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- The first observation of a solitary wave appears to
have been made by Scott.Russell in the third decade of the last

-century Standing on the banks of the Edinburgh-Glasgow canal,

Russell witnessed a moving barge come suddenly to rest, upon

collision with a partially submerged. obstacle. The abrupt ces-
_sation of motion created a long-crested wave, with an ampli -.
' tude of some forty cm., which went rolling off down the canal.

Giving chase on horseback, Russell observed that the wave pro-
Pagated essentially without change of shape or of speed.

Fascinated, Russell went on to conduct a series of
laboratoxy experiments on this phenomenon. The outcome of his
investigation was reported in 1844, and published in 1845 in
a wide-ranging article in which the term "solitary wave" was
coined. Russell's work posed interesting theoretical questicns
which have subsequently been addressed many times.

Several lihés of inquiry relating to solitary waves
are now discernible. There is a large physics, engineering and
geophysical sciences literature featuring solitary waves and
related phenomena. There is the mathematical theory for the
so-called "full equations of motion" {for surface water waves,
these are the two-dimensional Euler equations with the awkward
free—surface boundary conditions). There is as well a mathema
tical theory revolving arcund various model equations, Finally,
numerical simulation of solitary waves and of their various in
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teractive properties has wveen very fruitful in the last two
decades. Here the discussion will focus on the third line of
iﬁquiry, which dates at least from Boussinesqg (1872). For more
complete references to these and other aspects of solitary
waves, one may consult Bona (1980).

As a first step, the essentials of the derivation
of these model eqguations is recalled, following the general
lines laid down by Benjamin et.al. (1972). The derivaticn does
not point to a unique model equation, at a given level of appro
ximation. One of the representative evolution equation is the
famous Korteweg-de Vries eguation (1895),

u +u 4 ouu o+ W = 0, . (1)
where subscripts denote partial differentiation. The variables
are dimensionless but unscaled. The depehdent variable u is
proportional to the displacement of the medium, while x and ¢t
are, respectively, proportional to distance in the direction
of propagation and elapsed time. ]

To foster confidence in these model equations, con-
parisons of numerical simulation of their solutions with labo-
ratory data are essential. Various comparisons of a qualita -
tive nature have been made (cf. the references in Bona - i
Pritchard and Scott, 1980). A direct quantitative comparison
" was undertaken, and reported in the last—quoted reference. :

There an initial — and boundary — value problem for an alter

nate model was used: v A ;

=0, A ey

n, +tu +un -au -ou
for x,t > 0, with

u(x,0) = £(x),  for x » 0,
and

u(0,t) = h(t}, for t » 0.

The constant a is positive and the term -au, . is added to

=
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account approxinmately for dissipation.

“In the range where these models are formally wvalid,

they worked quitz well. If U denotes the wave profile predicted

by the model and u the measured wave profile, it is found that
the relative error

stp Ju-uj

sup |u]
is about 8%. Even when the model is forced to predict in a

regime which is probably outside its formal range of validity

the

gualitative agrsement is not bad.

Taking these results as evidence that such models-

»do embody intéresting physical phenomena, attention is now

directed to a closar inspection of the mathematical Properties

of solutions.

As hirted earlier, many of these models eguations

have similarity solutions representing solitary waves. = For
example, the K4V equation in the form(l) has the exact solutien

S.(x,t) = 3cC h2(1 55—-(c+i)t } : (3)‘.
ctxr e sec] 7c Lf ’

where C > 0 determines the awblitude and speed of the wave
These solutions will be referred to as solitary-wave solutions

of

the relevant squations.
! Two guite striking properties of the special solu ~

tions in (3) came to light in the mid-1960's, as a consequence

of the inverse—scattering theory for the Kav eguation {see
Mivra, 1976, for a nicer summary of this theory). Pirst is
their property cf excct interaction with each other. More

recisely stated. thers is an exact solution v of the Kav e—
P e

qusz

and

tion which has the asymptotic forms
u(x,t) ~ Splxth, t) + Splx,t), as t =~ -=,

ulx,t} - SF(x+c,t) + SD{x+d,t), as t© -+ 4w,

e s e
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where the "phases", b,c and & are just constants. For t << o,
u thus looks like a fair of widely separated and independently
propagating solitary waves, and similarly if t >> 0. as t in-
craases from -=, the larger solitary wave, having a Greater
speed of propagation, {(cf.(3)) overtakes the smaller sclitarv
WAVR. The;e follows a nonlinear interaction, after which the
same two solitary waves are found energing frorw the interaction
and going their independent ways, with only phase shifts as
souvenirs of the interaction.

Even more surprising is the resolution of wave pro—
files into solitary waves. Consider-the pure initial-value
problem for (1), namely to solve (1) for x € IX, t 2 0,subject
to the auxillary condition

u(x,0) = f(x), (41

where £ is a given reasonahly smooth functicn cecaving to 0 at
infinity appropriately, along with its first few derivatives.
Physically, one may think of f as describing a given initiel
wave profile at a given instant of time. Suppose £ 2 0 for
convenience. Let u(x,t) be the (unique) solution of Kdv satis
fying (4). Then for t >> 0, u has the form of a finite sequen
ce of independently propagating solitary waves, ordered by in—-
creasing amplitude, and very little else, Interpreted practi-
cally, this means that a reasonably arbitrary disturbance will
sort itself into a finite number of pulses.

" These exact results have analogues in a few other
model equa&ions of physical interest (eg. one version of the
Boussinesq equations and the sine-Gordon equatior). However 3
there seem to be a host of equations which, while perhaps not
having these striking properties that obtain exactly for the-
KdV equation, nevertheless manifest similar behavior.

To take a concrete example, consider the equation
(2) with a=0. 1If is known that this equation does not have an
inverse-scattering theory. Nor does it possess infinitely
many polynomial conservation laws, as KdV does. And, it does
not appear that the sdlitary-wave solutions cf£ (2), which are
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similar to the form exhibited in (3), interact exactly either.
. Nonetheless, solitary-wave solutions of (2) "almost" interact
exactly. Additionally thes remarkable property of  resolution
into solitary waves @pp=ars to be wvalid Zor solutions of
equation (2) (seill with a=0 of coursa) . These results wera
obtained recently (Bona, Pritchard and Scott, 1980) by numeri-
cal integration of (2) . why this should be the case, for (2)
and for a number of other equations, is an interesting open
question. .

Finally it deserves mention that solitary wave so-
lutions have been shown to exist for a more general class of
model equations, having the form

u, + u, + f{u)x + Lux = 0.

Here f is related to nonlinear effects suffered by the . waves
while L embodies an aéproximation to the dispersive effects
inherent in the system. (Cf. Benjamin, Bona and Bose, 1976 and
Borna and Bose, 1978). Non-constructive methods of functional
analysis are used in the last-cited works, and so closed formu
lae for these waves are generally not available, However, pre
liminary numerical simulations of some of these equations show
that, generally, thers are classes of initial data that evolve
into a sequence of what appear to be solitary-wave solutions
of the particular equation. The issues plainly need further

oy ea
=

investigation.
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