¢7*. Note that con-
tinuous dependence of the solutions of (1.1) on the parameter « may be csta-
blished by the methods appearing in this section, provided « varies in the range
{a > 0}. The nondispersive limit « — 0 is more complicated.

Proof. Let (v;,f,8,,h)eR X &, for i =1,2. It is to be shown that
U@, , f1,81, B) — Ulvy . fo, €2+ by) is small in €5 provided that (v, . f;. £,
k) is close to (v, , fo, g2, B) in R X &. By the triangle inequality, it is enough
to show that Ul .fi,8, 1) — Uy, fai800 k) and Uln. foi 800 h) —
U(va, fs, g2+ hs) ate both small in €3%. That is, variations of v in R* and of
(f, & h) in  may be considered separately. (Indeed, variations in each piece
of data could be considered separatelly, but it does not simplifv matters to
break up variations in f, g, and %.)

First, variations of f, g, A, in Z are considered. Let » = »; and let ¥, =
U, f;,8..h) for i =1,2. Let w = u, — u,. Then w satisfies the variable-
coefficient nonhomogeneous initial- and boundary-value problem

w, + 0, + wew, + (4w), — vic,, — oW,y =0 for0 <L OLELST
(5.12)

with
w(x, 0) = f(x) for0 < x <,

(5.1b)
w(0,¢) =h(t) and w(l,t)=gt) forO<<t<T.

Here f=f; — f2, 8 =g — £, and h =k — hy . Tt follows that w satisfies
an integral equation, analogous to (3.9),

(s, 1) = exp(—nt]e) £(2) + d4(x) h(t) + (D) E(1)
+ [ exp(—rls — 7)/a?) K(x, &) [w(, ) + bo*(§,7) + uglf, 7) (&, 7)] dE dr

Joe

(1}
2 [ enplre = o)) Pls, &) ult, ) d 52)

o
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where A(t) = h(t) — exp(—vt/o®) k(0) and §(¢) = g(t) — exp(—wt/a®) g(0). Sup-
pose now that

"(f' & ")ﬂf = ”.f“ciw.” + “g “C‘(O.Tl + “ h "C'(O.T) < € (5'3)

where ¢ > 0 and, without loss of generality, ¢ < I.

It will first be shown that if ¢ is small, then w is small in C(0, T; HY(0, 1)).
This preliminary fact leads quickly to the desired result. Toward this end,
again let oy, t) = xg(t) + (1 — x) h(t) and let % == @ — v. Then 7 satisfies

7+ % + (#0): + P — e — e + (v7): = §, (54)
and
7z, 0) =f(x) —v(x,0) for0<Lx<1, (55)
7(0, ) =x(1,¢) =0, for0 <t T
Here
£, 1) = (o, + v, + (o) + v03). (5.6)

If (5.4) is multiplied by » and the resulting identity integrated over [0, 1], then,
after integrations by parts, the following relation emerges.

15[t et o [T ndr = — [+ w4 [ o 5)
dt 0 0 0
Now v, = g — h, and, from Theorem 1, it is known that u, lies in 3%, Because
e <1,

sup (v +u) | <1+ 3b=M,

0<2<1

0T
where the notation

has been introduced. An explicit calculation of £, in terms of g and 4, and a
straightforward use of (5.3) leads to the inequality

I €1l < €[5 + 4b] = eN.

Making use of the last two inequalities, and of the auxiliary norm introduced
above (4.5), in (5.7) yields

1

Ly 00 < B 20 O 4 V(- O
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It follows that

] "i(') i < s 0)llly eMt |- GNM“(@“‘ -1,

for 0 < t < T. Using (5.3) again, and the definition of v, one checks that, for
any ¢ in [0, T},

Lo il < 2 + 2a] =eL.

Thus, for 0 <t < T,
o, Ol < €'() MT [ £l + o) efL 4 NM-3(MT — 1) + LeMT),

where the equivalence of norms expressed in (4.5) has been used once again and
where ¢'(«) = max{x, a~}. Since || fllos < € || fll, < 2'2, andsofor0 <t < T,

[l oo(-, 2)lly < €Q,

where
0 =c'(x) 222 exp(MT) + ¢(a) [L(1 + exp(MT)) + NM-Yexp(MT) — 1)].

Note that Q is not dependent on ¢ in (0, 1]. This shows that w can be made small
in C(0, T; H*) by making e small, that is, by keeping the two sets of data close
together in Z. Hence from (2.2), w can be made small in € = C(0, T; C°) by
making e small, and in fact

Hewile, < eQu, (5.8)
where Q, = ¢,0.
Once this latter fact is appreciated, the integral equation (5.2) may be used

to show that w may be made small in €3 by making e small. For example, from
(5.2),

w =y (K + 25 h) + 6. (¢ + 2) + f: K(x, §) (@ + doo* + uw) d
+ ;'-’;L‘P(x, £ wdf — S w.
It follows that

helley < (1 + —5) (€l + 1 Al
+ a@ @l (1 + 3w e, + | v le;)

+ Flwle,+c (@Ml
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where ¢, and ¢, are defined below (3.13). Hence using (5.8),
| welle, < €Oy (5.9)
wherc

0021+ 55)-+ 500, (1440, ) 00 (G (o).

is a constant depending on a, 7', 4 and v.

Using the integral equation again, an expression for w, may be derived,
analogous to (3.19), and a bound on || u, lle,. of the form eQ, obtained, using (5.8).
Differentiating the expression for w; with respect to ¢, and using (5.8) and (5.9),
it is seen that || w,, ”q‘r < €0, . Using the integral equation once more to derive
an expression for w,, , and taking account of the information already in hand, it
follows that || w,, le, < €O, . Here, and below, the constants Q, depend on o, 7,
b and ». Finally, using the differential equation, a similar bound is found for
l 022t Il . It thus follows that

oy — uq ”g},x <eQ . (5.10)
A similar, but simpler, argument shows that U(y,, f,, g, , k) — Uy, fa,

82+ hy)is small in €7 provided | v, — v, | is small. Lettingu = Uy, , 2, g3 , 42
and © = Uy, fy, g2, b3), and y = u — v, then

Vet Pe+YYe + () — W Vex — PVane

(5.11)
= =)o, for0<x<1l, 0Kt<T,
and
y(x!0)=0' 0<x<l,
(5.12)
¥0,8)=y(1,8)=0, O0<t<T.

Upon multiplying (5.11) by y and integrating over [0, 1], there appears, after
several integrations by parts, and using (5.12) to evaluate the boundary terms so
obtained,

1 1
&%L(ya+a’jy,2)dx+v1£y}dx
1 1
= (1= [ yvusds+ [ ompads
<In—vlllwlgslyl+lelgaly i

Khllvy—welilylh +1y I3,
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where by =|| v lg}* . Since ¥(x, 0) =0, it follows that

I 90 Ollly < 9y — va | (exp(bye¥(e) £) — 1)/e(w)
for 0 <t < T. This shows that

llyllr:, < v =710, (5.13)

where Q, depends on a, »; , T'and on b, . Now use of an integral equation derived
for (5.11), in analogy with (3.9) and (5.2), allows (5.13) to be extended to a
bound of the form

Ilyl,,. 1<y, —2,10,. (5.14)
Combining (5.10) and (5.14), it follows that

WU, f, 18 8)— Ul /y, 8, hz)"q;,x <eQ, + |v, —v,10, (5.15)

and the desired continuous dependence result is established.

As a corollary of the method outlined above in the proof of Theorem 2,
a more general continuous dependence result emerges.

CoroLLaRY. The mapping U: (v, f, g, )~ u that maps v > 0 and the data
for (1.1b) into the corresponding solution of (1.1a) is continuous from R+ x CY(0, 1)
X CH0, T) x CX0, T) into €3*, where | >2 and k > 1.

6. CONCLUSION

A model for the propagation of unidirectional small-amplitude long waves,
which accounts for the small effects of nonlinearity, dispersion and dissipation,
has been confirmed to have a satisfactory mathematical theory of existence and
uniqueness of solutions. Moreover, the model was shown to be robust in that
small changes in the presented data, or in the dissipative or dispersive para-
meters, v and «, lead only to small changes in the corresponding solutions of the
model. The continuous dependence of solutions on v is especially pleasing, since
this parameter may not be precisely known in an experimental situation.

It should be emphasized that solutions exist on unrestricted time intervals.
For waves in the regime where it is hoped such a model could apply, it is not
anticipated that singularities will develop in the flow. Consequently, a
theorem of temporally local existence of solutions would have rather less interest.
The global existence theorem proved in Section 4 is a consequence of the a
priori bound derived in Proposition 3. If the data are restricted in size, corres-
ponding to the ranges where the model may be expected to apply, and if the
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right-hand boundary condition is g(t) = 0, better bounds on solutions may be
obtained. These may be relevant when a practical numerical scheme for the
model is proposed and analyzed. Such results are best worked out in the context
of a particular application of the model, and will be exposed in [4], where the
model will be tested against data collected in laboratory experiments on surface
water waves.
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