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INTRODUCTION

In the numerical solution of complicated nonlinear e-
quations in mechanics, one often assumes the existence of a
Smooth solution in order to derive error estimates for the
approximate solution. Sometimes rigorous bounds for the deriva
tives of the solution exist but are pessimistic in comparison
to observed behavior of numerical solutions; in more extreme
cases, for example the Navier-Stokes equations, no such bound
is known at all (globally in time for large data). The philoso
Phy often put forward is that the error estimates for the nume-
rifal scheme simply show that the approximate solution will be
c?oso to the exact solution if there is one which is sufficiently
regular. The point of this lecture is to observe that, in some
cases, more information can be derived from the error estimates
when'coupled with a posteriori knowledge of the discrete solution.
In fact, one can sometimes conclude more reqularity of the exact .
solution than was known prior to determination of the discrete
solution. This is effected using properties of the discrete
solution, the a priori error estimates for the discrete solution,
and some auxiliary estimates for tge exact solution. This pro-
cess will be described in complete detail for the BBM equation
[1] , and then implications concerning global eiistence in time
of smooth solutions of the Navier-Stokes equations will be dis-

cussed.

1. A priori esztimates for the BBM equation

To kagin with, ‘te review the known results (and present

sone new ones) concerning the equation [ 1]
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(1.1) u_ + u, +u u, - u

t xxt = 0

If the pure-initial-value problem is posed, i.e., (1.1) is to
hold for x € IR and ¢t 2 0 with data u(x,0) = g(x), then the
(Sobolev) H'-norm of u is invariant in time. This follows by
multiplying (1.1) by u, integrating over IR, and integrating by
parts. Thus Sobolev's inequality implies that

.

(1.2) lHull =) ¢ Hull gate) = llall 1, for £ 3 0.

However, when the initial - and - boundary-value problem ’
u(x,0) = g(x) for x > 0 and u(0,t) = h(t) for t > 0, with
g{0) = h(0), is posed for (1.1) (with u defined for x,t 2 0) ,
the situation is different. Multiplying by u in (1.1) now

yields

(1.3) % d—"t I ul+ul dx = -h(t)u, (0,t) + %n(:;u % h(t)?®,

and one must bound the non-data term u.,.(0,t). Bona and Bryant

[2] were able to do this in a way that yielded
czt
(1.4) Mull =te) < ce for t > 0,

where c; and c: are constants depending on the data g and h. We
can improve on this bound as follows. .
Multiply (1) by (Zuxt—u’) and apply the same operations

as before to get
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a.s & [ ul - Fuldx + ul (0,8) = h(t)?u,, (C,8) + ¢,(t),
0

where, here and below, ¢, denotes a function of t depending only

on the data g and h. Integrating (1.3) and (1.5) in time ylelds,
after simplification,

¢ y [* X
(1.6) Hlull 2:1(t) § (| n(s)2as) ([ ul,_(0,s)ds)? + ¢, (t)
o 0 0 Xt

- t
1.7 lou;(x,e)dx +3 Iou;t(o,s)ds $3 I:u'(x.t)dx + 4,00,

Applying Sobolev's inequality and (1.6) to bound fu® in (1.7)

gives

¢ - t t
a.e [ wieeoaxs} [ uieco,)as < o.(:)(]ou;t<o.s)a.)3/‘+
i 0 0

+ ¢, (t).

Applying the arithmetic-geometric-mean inequality shows that

' t
(1.9) lou;(x,t)dx + % ]ou;t(o,-)ds € 9,(t).

If g€ H' and h @ C!, then P () §c + c~t'whoro c, and ¢, are

constants depending only on ||9||u| and IIhIIC.. Applying (1.9)
in (1.6) gives

(1.10) ||u||L-(c) £ ||u||ux(t) £ ¢,(t),

where, under the above assumptions, ¢,(t) ¢ ¢, + c,t.

Estirate (1.10) gseems optimal concerning the growth of
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the energy || u|| p (t), but overly pessimistic concerning [all =
Numerical computations indicate that (for suitably bounded h )
{lu]l = stays bounded. 1In the next section it is shown how to

prove this by making use of the numerical computations.

2. A posteriori error estimates for the BBM equation

The authors [ 3] have developed a numerical integration
scheme for (1.1) that is 4-th order accurate with respect to the
spatia} and temporal discretization parameters, Ax and At, res-
pectively. Let U denote the discrete approximation. Error esti

matés for the scheme have been derived of the form
(2.1) Hu-G]| ;=(t) < c(D(t),tf (A" + ax* + X,

' where X is a measure of the length of the spatial domain used
and D(t) is bound for the spatial and temporal derivatives of
u (of order 4 and 5, respectively, on IR x[0,t]). Here, it is
assumed that the initial data g decays exponentially (e.g.,g=0)
the proof of (2.1) involves showing that u(x,t) decay{ exponen-
tially in x for t > 0 as well.

It is further shown in [ 3] that D(t) can be bounded
in terms of o(t) = max {|u(x,8)|: x 2 0, 0 £ 8 § t}. For exanmple,
it is shown in [ 2] that '

(2.2) u, (x,t) = h' (tle X + l K(x,y) (u+ % u?) (y,t)dy,
0

1

where K(x,y) = [g_(X+Y) + sgn(x-y)e—(x_y)]. Thus HElder's ine

[N]]

quality implies that
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i 1 2
ugll p=te) ¢ [n'(e)] + o(e) + 3 olE)".

Differentiating (2.2) with respect to t and x similarly ylelds
(inductively) bounds on higher derivatives of u in terms of
a(t):

(2.3) D(t) & £{o(t),h,qg,t), .

where the form of £ is given explicitly (it is a polynomial in

0 and t£). Thus (2.1) becomes

(2.4) Il -3l j=(t) ¢ clo(e),t) €

where @ 3 At + Ax* + @ X. Therefore

(2.5 Jlullg=te) < |Ju-ifl =te) + |[G}] =2

$ clo(t),t) e + llﬁlln-(e).

The function c in (2.4) is such that c¢(*,0) = 0 and c(o,t) {is

non-decreasing in 0 and strictly increasing in t. Therefore the

a posteriori bound

el

(2.6) o(T) = max

[lul];=(t) ¢ max ||&}|,=(t) +1
te[0,T] - te[v,T] L

holds provided T is such that

= 1
(2.7) el max ||G|},=+1, T) ¢ 3.
te[0,T) L ! e

Note that we can take T + = as 6 - 0. One reason that it is
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desirable to have a good bound on o(t) is that it appears expo

nentially in the error constant ¢, i.e., ¢ contains a factor of
o(t)t

the fors e . If o(t) were to grow with t, the error estimate

(2.1) would become useless for t of moderate size.

.

3. Global existence of smooth solutions of the Navier-Stokes

equations

Consider the initial-and-boundary-value problem

¢ + u-Yu - Viu = -9p _
in 2 x[o0,T]
Veu = 0

(3.1) u

u(x,0) = u (x) for xef, u(x,t)=0 for x @ 3N,

where ? C IR?. It is not known whether (3.1) has a smooth so-
lution for arbitrarily large T > 0, unless u, is suitably res-
tricted. However, it is possible to derive bounds analogous to
(2.3) for derivatives of u in terms of bounds for u, as is well

known [ 4]. For example, let o(t) = max _full ,p g, (s). Then
L4 ! sefo,t] L=

multiplying (3.1) by V?u, integrating over R, integrating by

parts, etc., leads to

(3.2) llull o (&) ¢ /€ ¥, (alt),p) + I ug g

.

provided p > 3. Here, Y, 1s a function, depending only on @and

Iluo||L3' that is increasing ino,

Thus, it should be possible to apply the ideas of the previous

section in this context as well.

decreasing in p, and !'(o,p)-o.

U6 7T T 2 O e s SO YIRS S
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Suppose that we have a discrete approximation u tou

such that

. -4 (t¢) <e max _||ul],(8),
(3.3 lu-dll g sz ity

where @ represents a mesh parameter. Further, suppose that u

lies in a linear space S having the approximation property

3/p~-1/2
(3.4) 1n!||u-v||Lp £ 8 ||u||u1
ves )

for 1 £ p £ 6 and the inverse property
(3.5) llvllgp < §3/p=3/2 lIvll,2 for ves andap > 2.
Then, standard arguments using (3.3-5) show that

~ 3/p-1/2 [ e]
(3.6) u-u (t) €8 2 + max u (8) .e
A §] e il

From (3.2), (3.6) and the triangle inequality it follows that

3.7 lullp(e) ¢ &l pie) + s?/P'l/z[z +%~]?z(t.a(t))-

where ¥, (t,0) = 7/t ¥ (a,p) + ||u°||n,. Thus we have the a

posteriori estimate

(3.8) (') = max _|u]] . p(t) € max _|]d|],p(t) + 1
¢ tefo, 7] T te[o0,T] b

’

as long as T satisfies
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3/p-1/2 [ € ] ~
§ 2« ¥,(T, max _||& (t) +1) ¢2.
x 2 te[o,'l‘] I ”Lp ) $

(3.9)

Note that taking equality in (3.9) gives T ~ §l-8/p provided

€ = c6 (recall that p > 3 is required). Combining (3.2) and
(3.8) yields '

(3.10) Helia(e) € ¥ (T, max 1K (t) + 1)
te[o T) H * tefo,1] 811 gt

provided T satisfies (3.9). Note that, as long as € ¢ ¢ 6% for

some r > %, T can be takxen arbitrarily large by leﬁting § tend
to zero. Bounds for higher derivatives of u also follow on
[o,7] by standard techniques. Recent results of John Heywood
show the singularities of a wegk solution of (3.1) must be res-
tricted to a finite interval of time, s0 4f T can be taken large
enough in (3.9), the question of global existence of a snooth

solution to (3.1) can be completely resolved.
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