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Model Equations for Waves in Nonlinear
Dispersive Systems

Jerry Bona

The present discussion focuses on models for unidirectional wave propagation
in which nonlinear, dispersive and dissipative effects are simulated realistically and
in such a way that shock formation and other singular behaviour is avoided. While
comparatively narrow, the range of discussion nevertheless covers a number of
interesting and challenging scientific issues, several of which still remain open.
The model equations take one of the following forms:

U +f(u)+Hu, =0, (12)
or

U +f )z — Hu,, = 0. (1b)

Here u=u(x,t): RXR—R and subscripts denote partial differentiation. The func-
tion f:R—~R represents nonlinear effects in the physical system being modeled,
while H is a linear operator representing dispersive effects, and dissipative effects
when they are considered. The best known model in the form (I1b) is the KdV
equation

ut+ux+uux+uxxx = 0 (2)

which was introduced by Korteweg and de Vries [17] and has in recent years been
the subject of prolific study.

The derivations of approximate equations such as (1a, b) differ from one modeling
situation to another. Nevertheless, one may appreciate in general why such models
arise, at a certain level of approximation, without relying on the details of a particular
application (cf. Benjamin [3]; Benjamin, Bona and Mahony [6]).

Upon lingarization of the full equations of motion around a rest statesa dispersion
relation is determined for plane simple-harmonic waves which relates frequency
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w=kec(k) to wave-number k. For example, two-dimensional surface waves in
water of uniform depth have the dispersion relation

c(k) = w(k)/k = {tanh (k)/k}"> 3)

in suitably scaled coordinates. Here the phase velocity c(k) has a maximum ¢(0),
corresponding to the limit of large wavelengths. In general the propagation of
infinitesimal waves in such a system will be governed by an equation of the form

u, +Mu =0, C))

where i (k)=ikc(k)di(k) and the circumflexes denote Fourier transforms. Note
that if ¢(k) has a nonzero imaginary part, then (4) will contain a dissipative term.
In many applications attention is restricted to a long-wave régime k<1, and it is
then justified to approximate c(k) near k=0 in order to obtain a more tractable
model equation. In the case of water waves as mentioned above, two relevant models
are

u,+ux+% Uy =0 and u,+ux—% Uy = 0, )

which correspond respectively to the dispersion relations c(k)=1 —%kz and c(k)=
1/(1 ++k?% approximating (3).

If the effects of dispersion due to finite wavelength are ignored and attention
is concentrated solely on the effects of nonlinearity, then it is a general attribute of
the systems in question that waves propagate along characteristics which depend
on the value of the dependent variable: thus

o = g(u).

dt u=constant

This property is equivalent to
u+f (W) =0, ©

where f’=g. If the régime of interest includes in its characterization an assumption
that the waves be of small amplitude, then it is justified to use a simpler model
obtained by approximating g for small values of its argument. If a linear approxi-
mation to g is presumed to be adequate over the range of amplitudes in question,
then we take g(w)=1+u, say, and so obtain

u+u,+uu, = 0. @)

If the nonlinear, dispersive and dissipative effects are of a similar order of smallness,
then normally the interaction between these effects is of a yet higher order of smallness.
Accordingly, it is warranted simply to add the extra terms appearing respectively
in (5) and (7), so to obtain the model equation (1b).

It is noteworthy that nonlinear, dispersive and dissipative effects are generally
small corrections to the basic one-way propagator u,+u,=0, which is just a factor,
governing propagation in the + x-direction, of the one-dimensional wave equation.

Ti
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Thus, if g@)=1+g,(u), where g,w)=0@) as u—0, and if c(k)=1+cy(k),
where typically c¢,(k)=0(k? as k-0, then (1b) may be written as

U +uy +f1(u)x—Lux =0, ®

where f{=g; and L/B(k)=c1(k)b(k). Provided u and k are required to be small,
then f, and L are of higher order of smallness than the leading terms #, and u,.
In such a situation, the basic level of approximation will be unaltered if the approxi-
mate relation u,=—u, is utilized to alter the higher order terms. Hence the
equation

ut+ux +f1(u)x+Lut =0 (9)

of the form (1a) may be inferred as a model for the unidirectional propagation of
small-amplitude long waves. References to specific examples where (la, b) have
been derived as models may be found in the review article of Jeffrey and Kakutani [15]
and in the two collections of articles on nonlinear waves edited respectively by
S. Leibovich and R. Seebass [19] and A. Newell [21].

Some care is necessary in the use of the approximations outlined in the preceding
discussion. The stated hypotheses are invariably pivotal to the derivation of these
equations as rational models, and they should therefore be respected in using the
models to gain insight into a physical situation. In the particular case of irrotational
surface waves on shallow water, if the independent variables x and ¢ and the
dependent variable u, which represents the height of the wave above the undisturbed
depth, are scaled so that » and its derivatives are order one, there appear the two
model equations

U+t eut, 4 0%ty =0 (10a)
and
U+ U, +eutt,— 6%,y = 0, (10b)

corresponding to the different approximations to the dispersion relation given in
(5). The parameter & is a measure of the amplitude of the waves and 67 is a
measure of their wavelength. It is appropriate to assume both eand § are small, in this
scaling, and that ¢ and 6% are of the same magnitude. In the literature on water
waves this is sometimes expressed by demanding that the Stokes number S=gd >
is order one. The assumption concerning the Stokes number being valid, an order-
one change of the dependent variable gives the special case =62, In this scaling
it is apparent that the nonlinear and dispersive terms represent small corrections
to the basic propagator u,+u,=0, the smallness of the corrections being measured
explicitly by & Needless to say, the zero on the right-hand side of (10a, b) represents
an approximation to terms that are of order &%,

On time scales of order &~1, the nonlinear and dispersive corrections can ac-
cumulate and have an order-one influence on the wave profile. Equally, on time
scales of order &~2, the higher order terms not included in (10a, b) can have an
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order-one effect on the wave profile. Hence, on such time scales, the models may
have become unreliable and predictions made on longer time scales should be viewed
with caution.

At first sight it might appear somewhat contradictory that two different models
purport to describe the same physical phenomena, as in (10a, b). However, it has
been shown by Bona, Pritchard and Scott [11] that if » and v denote respectively
the solution of (10a) and (10b) corresponding to the same order-one initial wave
profile, then u—v is of order & over the time scale -1, Numerical studies indicate
that the difference u—v grows linearly to order one on the time scale =2 Hence
it appears that the two models may indeed simultaneously provide accurate predic-
tions at least over time scales where either model may be expected to apply. A further
conclusion is that expediency should govern the choice_of (10a) or (10b) in a parti--
cular situation where a model for small-amplitude long waves is needed. For instance,
the inverse scattering methodology and the infinite collection of polynomial conserved
densities for (10a) may both be very useful for various theoretical considerations
(cf. Miura [20] for an account of the inverse-scattering method, and Whitham [27]
and Segur [26] for some applications). Olver [22] has shown that (10b) has only
the three polynomial conversed densities corresponding to mass, momentum and
energy in the original physical problem that is modeled. This and certain other facts
indicate that there is also no inverse scattering formalism for (10b), at least as we
presently understand such a formalism. On the other hand, (10b) is far easier to
handle numerically than (10a).

In the task of comparing the predictions of the models (10a) or (10b) with ex-
perimental data, the most natural mathematical formulation is an initial- and
boundary-value problem to be explained presently. In this setting, (10b) appears
definitely easier to use and quantitative comparisons using (10b) have been made by
Bona, Pritchard and Scott [12]. Their work supplements earlier comparisons, made
using the pure initial-value problem for (10a), by Zabusky and Galvin [28] and by
Hammack and Segur [14], which showed good qualitative agreement between
measured data and theoretical predictions.

The experimental configuration used in all the above-mentioned comparisons
was a rectangular channel containing water with a wavemaker at one end. For the
experiments reported by Bona et al. [12], the water was initially at rest when the
wavemaker was set in motion. At several stations along the channel, temporal
records of the passage of the waves generated by the wavemaker were taken. An
appropriate mathematical problem was suggested and analyzed by Bona and
Bryant [9]. In dimensionless but unscaled coordinates, it is

ut+ux+uux_uxxl = Os

(11)
u(x,0) =0, u(0,) = g(),

for x,t=0. In a numerical scheme for (11), the function g is a discretization of
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the measurement of the wave taken closest to the wavemaker. The numerical
integration of the model (11) will then predict u(x,,t) for any station x, further
from the wavemaker than the station at which g is measured. Such a prediction
may then be directly compared with the measurement taken at the station x, and
the model judged on the basis of the discrepancy between the two.

The Stokes number S for these experiments ranged from 1/4 to 30. Dissipative
effects proved to be generally of the same importance as nonlinear and dispersive
effects, and accordingly had to be incorporated into the model. The proper form of
dissipation term in equations of the types (10a) or (10b) has been derived by Kakutani
and Matsuuchi [16] and it is non-local in character. For the experiments in
question, where most of the energy was manifested at one frequency, an ad hoc,
local form of dissipation represented by a term —vu,, in (11) can be justified. This
form was used by Bona et al. [12], although comparisons are desirable between
measured data and predictions from the model incorporating the proper form of
dissipation. The latter need poses an interesting mathematical and numerical
challenge which is presently under study.

The agreement between the experimental and numerically predicted values was
quite good. For § in the range [1/4, 10], the difference between the measured
and computed wave traces was about 8% of the size of the physical wave, The
agreement was less striking as S became large. The difference between the measured
and the computed wave was 22% of the size of the measured wave when S=30.
These comparisons are all respective to the L_ norm. Even for such large values
of S, some of the qualitative properties of the wave profile were still modeled well,
although quantitatively the situation had deteriorated.

Turning now to a different aspect, we recall one of the most fascinating pro-
perties of many of the equations in (1). It is that, when dissipative effects are ignored,
the balance between nonlinearity and dispersion admits the possibility of a special
class of waves moving at constant velocity and without change of shape. These
waves were called solitary waves by Scott Russell [25] who first observed them on
the surface of a canal in the early 1830s. Scott Russell subsequently conducted
experiments which showed the solitary wave to be a very stable waveform, which
could sustain repeated complicated interactions without losing its identity. The
cxistence of such permanent waves was at variance with the surface-wave theory
known in the middle of last century. Indeed, one of the main accomplishments of
Korteweg and de Vries in the 1890s was to resolve the paradox of the solitary wave,
at least at the level of their model equation. Even so, the importance of this class
of waves was not recognized until the 1960s when computer studies by Kruskal
and Zabusky [18] of the KdV equation (2) showed that an initial profile of
elevation broke up into a sequence of solitary waves and very little else. An analogous
result for the sine-Gordon equation had been obtained earlier by Perring and Skyrme
[23]. The celebrated inverse-scattering theory for (2), first discovered by Gardner,
Greene, Kruskal and Miura [13], subsequently established this result, and a host
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of others including the fact that solitary-wave solutions of (2) emerge from inter-
action with each other with only a phase shift. This type of exact result is true for
a number of other wave equations admitting an inverse-scattering theory, including
the sine-Gordon equation.

Recently a class of equations of the form given in (1) has been shown to possess
solitary-wave solutions (cf. Benjamin, Bona and Bose [5]; Bona and Bose [8]), even
when the operator H is not a differential operator. Moreover, numerical studies
show that while the tidy situation regarding interaction of solitary waves for the
KdV equation (2) does not in general obtain, the solitary wave nevertheless plays
a distinguished role in the long-term evolution of an initial profile of elevation.

To take a concrete example, consider the model equation (10b). It has been proven
by Benjamin [2] and Bona [7] that the solitary-wave solution of both KdV and
(10b) is stable in the following sense. Let ¢ denote a solitary-wave profile and
let Y be a perturbation of ¢, say in the norm defined by

w2 = [ [w2x)+wE ()] dx.
R

Let #=0 be given. Then there exists a 0=>0 such that if [¢—y| <J, then
d(e,u)<n for all #=0, where u is the solution, of (10b) say, with initial profile
Y and
d(w,v) = inf |lw(+)—v(- + )l
yER

is a pseudo-metric that compares the shape of two functions. One may think of
d as being defined on the product of the quotient space Hl/z with itself, where
H?' is the space of measurable functions f: R—R such that ||f|| << and 7 is the
translation group in R. Moreover, Abdulloev, Bogolubsky and Makhanov [1]
and Bona, Pritchard and Scott [10] have produced numerical results indicating that
when a pair of solitary-wave solutions of (10b) interact, the bulk of the mass emerges
as a slightly different pair of solitary waves, shifted in phase, with a very small dis-
persive tail lagging behind. Finally, numerical experiments indicate than an initial
wave of elevation evolving under (10b) breaks up into a finite number of solitary
waves followed by a dispersive tail. Similar numerical results hold good for other
models of the type given in (1).

Exactly what we should make of all this is still unclear. What is it in common
to the models (1a) and (1b) that causes waves to evolve into solitary waves? What-
ever this may be, it is probably more fundamental and at the same time less powerful
than the inverse-scattering theory. A satisfactory answer to this question might have
implications for the more complex models such as the various versions of the
Boussinesq equations and ultimately the full equations of motion for various physical
systems.

A final point deserves mention. Equations (1) have natural multi-dimensional
versions which are of interest. The case of a system of two equations, for example,
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can serve as a model for the two-way propagation of one-dimensional waves. An
existence, uniqueness and regularity theory for such systems has been given by
Saut [24] in the case (1b) and by Benjamin and Bona [4] in the case (1a). However,
the qualitative properties of solutions of such systems are still largely unknown.
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