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The first recorded observation of a solitary wave ap-
pears to have been made by Scott Russell in the third decade

of the last century. Standing on the banks of the Edin-

burgh—-Glasgow canal, Russell witnessed a mcving barge come

suddenly to rest, upon.collision with a partially sub-

merged obstacle. The abrupt cessation of motion created a

long-crested wave, with an amplitude of some eighteen inches,
which went rolling off down the canal. Giving chase on
horseback, Russell observed that this wave propagated with-
out much change of shape, or of speed.

- Fascinated, Russell went on to conduct a series of labe
oratory experiments on this phenomenon. The outcome of his
investigation was reported in 1844 and published in 1845 in
a wide-ranging article in which the term 'solitary wave' was
introduced. It is a simple exercise to see that the then
ekistent shallow water theory (cf. Airy, 1845 and Rayleigh,
187s6), formally valid for waves of extreme length 'and of
amplitude small compared to the depth, could not explain
what Russell had discovered. Consequently, Russell's work
posed interesting theoretical questions which have subse-
quently been addressed many times.

Stokes. (1849) considered the question, and concluded
that solitary waves could not exist. More precisely, he
claimed that progressive long waves cannot propagate with-—
out change of form. Despite his erroneous conclusion,
Stokes isolated an important parameter, herein referred to
as the Stokes number and denotéd S, defined as akz/h3, where
a is a typical wave amplitude, A is the length-scale of the



waves in question, and h is the undisturbed depth.
(Throughout thiS'paper,rhrwi;l,be,assumed to be'constant.)

water theory needed large values of s. .

Boussinesqg (1872) ang Rayleigh (1876) both made
attempts to describe the solitary wave, Rayleigh consider-
ed the solitary wave in an Eulerian frame of reference mov-
ing at a velocity that brings the wave to rest. He then

in terms of its maximum deviation a from the undisturbed free
surface, obtaining the approximate formula

aosechz[(b/Z)(x - ct)], (1)
for the solitary wave profile, Here
b2 =,3a/[h2(a + h)] and c2 =gl(a + h), '(2)

where h  is again the undisturbed deﬁth of the liquid and g
is the acceleration due to gravity, Boussinesq followed
quite a different line of argument, deriving from the Euler
equations an approximate evolution équation, which now bears
his name. This evolution equation has a particular solution
in the form (1) which may be taken therefore to represent

a solitary wave, though the constants a, b, and ¢ are re-
lated in a different way than in (2). Boussinesq's and
Rayleigh's approximate solita:y waves agree exactly if termg
of order a“ are neglected. ‘

which is small and a wavelength which is large compared to
the undisturbed depth. Additionally, they recognizeg the
importance of Presuming the Stokes number to be neither too
‘large nor too small. They reﬁgrred explicitly to Stokes!



paper, cited above, in:factf Going a step beyond Boussinesqg's
theory, Korteweg and de Vries restricted.attention to waves
moving in only one direction. Thus they obtained a differ-
ential equation which is first-order in the temporal vari-
able instead of a perturbation of the linear wave equation
My = Mgy rSUCh as Boussinesq obtained. Their equation also
possesses exact solutions of the form (1), with yet another
relationship between the constants a, b, and c¢. The Korteweg-
de Vries version of the solitary wave agrees with Bou531nesq s
and Rayleigh's version to within terms of order a2.' It is .
amusing to note that Scott Russell had already emplrlcally
found the relationship between amplitude a and speed of
propagation c 1mp11ed in these three approximations to the
solitary wave. ' _

Solitary waves continued to attract attenfion in the
- ensuing decades, both for their own sake and in conjunction
with various other shallow~water phenomena. We point, asbl
examples, to the work of Daily and Stephan (1952), Fried-
richs and Hyers (1954), Keady and Pritchard (1974), Keller
- (1948) , Lavrentieff (1943, 1947), Munk (1949), Sverdrup and
Munk (1946), and Weinstein (1926) . However, the model equa—‘
tions, at the level of approx1matlon envisioned by Boussinesq
and by Korteweg and de Vries, attracted comparatively llttle
notice, though the papers of Keulegan and Patterson (1940) .
and Ursell (1953) deserve note as ‘being exceptional in this
aspect. Keulegén and Patterson filled in many of the details
.1n Boussinesq's arguments while Ursell clarified the approxi-
mations involved in the Bou531nesq equation, including par-— -
ticularly the role played by the Stokes number. (Accordlng— .
ly, this dimensionless combination is sometimes referred to
as the Ursell number. )

Recently progress has been made on the purely mathemat-
ical side of the problem of solitary waves. Beale (1977)
has refined the existence theorv given by Friedrichs and.
Hyers (1954) for - ‘small-amplitude solltarywwave solutions of the
"Euler equations. And very recently, Amick and Toland (1979)




have shown that solitaryéwavefsglutions of the Euler equa-
tions exist for all‘amplitudes, up to‘afwavé of greatest
height. Also deserving particular mention are the careful
numerical calculations of Longuet-Higgins (1974), Cokelet
{(1977), and Longuet-Higgins and his collaborators Fenton
(1976) , Fox (1977, 1978), and Byatt-Smith (1976). These
computations have turned up some interesting aspects of
larger-amplitude solitary waves. These exciting develop- -
ments, and many others including the theory of internal
solitary waves and periodic permanent waves, will not be
featured in what follows. Instead, interest will be focused
on model equations, exemplified by the Korteweg-de Vries
equation.

In 1960, Gardner and Morikawa derived the Korteweg-de
Vries equation as a model for magnetohydrodynamic waves in
a cold collisionless plasma. On the heels of this discovery,
Kruskal and Zabusky found the Korteweg-de Vries equation as
a continuum limit of a system of masses and springs consid-
ered by Fermi, Pasta, and Ulam (1955). Their extensive
‘numerlcal s;mulatlons of solutions of the Korteweg—de Vries
equation revealed some startling properties of this equation .
(cf. Zabusky and Kruskal, 1965, Kruskal, 1963, and Zabusky,
1963). These discoveries led to a sustained effort to
analyze this equation, which continues to the present. ,
Gardner, Greene, Miura, and Kruskal (1967) found an expllc1t
procedure for solving the KdV equation, as the Korteweg~de
Vries equation will be referred to henceforth. With this
procedure came a host of exact solutions, asymptotic prop-
erties of solutions, and the like. This procedure was put
into a form which revealed its essential structure by Lax
(1968). It is fair to say that this discovery, the so-
called inverse-scattering theory for the K4V equation has
opened up a new and rich area of research which has, by
now, reachéd industrial proportions. )

Since Gardner and Morikawa's discovery, there have been
quite a number of instances in'which the K4V equation, or a.



near relative, has béen derived"as,a model equation at a
certain rudimentary level of approximati@n; Some of the
applications of this eguation may be found discussed in the
review articles of Benjamin (1974), Jeffrey and Kakutani
(1972), and Scott, Chu, and McLaughlin (1973). The full
equations for the various physical situations where Kdv
‘appears as a model are generally of quite disparaté char-
acter. Consequently, one would like an explanation of the
ubiquitousness of the KAV model. An'attempt to explain
this state of affairs was put forth by Benjamin, Bona, and
Mahony (1972), and it will suit our later purposes to
briefly review this material, | _

The starting point of the analysis is the recollection
of the assumptions underlying the passage from the full
equations (e.g. the Euler equations) to a KdV-type model.
The motions considered must be basically one-dimensional,
and the waves must propagate only in one direction. More-
over;vit is typical that the amplitude of the wave must be
small and the wavelength long, but not independently so.
Rather, there must be a balance between these two gquantities,
which in the case of surface water waves in a channel is )
- reflected in the Stokes number being of order one. We shall
consider the modeling of such waves, based on the just-
mentioned properties along with two other fairly general
principles. ",

A simple model for one-way propagation of one-dimen-
sional waves is given by the conservation law

Nt on, = 0. S (3)
The variables here are the wave amplitude_n,.thé spatial
coordinate x and the temporal coordinate t, which are all
dimensionless, of course, Indeed, this model is not too
bad,bover short time scales. However, over 1onger time
scales, nonlinear, dispersive and dissipative effects can
accumulate and render this simple model invalid., '
First consider nonlinear effects. The model (3) is



equivalent to the characteristic equation
éﬁ.{ =1, (4)
dt t n = constant '
which simply states that the disturbance propagates without
change of shape at speed one. In many systems, it is found
that, at a higher order of approximation, the disturbance
propagates along characteristics which depend on the ampli-
tude of the wave. Thus in place of (4) there is a relation
of the form

dt N = constant

The function f will be determined by the specific physical
problem being investigated. For infinitesimal amplitudes, ,
and in the absence of dispersive and dissipative effects, it
is expected that (5) should reduce to (4), at least over
certain tlme intervals. Consequently, £ is inferred to have
the form '

£(z) =1 + g(z),

where g(0) = 0, If in fact g is a twice contlnuously
dlfferentlable function, then

£(z) =1 + g'(0)z + 0(z2),

as z —» 0., Assuming that g'(0)is non-zero, which is not
always the case in interesting examples, and neglecting the
higher-order term, on the basis of the assumption that the
model is only concerned with small valuesof n (small ampli-

tudes), the approximation

dx ‘  El+yn (6)

dt | n = constant . »
emerges. Here y = g'(0). If 71 is rescaled to be order one,
then y becomes a small parameter. The characteristic equa-
tion (6) is formally equivalent to the partial differential.

equation "



Mg v+ ymm =0, (7)

More generally, the characteristic equation (5) is formally
equivalent to

‘nt + F(n)x =0,

where F is any antiderivative of f. 1In particular,- if
f =1 + g, the last equation becomes
Mg + o+ Gln)_ =0,

where G' = g. Thus (8), and,in particular (7) when g has a
non~trivial linear term, may be viewed as a modification of
the basic one-way propagator (3) that accounts for the non-
linear effects of small, but finite, amplitudes.
The effects of finite amplitudes are now 1gnored, and

a correction for frequency dispersion is addressed - As we
are then dealing with infinitesimal waves, the llnearlzed
equations of motion are appropriate, If simple-wave solu-
tlons of the form exp(ilkx - wt]) are sought, then it is
generally found, in homogeneous media, that w is determined
as a functlon of the wave number k. This cerrespondence
between w and k is called the (linearized) dlsper51on rela-

tion of the system in question. For example, if the two-
| dimensional Euler equations for surface water waves are
linearized, the relation between wave number and frequency,
determined as just outlined, is

w=wk) = [ktanh(x)1/2, (g

in dimensionless variables. If the phase speed c(k)
w(k)/k is cons1dered then it is found typically that c is
an even function of k, with a maximum value at k = 0, and
decreasing monotonically to zero as k---->°° This corresponds
‘to the fact that, for infinitesimal waves, the longer waves
travel faster, a familiar fact in surface water-wave theory.
The relatlonshlp between wave number and- frequency may
be generalized from simple waves to more complex, though
still 1nf1n1tes1mal profiles by use of Fourier's principle.



More precisely, let ©(X) be a given-initial wave profile.
The function ¢ may be formally decomposed as

O

ox) = [ y)etFax,

wﬁere ¥ is the Fourier transform $ of ®. An individual
wave with wave number k propagates with. speed c(k), as -
determined above. Hence ¢, which is the sum over all wave
numbers of simple waves, with the appropriate weighting

¥ (k) , propagates as

nent) = [ opaelkE o eBlg . o)

Thus, one determines thatln evolves according to the equation

Mt @m =0, (11)

where L is the linear operator defined by
e ~ '
Lv(k) = c(k)v(k), - (12)

the circumflexes denoting Fourier transforms again.

So far, this linearized theory of uniform plane waves
has introduced no further approximation. If it is supposed
that the waves in question are long, then § will be negli-
gible outside a small interval about zero. Consequently, it
is appropriate to consider convenient approximations to the
phase speed c(k) which are valid for small k. Supposing c
to be several times continuously differentiable, and keeping
in mind the other properties of ¢ thus far.presumed (cf.
figure 1), we may write

clk) = c(0) - Bx® + o), (13)

as k —>0, where B = -c"(0)/2 > 0. As in the consideration of
the nonlinear effects, it is expected that (11) réduce to

(3) in the limit of waves of extreme length, and so in this
scaling c(0) = 1. It is convenient tO'definé:a(k) = c(k) - 1.
Then (11) is written as ' '

M Fon + Gm) =0, (14)
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where - e

AN\ A
Mv (k) =‘a(k)v(k). ' (15)
If the higher order term in (13) is dropped, so that c(k) is
approximated by an osculating parabola, (cf. again figure 1)
then in this approximation, (14) becomes

Nt n, + anxx = 0, (16)

If x is rescaled so that k is of order one in the range of
interest, then B becomes a small parameter. Thus (14), andA
particularly (16), provides a correction to the one-way prop-
agator (3) that accounts for the small effects of frequency
dispersion suffered by long, but finite length, waves., Note
incidentally, that if c(k) has a non-zero imaginary part,
then (14) will include a damping term. This possibility is
explicitly ignored for the present. .

If the corrections for nonlinearity and dispersion are
51mply combined additively, there appears

¥ Mgty + Bn =0, (17)

'a ver51on of the Kdv equatlon. A number of things are en- .
tailed in combining (7) and (16) in this simple way to obtain
(17)., First there is the implicit assumption that the two
correction terms are of comparable order. If the changes of
scale, referred to above, are pursued, so that.n and its
derivatives are of order one and_y and B are both small pa-
rameters, then the latter assumption means that;y and B are-
of comparable size. Or, what is the same, S = #/B'is of
order one. The small parameter 'Y measures the local size of
nonlinear effects, whilst B measures the local size of dis-
persive effects. The quotient ¥/B is a measure of the rel-
ative strength of nonlinear and dispersive effects. In the
example of surface water waves, the ratlo_y/B is exactly the
Stokes number, referred to previously. Second, there is
implied that the direct interaction between honlinearity'and

dispersion is of smaller order than the terms which have
been retained. 1In the various particular cases where a
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uniform approximation has been made to more complete equa-
tions of motion, these considerations may be confirmed,
Indeed, the foregoing makes it clear that they must be con-
firmed to place an equation such as (17) on a sound formal
footing. Note also that the zero on the right-hand side of
(17) represents terms of formal order 72, yh, and BZ, which
have been ignored. | |

More generally, the model equation

mg v+ G+ ()= 0, . a8

may be inferred from the foregoing discussion, without the
necessity of the additional assumptions made on g in (g),
nor the assumptions on c(k) made in (13). (The operator M
is defined in (15)). As these assumptions are not alwéys
valid in physically interesting modeling situations, the
more general equations are not just of academic interest.
A class of models in the form (18) will be touched on later.
It is a point of interest that equation (17) may be
cast in dther forms by use of the lowest order relation (3).
That is, to lowest order,?nx = - + O0(y,B), and this relation
may be used to alter the ‘higher-order terms without affectlng
the formal level of approximation. Thus, the following eight
equations may be obtained, én exactly the same formal basis
as (17).

[ Mk |
m : -n
S T B - el I Y 13
L Myt
Tkt

It needs to be recognized that whilst the eight.équations
represented in (19) are formally equivalent, as far as pre-—
dictions regarding long waves of small amplitudes are con-
cerned, there may be criteria of modeling, mathematics and
convenience that indicate some of these equations over others.
A detalled analysis of all elght of the equatlons represented
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in (19) will not be entered upon here. Some additional com-
mentary on this abundance of model equations is given in the
appendix. For the present, two of these equations will be
singled out for further study. These are the classical Kdv
equation and the alternative equation

M TN Foymmy - B = 0, | ' (20)
proposed by Peregrine (1964) and Benjamin et al (1972). By

assumption, the Stokes number S = y/B is of order one. To
simplify the further discussion, euppose in fact that s = 1,
and let e denote the single small parameter y = B. (This |
may always be made the case by an order-one change of vari-
ables.) Then the two equations are written,

+'-“x +:€.’7T.1;< +‘€.,ﬂxxx = 0{62), (21)
and |
+ nxA+ enn, - éﬁ = O(e ), ' (22)

.Where the order of the neglected terms has been 1nd1cated
explicitly. Recall that in this scaling, n and its deriv-
atives are all order one.

The nonlinear and dispersive terms in (21) and (22) may .
formally contribute an effect of order one on time scales of
order 1/e. Thus 1/¢ is the time scale over which significant
modification of the wave profile may be expected to take
place. Similarly, the neglected terms may contrlbute an
order-one effect on time scales of arder l/e . Hence pre-
dictions, using these models, must be viewed with caution on
time scales approaching or exceeding l/ez. With these scales
in mind, the following result, quoted somewhat informally
from Bona, Pritchard, and Scott (1980c), is illuminating.

In the following, the pure initial-value problem, relative
to (21) and (22), will be considered. That is, it will be
supposed that the wave profile n is known everywhere at a
given instant of time, say t = 0. Interest is then focused
on the subsequent evolution of the wave, for t > 0. Math-
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ematically, this amounts'to,asking~for a solution of (21) or
(22), defined for all x, and t 2 0, and obeying the specifi-
cation

n(x,0) = ¢(x), for X €IR. (23)

The pure initial-value problem for these equations is of
'considerable theoretical importance, though other ways of
specifying auxillary data are also of interest, as will
appear shortly.

THEOREM. Let ¢ and its first six derivatives be square-—
integrable over IR. Let € > 0 be given and let n® and_ge be
the (unique) solutions of (21) and‘(22) (wifh right-hand side
set to zero), respectively, corresponding to the initial data
 as in (23). Then for all x and for 0<t<1/c, '

5
"ne(x,t) - ¢ftx, )| < e, (24)
where C is a constant not dependent on € or t,.

This result needs a little explication. First, a func-
‘tion ¢ is square-integrable over IR if

,fcpz(x)dx < + =,

The hypotheses on ¢, whilst slightly technical, essentially
amount to the assumption that the initial wave profile is
sufficiently smooth and decays to zero at * =, along with its
first few derivatives. This is certainly not a éerious prac-
tical restriction. The fact that both equations have unique
smooth solutions corresponding to the initial value ¢ has
been established in various ways, with various restrictions
on @, by several authors (cf. Benjamin et al, 1972, Bona and.
Smith, 1975, Kato, 1975, Cohen, 1979, and the references given
therein). At the time t = 1/€, when both 1% .ang ge may have
evolved significantly, due to the accunulation of nonlinear
and dispersive effects, the two solutions only differ by at -

most order e. As neglected terms could have accumulated to
3.
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this order at this time, neither solution is formally accu-
rate to more than this order. Hence, 1% and ¢® are the same,
to the neglected order, on this time scale. vNumerical stud-
ies indicate that (24) remains valid for O‘<t‘<l/e If
this is so, it would show that the two solutlons diverge
from one another on the time scale l/e » Over which either
model has become potentially suspect. The general conclu-
sion to be drawn, then, is that as far as modeling long
waves of small amplitude is concerned, these equations work
equally well. Of course, as far as we know at this juncture
in the discussion, neither may work very well! .

We turn to the question of how well such models work in
- practice. Indeed, there is a fair amount of evidence in
favor of the model equations under discussion, at least as
they apply to surface water waves. Comparisions of predi-.
cations of these models with experimental measurements have
been made by Zabusky and Galvin (1971) , Hammack (1973),
Hammack and Segur (1974) , and Weidman and Maxworthy (1978).
In these studies, various aspects of the models predictive
power were checked. Generally, good qualitative agreement
between predictions and what is seen in the laboratory was
- found. '

A direct quantitative comparision has been made recently
by Bona, Pritchard, and Scott (1980b) . 1Instead of the pure
initial-value problem, an initial- and boundary-value problem,
to be explained presently, was used in these latter comparl—
sons.

The experiments were performed in a channel with uniform
sides and a flat bottom. At the beg;nnlng of each set of
measurements, the water in the channel was at rest and a
wavemaker at one end of the channel was set in perlodlc
motion. ThlS had the effect of generating plane waves which
propagated down the channel. The passage of the waves was
‘Mmeasured at several statlons in the channel. This type of
measurement is experimentally simple and quite accurate.
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When the leéding wave reached the end of the channel, the
experiment ceased. The experimental configuration is
sketched in figure 2., For details, the reader is referred
to the last-quoted reference.

The mathematical model proposed for this experiment o
is an initial- and boundary-value problem based on the equa-

tion (22): for X, t 20,

N + nxv+ (3/2)nnx T VM T (l/G)nxxt =0,
: ' (25)
n(x,0) =0, and n(0,t) = £(t). :

Here, the variables are dimensionless, but unscaled,‘ The

undisturbed depth h is taken as the unit of length and

(h/g)]‘/2 is taken as the unit of time,Awhere g is the accel-

eration due to gravity. Note that a model dissipative term

=V has been added to the differential equation. Dissi-
pative effects proved to be as important as nonlinear and
dispersive effects, and consequently such a term is crucial

in obtaining good quantitative agreement. The constant v

was determined by a separate experiment on wavés in the

linear range. The initial data n(x,0) = 0 corresponds to

the liquid‘being undisturbed at the start of each experiment.’

The boundary data n(0,t) = f(t) is détermined by measurement,

taken at the station closest to the wavemaker (cf. figure 2).
The initial-boundary-value problem (25) was anaiyzed by

Bona and Bryant (1973), and shown to be well-poséd. ‘A.simi-

lar theory is available for the KdV equation (cf. Bona and

Winther, 1980). The model (25) appeared to be easier to

handle numerically, and consequently was preferred.

The comparison of the model with the experimenfally
obtained data was made as follows. Corresponding to a
measurement of f(t) = n(0,t), a numerical integration of (25)
was performed, over the relevant range of the quarter-plane
"x, t =20, From this integratibn, n(X,t) was read off at the
values X corresponding to the other stations in the channel
where measurements were taken.” Thus, referring to figure 2,
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n(xj,t), j=1, 2, 3, were detg;m;ned humerically from F(t).
These predictions were then compared to the actual measure-
ments observed at these‘stations; and the discrepancy used
to judge the model'sg performance, '

In these eéxperiments, the wavelength was kept constant,
and the amplitude of the waves varied. Thus ga spread of
Stokes numbers could be Covered. mhe values of S reported
Span roughly the range between 1/2 and 35, Quite good agree-

this range. For this ruh, the Stokes number was 4.5 and
the relative error was about 8%, For larger values of S,
the agreement deteriorated somewhat, However, by tinkering
with  the model somewhat, the agreement could be improved
considerably. This alteration consisted mainly of fitting
the dispersion relation a little more accurately, Figures
4 and 5 show a Comparision as in figure 3, except that § =

'26.3. In figure 4, the comparision is made with the model
(25), while in figure 5 the comparision is made ‘using the '

equations under discussion do have an interest asg predictors
of physical‘phenomena.‘ Consequently, various'theoretical'
questionsg concerning their solutions are of potential inter-.
est. For the'considerations that follow, the small_param~ .
eters appropriate for modeling loﬁg waves are not relevant,
They will, therefore, be scaled out, and reference'will be
to the tidy forms '

e ton ot =0, (26)
and : : '

Mg Tty - = 0 - en

henceforth, : _ _
As mentioned earlier, the inverse—scattering method for
solving the R4v equation has contributed much- detailed know-
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ledge concerning solutions of this—eqﬁation. Two points will
be of particular concern hgre. Before thése-are addressed,

we remind the reader that the KAV equation has an exact solu-
tion, |

nix,t) = 3Csech (-Cl/z[x - (C + 1)t]), (28)

where C > 0, which is the aforementioned approximation to the
solitary wave. This solution will be called a solitary-wave
solution of the KAV equation.

The first point is a remarkable property of solutions
of the pure initial-value problem for KdV. Let ¢ be an
initial datum for KAV, which is smooth and decays to zero
at ¥ o appropriately. For convenience of the present brief
exposition, suppose that ¢ > 0. Then ¢ evolves into a finite
sequence of Widely~separated‘independently~propagating soli-
tary waves, ordered by increasing amplitude, and very little
else. The "very little else" is what is commonly called a
dispersive tail. A dispersive tail is an oscillatory wave-
form, whose maximum amplitﬁde tends to zero és t becomes |
large, while at the same time 1engthening and aeveloping more
oscillations'(cf figure 7). This result is surely unexpected.
For nonlinear evolution équations, one does not expect part1c~
ular solutions to play a dlstlngulshed role in the evolution
of a general class of initial data.

The second point is the exact interaction of solitary
waves., Suppose two unequal solitary waves are started off
widely separated, with the larger crest to the left of the
smaller crest. As this initial profile evolves under the K3V
‘equation, the larger solitary wave will overtake the smaller
one, because of its greater speed of propagation. There
follows a nonlinar interaction between the two waves. After
this stage, the two wavés separate cleanly from each other,
unaltered except for a phase shift. Of course, the larger
wave is now to the right of the smaller wave. There is
absolutely no residue from this interaction except. that the
larger wave has been shifted forward of the position it would

have occupired in the absence of any ‘interaction and the small-



- 22 -

er wave has similarly béénrretarded. 5
The alternative model. equation (27)jélso has solitary-
wave solutions, similar in form to those of the KAV equation:

1/2

_ 2,1 C
n(x,t) = 3Csech (E(l - C)

[x - (C+ 1)t]). (29)

- One would naturally like to know whether the interestihg
properties of solutions of the X3V equation, just described,
hold for the alternative equation. Results of Olver (1e79),
McLeod and Olver (1979), and Tsujishita (1979) indicate that
equation (27) does not have an associated 1nverse-scatter1ng
formalism for solutions, at least as such a formallsm is
currently understood. ‘
Turning first to the interactibn of the solitary—wavev
solutions of (27), it was reported by Eilbeck and McGuire
(1977) that these waves interacted exactly, to numerical
accuracy, just as for the K4V equation. However, Abdulloev,
Bogolubsky, and Makhanov (1976) observed a small "rare-
faction wave" forming behind the interacting solltary-wave
solutions of (27) in their numerical experiments (see also
Alexander‘and Morrls, 1979, who have reported some related
numerical‘computations). Abdulloev et al's findings have
been confirmed by Bona, Pritchard, and Scott (1980a). A
sample of their results is shown in figures 6 and 7. Figure
7 depicts the same wave proflles as figure 6, except that the
vertical scale has been magnified one hundred times,  so that
the small dispersive tail developlng behind the solitary waves
emerging from the interaction is clearly visible. Thus it
may be that solitary-wave solutions of (27) do not interact
exactly. Nevertheless, as Bona et al (1980a) pointed out,
the comparatively small size of the dispersive tail shown in
figure 7 was entirely typical of a more extended experimental
study. This fact leads to the speculation that (27) is not
far from having an exact-lnteractlon Property for its solltary
~wave solutions. But, the sense that the term "not far" is to
be given is not ‘presently known.
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From the point of view of potential applications of
these model equations, the resolution of a fairly general
wave profile into a sequence of solltary waves is perhaps
more significant than the exact interaction of their soli-
tary-wave solutions. Concerning the former property, the
evidence so far available for (27) is the result of nu-
merical experiments conducted by the author in collabora-
tion with W. G. Pritchard and L. R. Scott. On the basis of
these, it is tempting to assert that equation (27) does
indeed have some sort of resolution property, just as the
KAV equation does. An exam@le of the sorting of an initial
wave profile into solitary waves, for equation (27), is
shown in figure 8. | a

To some extent, the preceding discussion applies to
~the wider class of model equations

Mt t G, + (M) =0, (30)
and . ‘ ' _
M +Anx + G(n)x‘_ (Mn)t = 0, . (31)-

Equations'having the form depicted in (30) were introduced
already in (18). The alternate form, given in (31), may be
obtained as an approximate equation by the same type of
arguments put forward in deducing the ﬁodel (20) from the
RdV equation. A more thorough discussion of this issue may
be found in Bona (1279). Specific examples of these sorts of
equations have appeared in the literature as approximate »
models for diverse physical phenomena (cf. Benjamin EE.ilr
1972, Leibovich and Randall, 1972, Pritchard, 1970, Smith,
1972, Whitham, 1974, and Zabusky, 1967).

Some of the general mathematical properties of solutions
of these equatlons have been investigated by Benjamin et al
(1972), Benjamin and Bona (1980) and Saut (1979). One out-
come of these studies is that the initial-value problem,
where n(x,0), say, is a prescribed function o¢(x), is well-"
posed; For equations in the fiorm (31), the theory is
especialli satisfactory, including the solutions' continuous
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dependence, not just on the data ©, but on G and M as well.
This latter property nmay be viewed as a klnd of continuity
of the modeling process, in that small errors in the form of
the approximation made for nonllnearlty or dispersion lead
only to small changes in the resulting'solutions.

One of the earlier examples 1n which the generalized
form shown in (30) arose in fluid mechanics is the so-called
Benjamin-Ono equatlon. This equation was introduced by Ben- -
jamin (1967) as a model for internal waves in a deep and
stably stratified ocean. It has G(u) = u2 and M defined ‘as
in (15) by "

W = -1k%w, .  (32)

where, as previously, the circumflex.over a function con-
notes that function's Fourier transform. = Benjamin was able
~to give, in closed form, solitary-wave solutions to his
model equatlon. These played an important role.in various A
1nterpret1ve aspects of internal waves treated by Benjamln.
Recently, Hirota and Nakamura (1979) have shown that
Benjamln S equation possesses a full- ~fledged inverse-
scattering formalism, despite the non-local character of
the operator M in (32). It follows that the kind of special "
properties discussed above, pertaining to the solutions of - ,
the KAV equation, also hold for Benjamin's equation. Hirota
and Nakamura's result has been generalized somewhat by |
Satsuma, Ablow1tz, and Kodama (1979) to include a range of
equations, of which KAV and Benjamln S equation are partic-
ular limiting forms. ‘ ‘ .
In addition, a broad class of these types of equations -
have been shown to be possessed of solitary-wave solutions.
Suppose, for example, that we search for a solutlon of (31)
in the form of a travelllng wave,

ulx,t) = §(x - ct),

‘where C > 1 is a constant. Substltutlng this form 1nto (31},
and 1ntegrat1ng once, there appears
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(C - 1)§ - CMy = G(y).. (33)
The constant of integration has been fdund to be zero, by
requiring that § and M{ tend to zero at infinity.
The operator -M is typically a positive operator. For
instance, in equation (27), -M = 75§. Since C > 1, it
follows that the operator,

B=(C -1)1 - cum,

where I is the identity operator, is invertible. More pre-—-
cisely, in the notation introduced in (15),

A\ A
CBY(k) = [C -1 - Calk)IV (),

and normally, -a(k) =1 - @(k) = 0, corresponding to the
aforementioned fact that, for infinitesimal waves, the

~longer waves travel faster. Hence B"l is formally given by
AN

By (k) = . ' T,
[C -1 - Ca(k)]

and thls formula defines a bounded linear operator, for
example, on the space L (IR) of functions f with finite
square integral

o

ffz(X) dx < +=,

-— O

Applying B-; to both sides of (33) yields

¢ =87 le(y) = Ay, | (34)

say.
By these formal manipulations, the question of the
existence 6f solitary-wave solutions of (31) has been
reduced to a question of existence of a fixed point of
the nonlinear operator A defined in (34). That is, we seek
a function ¢ that A maps into itself. Of course,'w must
have the kind of single-crested non-negative profile that
.is appropriate to a solitary wave. Subject to various tech—
nical assumptions, which are ignored hkere, (34) has been



shown to posseés the desired kind of solution, and as a
consequence, (31) has been inferred .to- have solitary-wave
solutions. These results are set out in more detail in
Benjamin (1977), Benjamin et al (1976), and Bona and Bose
(1978) . Non-constructive methods of functional analysis

are used in the last-cited works, and therefore formulae for _
these'solitary—waves are not available. However, preliminary .
numerical 51mulatlons of some of these equations show that,
generally, there are classes of initial data that evolve into
a sequence of what appear to be solitary-wave solutlons of
the particular equation., These issues plainly need further
investigation. ' N '

" The decompoéition of initial waveforms into solitary
waves may have implications for the time scales over which it
is reasonable to use these types of approximate models. Re-
vertlng to the scaled versions (21) and (22) of the main equa-
tions under consideration, suppose that an initial wave pro—
file has sorted itself into solitary waves well before the
formal breakdown time t l/ez. From the time of sorting
onward, the evolution of the bulk of the solution of the
equation is quite s1mple. Since the solitary waves are sort-
ed, meaning their crests are far enough apart that the inter-
action between them is negligible, they propagate virtually |
independently and their separation increases with time. If
the sclution of the equation is still a good approx1matlon
to what is happening ' in the physical system belng modeled
as it should be well before t + then the physical wave is
sensibly a sequence of solltary waves too. It seems p0351ble
that the further evolution of the physical waves may be quite
simple as well. 1In consequence, what is predicted by the
- model equation, on even quite long time scales, may not be
qualitatively very different from what one observes. Of
course; quantitative agreement will probably be poor, if for
no other reason than the accumulation over time of small
differences in phase velocity,
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APPENDIX

Formula (19) in the main text presents eight‘separate
model equations for the propagation of one-dimensional long
waves of small amplitude in certain kinds of nonlinear dis?’
persive media. This may strike the reader as an embarrass-—

ment of riches. As mentioned earlier, whilst the eight
' equations represented in (12) are formally equivalent,_there
may be criteria for choosing amongst them in any particular
context of their potential use. For example, some studies"
might usefully employ the inverse-scattering theory, and so
at present the KAV equation would be preferred. Or, an equa-
tion which is easy to handle numerically might be desirable,
and thus one or another of these equations might be singled -
out. If a physically-relevant initial-boundary-value problem
is not well—posed‘for one of the equations, there may be |
grbunds for rejecting the equation, at least for the applica-
tion in view. '

We are not presently in a position to give a definitive
theory'fot all eight of these partial differential equations.
However, one aspect does appear to shed light on some of the
differences inherent in these models. This is the various ,
linear dispersion relétions represented in these equations;:
The four dispersion relations g = w(k); and their associatedv
group velocities w'(k), repfesented in (19)»are given below
in (Al). These dispersion relations all agree for very long
waves, as they must. But they are quite disparate away from
k=0,



c(k) = @) ' (k) = dw
| k | : dk
i) 1 -.-.Ykzl S 1 - 3Yk2'
' 2
1 1 - vk
3 : : — YK
cidi) i‘:f?;;i _ a4 Ykz)z,
s ) (1 + 4Yk_2)l/2 - l., i (1 + 4Yk2)l/2 - 1.
iii - e S e
Yk : 2vk°(1 + ayx%) /2,
i) 3 - r(-x)), | Cr® + r(x),

where X = (3/2) (3y) 1/,

r(x) = [(1 + x%)1/2 , x;1/3,

and the positive branch of all the fractional powers'is under-
stood. In a Qave train, the phase velocity c (k) governs the
' propégation_cf individual crests whilst the group'velocity
governs the propagation of energy, for the respective lineér _
equations from which the dispersion relations are derived (cf.
. Whitham, 1974). Note especially that in (Aliii) and (Aliv)
the dispersion relations have more than one branch. Only that
branch which is relevant to the modeling situation envisaged
is displayed. ' | ' L |

In practical situations,such models are used in regimes
where k ig not especially small. For example, in the exper-
imental studies of Boczar—Karakiewicz, Bagiﬁska, and Bona
(1980), Bona EE_Ei\(l980§), Hammack (1973), Hammack and Segur
(1974), and Zabusky and Galvin (1971) one will find non- - -
trivial amounts of energy in wave numbers k larger than 0.5,
in the_non-dimensional but unscaled coordinates used in (25).
Hence it may be prudent to choose among the possibilities in
(19) a dispersion relation that fits closely the dispersion



relation for the equations being modeled éver a reasonably
large range of wave numbers. For surface water waves the
dispersion relation for the linearized Euler egquations is
given in (9). A short calculation shows that, among the
possibilities in view, (Aliii) is the best fit to (9), with
(Alii) and (Aliv) both better than (Ali). (To make the
comparlson directly with the formula in (9) , y must be taken
equal to 1/6, corresponding again to the variables intro-
duced near (25).) )
Another.consideration is that numerical schemes for
the integration of these equations naturally introduce
-short-wave components, with which the model must then contend
If the phase and group velocities are unbounded as in (All),
there may be difficulties writing a numerlcal scheme which
is stable for reasonable size temporal discretizations. The
multi-valued dispersion relations in (Aliii) and (Aliv) may .
also contribute numerical difficulties. For while the branch
written down in (Al) is nicely behaved, the other branches
are problematical with regard to the modeling situation belng
considered herein. '
| The question of the well-posedness of certaln 1n1tlal~
and boundary—value problems associated to the modeling
scenario may also be 1mportant Perhaps the least technical
of the potentially 1nterest1ng problems to pose is the pure
initial-value problem, as in (23), where the wave profile 1s_”
supposed to be known everywhere, at a given instant of time.
That is,

,ﬂCX,O)'= ¢(x), for x€rm, (A2) .

where ¢ is selected from some reasonable class of functions
appropriate to wave propagation. This problem is well—posed :
for the first two dispersion relations in (A1) . A
At first sight, it may appear that the equations in (al)
with hlgher than first-order temporal derivatives are ill-
suited to the prescription of only the auxillary data in (a2).

B ]



Td make the problem Well—posed,"nt(x,O) would generally
need to be specified, and this is not normally desirable,
This criticism may be circumvented by aéain'using the lowest
order approximation for all these equations, given in (3).
As an example, it might make sense to consider the problem,

| e oyt Ban, + Yier = O

. : (a3)
n{x,0) = o(x), N (x,0) = -p'(x).

For the equations with a. third-order temporal derivative,
where three piecés of initial data need to be‘spécified, it
may be appropriate to set'ntt(x,O) = ' (x). o
These issues will not be pursued here. The main point
to be drawn from the discussion in thisAappendix is that a
choice of model equation in a certain context may depend
upon considerations which lie partly or wholly outside that
context. Even if a model is détermined rationally, via
fo#mal expansion techniques, matched asymptotics or the:like,
it may not be unique within its rangé of approximation. Nor
- indeed does there have to be a single "correct" model for a
given physiéal»situatibn, at a given level of approximation,
as the theorem quoted earlier indicates. |
' In a way, this point is a negative one. For it suggests
that successful,modelvbuilding‘is as much an art as a science.
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