Phil. Trans. R. Soc. Lond. A 302, 457-510 (1981) [ 457 1 4
Printed in Great Britain

AN EVALUATION OF
A MODEL EQUATION FOR WATER WAVES

By J. L. BONA,+ W. G. PRITCHARD} anp L. R, SCOTTS
T Department of Mathemati-s University of Chicago, Chicago, Illinois 60637, U.S.A.
¥ Department of Mathematics, University of Essex, Colchester, Essex CO4 35Q, U.K.
§ Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

(Communicated by T. B. Benjamin, F.R.S. — Received 18 November 1980)

CONTENTS

PAGE

1. INTRODUCTION 458
2. EXPERIMENTAL DESIGN 460
2.1. Model equations 460
2.2, Previous studies ’ 461
2.3. Allowance for dissipation 462
2.4. Mathematical considerations 463
2.5. Practical considerations 464

3. PROPERTIES OF THE EXACT SOLUTION OF THE MODEL EQUATION 465
3.1. Existence, uniqueness and a priori bounds for 7 465
3.2. Bounds for the derivatives of 3 466
3.3. Spatial decay rate 467

4, THE NUMERICAL SCHEME 468
4.1. Spatial discretization 468
4.2. An efficient computational procedure 470
4.3. Temporal discretization 471
4.4. Convergence tests 472

5. ERROR ESTIMATES FOR THE DISCRETE SCHEME 474
5.1, Spatial discretization errors 474
5.2. Lipschitz estimate for & 476
5.3. Existence and bounds for the semi-discrete approximation 477
5.4. Bounds for the fully discrete problem 479

6. EXPERIMENTAL APPARATUS AND PROCEDURE 482
6.1. Experimental apparatus 482
6.2. Experimental procedure 483
6.3. Comparison procedure 484

7. EXPERIMENTAL RESULTS 485
7.1. Damping coefficient 485
7.2. Two-dimensionality of the wavefield 485

Vol. 302. A 1471. 46 [Published 24 September 1981




458" J.L.BONA, W. G. PRITCHARD AND L. R. SCOTT

PAGE

7.3. The main comparisons 486

7.4. Assessment 497

7.5. Modelling the dissipation . 498

7.6. The approximation to the dispersion relation 502

8. RisuMmE - 507
AprpENDIX A. Deficiencies in an approximate procedure based on the pure initial-value

problem 508

REFERENCES 510

The aim of this paper is to assess how well the partial differential equation
Nty + %ﬂﬂm = MYy — Wt = 0 (*)

describes the propagation of surface water waves in a channel. In (x) the variables are
all scaled, with x proportional to the horizontal coordinate along the channel, ¢ pro-
portional to the elapsed time, and % proportional to the vertical displacement of the
surface of the water from its equilibrium position. The parameter g is a non-negative
constant.

A numerical scheme has been developed to solve () in the domain {(x,):x,¢ > 0},
subject to the initial condition #(x, 0) = 0 and to the boundary condition (0, ) = A(%).
The specified function £ corresponds to a given displacement of the free surface at one
end of the channel. The numerical scheme, which introduces some novel ideas for the
approximation of solutions of certain partial differential equations, is explicit, un-
conditionally stable, and has fourth-order accuracy in both the spatial and temporal
variables. The errors inherent in the integration procedure are rigorously analysed, and
convergence tests of the computer code are presented.

A comparison is made between the predictions of the theoretical model and the
results of laboratory experiments. The experiments, which were performed at a fixed
wavelength A and at a number of wave amplitudes 4, covered a range of the para-
meter S( = aA?/d?) of more than two orders of magnitude. Here d is the depth of the
undisturbed water. The model was found to give quite a good description of the spatial
and temporal development of periodically generated waves over a wide range of the
parameter S. It was noteworthy that, at least on laboratory scales, an allowance for
dissipative effects was crucial in obtaining good agreement between experimental
observations and the predictions of a theoretical model.

At the larger wave amplitudes used in the experiments there were important
differences between the forecast of the model and the empirical results. Possible reasons
for these discrepancies are discussed.

1. INTRODUCTION

This study assesses a particular model for the unidirectional propagation of water waves,
comparing its predictions with the results of a set of laboratory experiments. The equation to be
tested is a one-dimensional representation of weakly nonlinear, dispersive waves in shallow water.
A model for such flows was proposed by Korteweg & de Vries (1895) and this has provided the
theoretical basis for a number of laboratory experiments. Some recent studies that have been
made in the area are those of Zabusky & Galvin (1971), Hammack (1973) and Hammack &
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Segur (1974). In each case the theoretical model gave a good qualitative account of the experi-
ments, but the quantitative comparisons were not very extensive. One of the purposes of this
paper is to provide a more detailed quantitative assessment of a particular model than has been
given to date.

An important aspect of the formulation of the theoretical model is the specification of the
initial conditions and the boundary conditions for the equation. Zabusky & Galvin (1971)
considered an initial-value problem having spatial perindicity, whereas Hammack (1973) and
Hammack & Segur (1974) considered an initial-value problem posed on the realline. In contrast,
we shall consider an initial-value problem posed on the half line with boundary data specified at
the origin. This problem was chosen to correspond with an experiment in which waves were
generated at one end of a long channel, and obviates certain difficulties inherent in the other
formulations.

Approximate solutions to the mathematical problem thus posed have been found numerically.
The method we have developed (see §4) is an unconditionally stable, explicit scheme having
fourth-order accuracy in both the spatial and the temporal variables. It is based on the dis-
cretization of an integral representation of the solution of the equation, a method which, although
commonly used {or ordinary differential equations, is unusual for a partial differential equation.
An analysis of the scheme is presented in § 5, where we give both a priori error bounds and explicit
a posteriori error estimates based on the observed maximum value of the discrete solution.

In making the experiments we have covered a range of conditions for which it was expected
that the nonlinear effects would be relatively unimportant, that the nonlinear and dispersive
effects would be approximately balanced and that the dispersive effects would be less significant
than the nonlinear effects. One feature to emerge from the study was that, in all cases, it was
important to make an allowance for dissipative effects to obtain reasonable agreement between
the empirical results and the theoretical model. But, with this proviso, the model appeared to
give a good description of the experimental results at the smaller wave amplitudes. At the larger
amplitudes the agreement was notso good, and possible reasons for the discrepancies are discussed
(see §§7.4, 7.5 and 7.6).

The structure of the paper is as follows. In §2 we first discuss model equations apposite to the
present study, together with the concomitant assumptions underlying their derivation. Then, in
view of these constraints, we examine some of the criteria involved in the design of the laboratory
experiment. Some theoretical properties of the solutions of the differential equation to be tested
are given in §3. These are used in the derivation of the error estimates for the numerical scheme,
the scheme being described and analysed in §§4 and 5. Convergence tests made with the pro-
gram are also given. In § 6 the experimental procedure is described, and in § 7 the main results are
presented. A résumé of the results is given in §8.

We shall use the abbreviation KdV to refer to the Korteweg-de Vries equation, as defined by
(2.1). An alternative model for the same physical situation, the model that will form the focus of
this study, will be referred to as (M) and is defined in equation (2.3). Two variants of this basic
model will also be considered. One is (M*) (see equation (2.6)) and the other is referred to as
(MT) (defined by (7.1)). The dispersion relations for the various models are referred to through-
out the paper. In this context the term ‘exact’ refers to the dispersion relation for the Euler
equation with the linearized form of the boundary condition at the free surface (see (2.4))

46-2
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2. EXPERIMENTAL DESIGN
2.1. Model equations

Consider two-dimensional surface waves propagating along a uniform horizontal channel.
Suppose that the Viaves propagate only in the positive x-direction and that the undisturbed
depth of the liquid in the channel is d. All the variables used here are dimensionless, with the
length scale taken to be the equilibrium depth 4 and the time scale (d/g)t, where g is the ac-
celeration due to gravity. Let ¢ be time, let x be the horizontal coordinate and let 9 = #(x, )
represent the vertical displacement of the surface of the liquid from its equilibrium position. If
the horizontal scale é-! of the motions is large and the maximum amplitude ¢ of the waves is
sufficiently small, then a model for the propagation of irrotational waves is afforded by the KdV

equation (see Whitham 1974) P ST (2.1) (KdV)
T T LExL ‘ *

The primary terms 9, and 7, represent a uniform translation of a wave and it is proposed that the
secondary terms $97, and 37, account respectively for the modification of the wave through the
separate influences of nonlinear and dispersive effects. The relative importance of the nonlinear
and the dispersive effects is given by the parameter § = ¢6-2, and an important assumption in
the derivation of KdVis that this parameter is O(1) (c¢f. Meyer1gy2;T Whithamg74). (Here, and
in what follows, the symbol O(+) will be used informally in the way that is common in the
construction and formal analysis of model equations for physical phenomena. We shall always
be concerned in principle with the limits ¢ | 0 and § |, 0 though, in fact, finite but small values of
these parameters will be in question. Thus, § = O(1) means that, ase} 0andd | 0, 5 = ed~2 takes
values that are neither very large nor very small.) Note that, for waves whose length scale is A
and whose amplitude is ¢, § = aA?/d%.

The above considerations suggest the introduction of a new dependent variable N and new
independent variables £, 7 such that

n=¢eN, x=¢t t=¢etr

Thus, by assumption, N and its derivatives with respect to the new independent variables are all
0(1), and 1t follows that KdV can be written as )

N, + Ny +3e NN +§eNeee = O(e?), (2.2)
showing explicitly the relative sizes of the various terms. (For convenience in the present -
discussion, .S has been taken to be 1.) On the right-hand side of (2.2) we have indicated the
relative size of the terms neglected in the formal derivation of the KdV model. A physical
interpretation of (2.2) is that the small nonlinear and dispersive cerrections can accumulate and,
on time scales 7 of O(¢1) (or t = 0(e~})), make important modifications to the initial waveform.
Moreover, since the terms neglected in (2.2) are O(¢?), it follows that, on time scales 7 = O(e™%)
(or t = O(e~t)), the model can no longer be formally justified.

Because of the orders of magnitude of the terms in (2.2) an alternative model for the same
physical situation, valid to the same accuracy as the KdV equation, is the equation (see Peregrine

N, + N+ 3eNN;—}eNg., = O(c?).
In terms of the physical variables 5(x, t) this model takes the form
Ne+ e+ 30Ms— $zat = 0. (2.3) (M)
t Note added in proof: See also Meyer, R. E. 1979 Bull. Cal, Math. Soc. 71, 121.

1966, Benjamin et al. 1972)
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Thus, in summary, (KdV) and (M) have been proposed as models for the propagation of
water waves under the following conditions.

(i) The waves effectively propagate in one direction. This precludes the possibility of inter-
actions with reflected waves; in practical terms it means that any variations in the depth of the
channel should be small or should occur on length scales very much larger than the horizontal
scale of the waves. '

(if) The wave amplitudes are small (i.e. ¢ < 1) and the horizontal ler~th scale of the waves is
large (i.e. 8 <€ 1).

(iii) The nonlinear and dispersive effects are comparable: ¢6-2 = 0(1).

(iv) The waves arise on an irrotational flow.

(v) There is no mechanical degradatiorf of energy.

(vi) The influence of surface tension is negligible (though this restriction can be relaxed,
cf. Korteweg & de Vries 1893).

We can expect significant modifications to a waveform on a time scale O(e%) and, from a
formal viewpoint, the model cannot be justified on times which are O(e%).

2.2, Previous studies

In 1971 Zabusky & Galvin repoited some experiments in which a train of initially sinu-
soidal waves propagated into still water. At stations further along the channel they found that,
after the first few wave crests had passed, the wave profiles were very nearly periodic in time, This
property suggested a numerical experiment in which a periodic version of KdV was integrated,
with a sinusoidal waveform as the initial datum. Then, to compare the numerical computations
with the experiments, the long-wave speed for linear disturbances was used as the basis for a
transformation from time in the periodic problem to position in the experimental configuration.
The experiments were made at values of S of 22, 95 and 153.1 Fairly good qualitative agreement
was obtained between the predicted wave shapes and those observed experimentally, but quantit-
ative comparisons were not made, principally because viscous effects had a significant influence
on the experimental results.

A study similar in concept to the programme to be described here was made by Hammack
(1973). Water was displaced at one end of a channel generating an isolated waveform, the passage
of which was observed at various positions along the channel. Comparisons made between the
observed profiles and numerical solutions of (M) showed good qualitative agreement but, since
the computations were not very accurate and since viscous effects were again important, detailed
quantitative comparisons were not made. For these experiments the value of S lay between
about 1 and 10,

In a subsequent experiment Hammack & Segur (1974) also followed the evolution of an
isolated waveform propagating along a channel. Using the inverse-scattering methods developed
for the KdV equation, they predicted both the number of solitons to emerge from the initial
waveform and the amplitude of the largest soliton. The predicted number of emergent solitons
was in agreement with the experimental observations, but the predicted amplitude of the leading
soliton (after making a correction for viscous damping along the lines suggested by Keulegan
1948) differed by about 15-20%, from the observed values. These experiments were made at
values of § ranging between 50 and 600.

T Nete added in progf: These numbers correct the values given in colums 2, 3 and 5 of table 1 of Zabusky &
Galvin (1971).
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In each of the above studies, the theoretical predictions were obtained by solving a pure
initial-value problem. However, the experimental data were not obtained in the form required
for the theoretical model, which necessitated a transformation of the data set. Because the
transformation used was inexact this may have led to significant errors in the solution. This issue
is discussed in Appendix A.

2.3. Allowance for dissipation

One of the main conclusions to be drawn from the previous experimental studies is that useful
quantitative predictions can be made only by taking account of dissipative effects. On the scale
of the present experiment the main sources of wave damping appear to derive from viscous
dissipation in the boundary layers on the sides and bottom of the channel, from the influence of
the meniscus at the side walls of the channel and perhaps from damping at the free surface (see
Barnard ef al. 1977; Mahony & Pritchard 1980). It is possible to incorporate the effects of the
boundary layers on the walls and bottom of the channel into the theories described above (see
Kakutani & Matsuuchi 1975), but there are empirical difficulties in determining the properties
of the liquid surface and theoretical uncertainties about the representation of the effects at the
free surface and at the meniscus (see, for example, Miles 1967, Mei & Liu 1973). Thus, any
attempts to quantify the dissipative effects must, to a certain extent, be guesswork.

A rationale behind the construction of models such as those described in §2.1 is that the
various corrections to the primary terms in the equation can be calculated independently, with
a composite model formed by including the modifications additively on the assumption that the
coupling between them is negligible. Because of this it is sufficient, for the time being, to consider
the effects of damping only on waves of extremely small amplitude, so that a linear model is
applicable. Then the dispersion relation between the frequency w and the wavenumber £ is
given by (cf. Introduction)

o =k(1-3k2) (KdV), o =k(1+3k2)"1(M), = (ktanhk)? (exact). (2.4)
By construction the phase speeds w/k for each of these relations are different only at the fourth
order in k.

The theory of Kakutani & Matsuuchi (1975) indicates that the effect of dissipation in the
boundary layers on the rigid surfaces of the channel is comparable with the nonlinear and the
dispersive corrections from the inviscid theories when the wavenumber £ is O(R-%). Here the
Reynolds number R is (gd3)* /v, where v is the kinematic viscosity of the fluid. Under these condi-
tions Kakutani & Matsuuchi showed that the dispersion relation for (KdV) should be modified to

0 = k(1= 42 + plS, (2.5)
where p is a complex number depending on R. Thus, not only do the boundary layers induce a
damping of the waves but they also affect the phase speed slightly. Moreover, the analysis
indicates that the boundary-layer damping can be neglected only when (|k|/8R)¥ < }|k|3,
which we could, for example, interpret in the sense that the relative importance of these terms be
0(8?). For § = {; this would suggest, as a rough guide, that a depth of a metre or more would be
needed to make dissipative effects negligible. (Note that Zabusky & Galvin 1971, using
d~ 15cm and 8 x 1%, concluded that dissipation was important in their experiment.) The
damping introduced in (2.5) can, of course, also be incorporated into model (M). A term of this
kind introduces a pseudo-differential operator into each of the model equations.

However, as indicated above, the boundary-layer theory considerably underestimates the
damping rate (by about 40 %, on the scale of the present experiment, according to Mahony &
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Pritchard 1980). Because of the inadequacy of the theory in this respect we decided to use an
ad hoc representation of the wave damping to preserve the simple structure of the model equation,
rather than attempting a more complicated representation that could not be totally justified.
Thus, we shall suppose that a wave of wavenumber £ is damped at a rate proportional to A2,
which has the effect of introducing a term — u7,,.,, # > 0, into the model equation. This can easily
be incorporated into the numerical scheme of §4.

For the experiments to be described the waves were generated by a forced motion at a frequency
g, with the result that most of the energy should have resided in a single wavenumber £, say.
Then, by choosing x such that the damping of waves of wavenumber k, agreed with the experi-
mental decay rate at very small amplitudes, we should at least have modelled correctly the
dissipation of the fundamental wave, even if other wavenumbers are likely to have been dis-
sipated at an incorrect rate.

These constderations indicate that we need to be circumspect about the representation of the
dissipative effects, a point we shall consider in more detail in §7.5. However, for now let us take
the model equation in the form

N+ g+ 300~ W0 g — 0z = 0. ' (2.6) (M*)

2.4, Mathematical considerations

Three kinds of mathematical problems have been studied in connection with (KdV) or (M):
(1) Pure initial-value problems. For this class of problem it is supposed that the surface profile is
known at some instant, say ¢t = 0. Mathematically this amounts to the specification

7(x,0) = g(x), for xeR, (2.7)

where R denotes the set of all real numbers. Interest is focused on the solution of (KdV) or (M),
defined for ¢ > 0, that agrees with g at ¢ = 0. If g is an element of a function class comprised of
smooth functions that decay to zero sufficiently rapidly at + co, then it is known that the specifi-
cation (2.7) constitutes a well posed problem in conjunction with (M) (see, for example, Benjamin
et al. 1972) or in conjunction with (KdV) (see, for example, Bona & Smith 19753).

A physical realization of this formulation of the problem can be achieved in a long channel by
establishing a wavetrain of restricted spatial extent that propagates from one end of the channel
to the other. A photograph of the water surface at some instant could be used to determine the
initial datum g and the wave profile at later times could be compared with, say, numerical
solutions to the model problem. (This, in essence, is the kind of programme carried out by
Hammack & Segur 1974. However their determination of g(x) was made from a temporal wave
record g(x,, t), x, fixed, together with the leading-order approximation 7, +7, = 0 for the wave-
field. It is shown in Appendix A that such a procedure can lead to significant errors.)

(ii) Periodic initial-value problems. These problems are the same as described in (i) except that
the initial datum, g, is a given periodic function. Again, the mathematical problems for (KdV)
and for (M) are well posed. However, the physical realization of such a model is very difficult to
achieve. (Zabusky & Galvin 1971 used numerical solutions to a problem of this kind to explain
qualitatively the behaviour of waves generated by the periodic motion of a wavemaker at one
end of the channel, cf. §2.2.)

(iii) Initial- and boundary-value problems. For this class of problem we are interested in solutions
7(x,1) for x,¢ > 0 to the model equations, subject to the conditions

7(x,0) =g(x), x>0, and 9(0,¢) =A(t), ¢>0. (2.8)
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For compatibility we suppose that g(0) = 4(0). It has been shown by Bona & Bryant (1973) that,
under these conditions, (M) constitutes a well posed problem if ¢ and 4 are suitably smooth
functions. A similar result has also recently been proved for (KdV) by Bona & Winther (1981).

Physically g represents the initial configuration of the water surface; usually we would expect
at the outset the water to be undisturbed, in which case we would have g = 0. The function A(¢)
represents animposed displacement of the water surface at the left-hand end of the channel, Thus,
we might think of this problem as a model for waves with known amplitude initiated at one end
of a long channel.

2.5. Practical considerations

The issues raised in the preceding discussion impose considerable restrictions on the experi-
mental design. If the models are to be of any real practical value they should be applicable to the
kind of situation that usually obtains in the laboratory, namely the propagation of waves arising
from the forcing effects of a wavemaker at one end of a channel. Since wavemakers are usually
driven in a periodic motion, it would be nice to allow this feature in the model. Indeed, such
forcing would be desirable here because the imposed frequency effectively establishes a length
scale for the motions, allowing a fairly precise specification of the parameter S. To meet these
requirements and to simplify the experimental procedure, it would appear that the most suitable
kind of mathematical problem to model is the initial- and boundary-value formulation. (One of
the main empirical difficulties in modelling the pure initial-value formulation is that of obtaining
an instantaneous spatial measurement of the wavefield. Also the wave tank available to us would
not have been long enough for such an experiment.) A convenient experimental procedure
would be to start with the channel free of motion and then to set the wavemaker working at a
fixed frequency and amplitude. This would initiate a train of waves that would propagate along
the channel, retaining their unidirectional quality until they reached the end of the channel,
when the experiment would have to cease. The boundary condition h(t) in (2.8) could be
specified by a temporal record of the wave amplitude (taken at a position far enough away from
the wavemaker to avoid confusing the free waves with the parasitic field localized near the paddle
and to ensure smooth changes in amplitude at the front of the wavetrain).

The wave tank available in our laboratory was only 5} m long. So, to allow enough time for
the waves to show significant modifications before reaching the end of the tank, the basic wave-
length had not to be too large. On the other hand, it had to be larger than the channel width
(30cm) to avoid spontaneous generation of transverse modes (cf. §7.2). A reasonable com-
promise for the wavelength appeared to be 36 cm. We decided to use a wavelength: depth ratio
of 12:1. ‘

In principle we should like the experiment to cover a range of wave amplitudes for which the
parameter S, measuring the relative importance of nonlinear and dispersive effects, spans a fairly
representative range of parameter space. Under the above conditions, § would take a value of
0.1 at a wave amplitude of 0.002 cm and would be 10 at a wave amplitude of 0.2 cm. So, to be
sure of achieving linear motions at one end of the parameter range, it would be necessary to use

very small wave amplitudes. It is fortunate that, in our experiments, this did not pose any major
difficulties.
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3, PROPERTIES OF THE EXACT SOLUTION OF THE MODEL EQUATION
In this section we study properties of the solution of the initial- and boundary-value problem
N+ 00+ P = e =Vl = 0, fOr 5,820, (3.1a)
7(x,0) =0 for x>0, and #(0,¢) =A(t) for t=0, (3.15)
where a, f, 1 are non-negative constants and y is a positive constant. We shall first discuss the
questions of existence, uniqueness and a priori boundedness of 5. Then, in preparation for a
posteriori error estimates to be derived in §5, bounds for derivatives of 7 are given in terms of

assumed bounds on #. Finally, it is shown that 9 decays exponentially in space, which justifies the
truncation of the spatial domain in numerical calculations.

3.1. Existence, uniqueness and a priori bounds for 7
Suppose that the boundary data are ‘smooth’ in the sense that, for a given 7" > 0 and an
integer [ > 1, he®([0,T]) and £(0) = 0. (3.2)

Then, by using the techniques of Bona & Bryant (1973), it follows that (3.1) has a unique solution
peFh*k; that is, (0/0x)7 (0/ at)'in(x, t) exists and is bounded and continuous on [0, o[ x [0, T]
fori=0,1,...,0 and j = 0,1, ..., k. (Here £ may be any positive integer.) Furthermore, these
derivatives of 7 all tend to zero as x >0, and 7, 7, are square integrable in x on [0, cof. If |A(¢)]
and |#'(t)| are bounded by some constant, say M, for ¢€[0, 7], then by using the methods of
Bona & Bryant (1973) it can be shown, for ¢€[0, T'], that

max {|7(x,5)|:x = 0, s€[0, ]} < by, (3.3)

where b,, b, are constants depending only on «, f, g, ¥ and M. In addition it follows that the
solution to (3.1) satisfies the equation

B t) = KO eV + [ Riasy) (o + 17 0,y
+i@ eyl 0] -a [ Aln) 260 dy, (5.4

where K(x,y) = 2%[@—(‘”?”-‘"/ 7 +sgn (x —y) e~le—vivY]

and ﬁ(x) y) = . [c—(93+v)jw/y — e—lxkyl.l\/?],
2*/%
The numerical scheme to be described in §4 is based on this formulation.

From the definitions it follows, for any non-negative integer £, that

o &) o 3

k
(ﬂ) K(x,y)‘dy:x > 0} g pitk+n),
Oy
@ o\ % H g @ o\k H
ax — —

" Uo (ay) (x’y)‘ % L (ay) (59)
Remarks. (i) The a priori bound (3.3) can be improved considerably. For example, we have been
able to show that max {|7|} grows no faster than t. However, (3.3) is sufficient to obtain a posteriori
estimates (see § 5), which show that there is essentially no growth in the maximum of ||, provided
the same holds true for a discrete approximation to 7.

(3.6)

dy:x > 0}  pikD),

47 Vol. go2. A




RS i i - 7

il 466 J.L.BONA, W. G. PRITCHARD AND L.R.SCOTT

(ii) The above theory holds when (3.1) is posed with non-zero initial data g(x,0) = g(x)
provided that g e #%([0, co[) for k > 2, that g and its derivatives tend to zero as x -0, that g, g’
are square integrable and that g(0) = 4(0).

3.2. Bounds for the derivatives of 7
Bounds on the temporal and spatial derivatives of 9 are to be derived in terms of assumed
bounds on the maximum of || itself. Thus for 7" > 0 define
o(T) = max{|n(x,8)|:x = 0, te[0, T]}. (3.7)
We shall use the notation loll = max {|¢(x)|:x = 0}, (3.8)

where ¢ represents 7 or its derivatives.

Bounds for %, can be obtained directly from (3.4) through an application of Hélder’sinequality
(together with (3.6)). These imply that

| e 01 < A0(e) + oo (8) + 160> + 3/ v) (1), (3.9)
% where RE(1) = max {[A%9(s)]:0 < s < 8, (3.10)

with ¢ > 0 and £ a non-negative integer. (Note that |A(t)| < o(t).)
Bounds for the spatial derivatives may also be deduced from (3.4). By dividing the range of
integration in (3.4) aty = x and then differentiating with respect to x we have that

Pur(x,8) = —y E R (£) e~V +L R (x,y) (e +3p7%) (5,t) dy

— Yo + 3Bn2) (%, £) — pyE R(t) e —’f,%(x, ) —#J: H,(x,y) n(y,t)dy. (3.11)

Multiplying this equation by 7,(x, ) and using Holder's inequality together with (3.6), it follows

e Hhat 1(2/0t) [n2(x,0)]+ (u/v) 3 (x, 1) < Mg, 8)]; (3.12)

; where M = yEad (1) + 2y~ ao (t) + 3fo%(1) + 2uy~to(t).
; Gronwall’s lemma implies that

7402, )] < (My/p) (1—etr) = B(HD(0), 0(0), 8).
Thus, since x > 0 was arbitrary,

I (- - )] < Pu(BR(2), o (2)s 1)- (3.13)

Note that P,(hD(2), o'(f),£) < Mmin{t,y/p}, so that P is bounded by a polynomial linear in ¢
and h®(1), and quadratic in o(f), having coefficients that are polynomials in a, f, # and vyt
Moreover, the (explicit) dependence on ¢ can be ignored for ¢ = y/p.

Rounds for higher-order spatial derivatives can be obtained inductively by similar arguments,
leading to the following lemma.

LemMa 3.1. Let T > 0. Suppose that he €([0, T]) and that h(0) = 0. Let 1) be the solution to (3.1),
and let B and o be defined by (3.10) and (3.7) respectively. Then, for any positive integer k and for te [0, T'],

(&) -+

! where P, can be bounded by a polynomial of degree k in B9 (i) and min {t,y/p}, and of degree k+1 ino(t),
| having coefficients that are polynomials in &, 3, pt and 4.

< P (A (1), (1), 1),
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Comment. A polynomial P(x,, ..., #,) is said to have degree /; in the variable x; if Pis a polynomial
of degree at most /; in the variable x;, when all the other variables are held fixed.

3.3. Decay rates for the exact solution

Lemma 3.2, Let T > 0 and suppose that he €1([0, T']), with h(C) = 0. Let 3 be the solution to (3.1)
and let B, j = 0,1, and o be defined by (3.10) and (3.7) respectively. Then, for any real number r €10, y=3[
there is a_function C = C(o(t)) < oo such that '

' [n(x, )] < [(/y) B (€) + 5P (1)) €1 Ot=r=
Jorte[0, T). Here C(&) = (a)y) [(x+ 3BE) + pu/y}], where a = 2y /(1 —yr?).

Remarks. (i) This estimate says, in effect, that signals propagating in accordance with (3.1)
have a speed not exceeding C/r. When x = 0, the speed C/r is minimized when r = (3y)-%,
with C/r = 3./3(a+ }0).

(ii) Similar results also apply when (3.1) is posed with non-zero initial data »(x, 9) = g(x),

provided g(0) = £(0), g’ is square integrable and |g(x)| < Me™" for x > 0. The estimate is then
modified by the addition of the term M e¢t-r=,

Proof. Let X > 0 and define a weighting function w such that
e, 0y,
w(x) = {
eX, axz X

Set v(x,t) = w(x)y(x,¢) and multiply (3.4) by w. It follows that

(1, £) = B (£) e=V7 w(x) + j " Rx,y) %ﬁ (@ + 515, 1)) v(y,2) dy

+— [it () e=Vrw(x) —v(x, t)] — ,uf H(x,y) E gﬂ(g,t}dy (3.14)

When r is in the interval ]O, v3[, e=®Vrw(x) < 1 for any x > 0. Therefore, after multiplying
(3.14) by v(x,t) and applying the Holder inequality, we have that

19
2avz(x t)+ v3(x, 1) {|h’(t E+! |h(6)| + (e + 3o (1)) ||f | K (x, 1) —%
+alo( ||f (59 |—%dy}1 (2,0 (3.19
(Note that [[v(+, )| < o(f)e"X < oo for te[0, T].)
From the definitions (3.5) it follows that
|K(x,9)| < y~te'svvy and |H(xy)| < y-tete—vivy,
Moreover, w(x) /w(y) < e®=¥" when y < x, and w(x) /w(y) < 1 when y > x, so that
mc-'x—ﬂih’rw—(x—)d < (yt-r1l49t =g, 3.16
/. ey < (=) od =g, (3.16)
Using these inequalities in (3.15), we see that
0
5?0 +50 0 < (1K1 + £ 140 +ao (0 b0 )y + ]|| 1) lo(a, 1),

< {21200+ K90 + 20 1o, D1 ot ),

where (1) = a,[(x+ 380 (1)) /v + p/7H].
47-2
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Write S(¢) = max{||v(+,s)||:0 < s < #}. Then Gronwall's lemma implies, for any ¢, < ¢ < T,
that
5,91 < (5 A9 ) 4590+ 2)S(0) L (1 —er-107) oz, )| e-rie-to.

But, since x is an arbitrary point, it follows that
S() < (f-;' CIORYIOREORT) L1 eonectan] +-5(t).

Thus, 0 < S-S (';-f O (1) + KD (1) + (1) S(t)){

1 — e—#lE—toly
= |

w(t—1to) /v
Therefore § is a Lipschitz function. On letting £, ¢ it follows that
S'(8) < (/) W3 (8) + 432 (1) +E(2) S(2),

except on a set of zero measure. A further application of Gronwall’s inequality gives

S(t) < [g AR () +h§i’(t)] ea(?(tz; %
v 1650 < [0 + 100 St s

So far we have held X fixed, but if we now let X — co the conclusion of the lemma follows except
that 4 is replaced by g, in the function &(¢). But, having deduced that #(x,t) decreases expo-
nentially in x we can repeat the above argument with w(x) = e™ for allx > 0. We now know that
flo(«,0)] = [lw(*,)| < oo, and the argument using Gronwall’s inequality is therefore valid. The
improvement in the constant ¢ comes about because

f ® e~ le-vIVY erle-dy < (T‘l’ —r) 14 (y—é +r)l=a.
0

Using this estimate instead of (3.16) leads to the stated result.

4, THE NUMERICAL SCHEME

The numerical scheme is based on the integral equation (3.4). The equation is first discretized
in space, its right-hand side being approximated by numerical quadrature; the resultant system
of ordinary differential equations is integrated forward in time by a finite difference method.

4.1. Spatial discretization
The spatial discretization is effected by approximating the integrals of (3.4) by the trapezoidal
rule with derivative correction at the end points of the domain (see Davis & Rabinowitz 1967).
Thus, truncating the half line [0,00[ and introducing a uniform partition of N+1 points,
{0, Ax, 2Ax, ..., NAx}, we have, for any sufficiently smooth function V(x), the approximation

kAx
f V() dy & L (V)
JjAzx

- A [% (V(iAs+) + V(kax—))+ % V(z'Ax)] + ARV (jAx+) — V' (kAx—)),
i=j+1
(4.1
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where j, k£ are natural numbers with 0 <j < £ < N. This approximation has fourth-order
accuracy, provided ¥ has four bounded continuous derivatives on the cpen interval ] jAx, kAx[
(see §5.1 below). ' -

In using (4.1) to approximate (3.4) we note that the function ¥(y) takes the form J(x, ) v(y),
where u(y) is assurned to have four bounded, continuous derivatives on ]0, NAx[, and J(x,y)
(whichis used to symbolize either /7 or K) has four bounded, continuous derivatives, as a function
of y, on each of 0, x[ and ]x, NAx[. Thus, the approximation (4.1) is to be applied separately on
each of these intervals and the sum is to be taken. When N is large enough it can be shown (see
§5.1) that the contribution from the right-hand end point, NAx, is negligibly small, so that terms
arising there can be omitted from the numerical scheme. Therefore, if we denote J(iAx,y) by
Jy(y), 0 < i € N, it follows that

[T 20)0t0) dy % AXLT0)0(0) + (itide=) + T itx+)) (i) +Ax__ 3 Ji(i000(js%)

+15822[(Te() (1)) |ox — (Se(@) v (1)) [sae—+ (Vi) 2(9)) | i80)
(= Uos+1; w) (Ji(y) v(y)) — Axfi(NM) (NAx) + 15853 (J3(y) v(9)) | vac—)- (4.2)

If we further define ¢; = »(jAx) and J;; = J(iAx, jAy) and introduce the particular forms for i
and K, we can (after some simplification) rewrite (4.2) in the form

NAz

A (y)oly) dy  e-isaivs [%(Ax/y%) S, e-ielVry, — Jo(Ax/y)? ]
i=1 |

+ Ax E Hv;+ 15 (Ax/v)%0;, (4.3)
J=
NAz » . N
and f K,(y)v(y)dy = 3(Ax/y)e-ibavy [vo-%- - e""“’f"?’uj+%Axv’{0+)]
0 =
+Ax E 10— 12(Ax2/y) v (1Ax), ' (4.4)

where
Hij = - (1/2'}’%) e—!'i—]’\dxh/y, and K (1/2’}/ sgn( ) —It-—?IAxh/'y ] ?éj, Kﬁ = 0.

The continuous quantities »’(0+) and »’(iAx) in (4.4) are still to be discretized. Since both
these terms derive from the second-order correction terms to the trapezoidal rule it is sufficient

to approximate them only to second order to retain the overall fourth-order approximation of
the integral. Thus, writing

V' (0+4) & (—vy+4v;, — 3v) /2Ax, V' (1Ax) & (v — i) /24x%,

and incorporating these approximations in (4.4), we have
NAz ' . N
f() Ki(y) U(y) dy ~ %(Ax/*y) ei’“ﬁx/\/y { .Eo ﬂ_jAm/‘/‘Y 'U?- + TIE( - 3)2 4 47)1 - 3”0)}
=
N
+Ax ,21 Kiv; — 2z (Bx/y) (V342 — Vi) (4.5)
j=

Using (4.3) and (4.5), we construct an approximation to the right-hand side of (3.4), at
grid points iAx, 1 €7 < N, of the form

Fi(t, ((an + 3B02)(0, 1), ..., (an + 189°)(NBX, 1)) = Gy (7(0, 1), .., (NB%, 1)), (4.6)
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: ; where F, G are vector functions with F = (F, ..., Fy)and G = (Gy, ..., Gy). It is convenient for
computation to write each of F and G as the sum of two vectors, i.e.

F(t,9) = F'(1,0) + F*(0), G(v) = GY(v) +G*(v),

N
where  F= g-tdavy {h’(t) A { 3 c T4 (b 4y 3%)]}
i
+Ax§] 4V, for 2=0,1,2,. (4.7)
E2 = { -II(AJC/')/)(,E+1-—EJ 1’ for f:I,Z,...,N—l,
;L
71(Ax/y) vy for i= N, )

N
G} = e-tasvy { =Dyt 25 (be/7)7 10+ H A7) 3 eoineiv

j=1

+Ax§]

‘ i Y5

for 1=0,1,2,... (4.8)

P R |

= [y 1+ (Ax/y)%v, for i=1,2,..,N.

Here v = (v, ..., vN). Note that F}, G} are defined for all i > 0, even though they involve only
Ugy +eey Upye
4.2, An efficient computational procedure
Before discussing the discretization in time it is worth while to consider efficient ways of
computing F' and G'. Evaluating F' and G directly would require O(N?) operations, although
this can easily be reduced to O(NIn N) operations through the use of a fast convolution method.
However, it is possible to view (4.6) as a difference approximation to (3.14) and to reduce the

computation of F* and G* to O(N) operations. To do this, we introduce a difference operator D2
defined by

(DEw); = w; — (w1 — 2ws + w0 ) [ (€A%1VY — 2 emdelvy),
=Aw; + B(wyy, +w;_y),

sothat 4 = 1—2B. The operator D? is effectively an infinite-order approximation to 1 —y 2, in
the sense that, when D2 is applied to the integral kernel for the inverse of 1 — ¥ 0%, the Kronecker

d-function results, exactly. (To see this, note first that if w, = e*V7, jeZ, then D2 =0.)
Thus, by applying D? to F* and G! (and after some simplification) it follows, for 2 < i < N—1,
that

(4.9)

[D*Fi(t,v)]; = (BAx/Y) (00— V4m1)s }
and [D2G*(0)]; = (BAx/1)sinh (Ax/yjy),

To complete the system of equations the values of (D2F?),, (D2G1), for { = i and i = N must be
calculated, where, here only, we let F! denote (F75, FL, ..., Fh i), and similarly for G*. This
| calculation provides, for i = 1,

| AF1+ BF; = — BH'(t) + 7 (BAx/y) (13v,— dv, — 9u,), } (4.10)
Hl and AGL+ BG} = (y~'+ {5(Ax/y)?) Buy + (BAx/y#) sinh ( (Ax/\y) v, ’
and, for { = N,
BEy_ 1+ AFy = — }(BAx/y) vx-1+ (= BFhL), } (4.11)
and BG} 1+ AGY = (BAx/y})sinh (Ax/y) vy + (= BGL.,). '
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We evaluate F?, G* by solving the tridiagonal system of equations (4.9)—(4.11), which requires
only O(N) operations. To solve these equations we must first evaluate the terms Fjy ., and G},
that appear in (4.11), the calculations for which can be made explicitly by using the formulae
(4.7), (4.8). (Note that such a computation involves only O(N) operations.) However, it can be
shown (see §5.1) that the retention of the quantities Fi_,; and Gy, is of only exponentially small
consequence and it is more convenient simply to discard them from the system (4.9)-(4.11).
We shall represent the solution of the resulting set of equations (i.e. the ones without Fy.,,

L) by FL, G,
Let us denote the semi-discrete approximation to 5 by the vector function

‘ u(t) = (uo(t),us(8), .., un(t),
where u is defined by

uy(f) = h(t), 130, } -~

and 2,(t) = F,[t, (au+Lpuou)(t)] —uG,[u(t)], i=1,..., N,

3

and F' = 1 + F2, G = G' + G2. Here uou denotes the vector (ug, 43, ...,u%). Thenif his identified
with u, wherever it appears in the definition of F and G, the set of equations (4.12) may be written
as a system of ordinary differential equations,

o= F(tu), (4.13)

for the vector & = (uy, s, ..., uy). This set of equations can be shown (see §5.3) to have a solution
on an interval [0, 7;], where T} tends to infinity as both Ax— 0 and NAx — 0.

4.3, Temporal discretization

The temporal discretization of (4.13) has been effected through a prediction—correction
method which, here, is efficient because the initial datum is zero and no start-up procedure is
needed. The continuous quantity 4'(¢) appearing in the definition of F' (cf. (4.7)) is calculated
by the fourth-order central-difference formula

B (nAt) ~ dim = (hn=2 — 8n=1 4 8fn+1 — n+2) [12A¢, (4.14)

where A" = h(nAl), neN. Let %*(v) denote the function obtained by substituting dA® for
k' (nAt) in & (nAt, v) at that point. Then we take the fully discrete approximation to 7 to be the
vector function given by Moulton’s method (cf. Isaacson & Keller 1966), namely

ﬁn+1 = unr + EIIAL‘[55='G}T”(H") — 593,'7171(”11—1) + 37{5/‘/771—2(“71,—2) — ggtu"n-:i(uﬂ,uﬂ)]:‘ (4 15)
and  unH = w4+ LAOF (@) 4 10F 7 (ur) — 5Fn-1(yn-1) 4 Fr-2(un-?)]. } '

Since, for ¢ < 0, 5(x, t) is presumed to be zero, we shall take u® u=1, ... (and /% £71, ...) to be zero
as the starting values for (4.15).

The error induced by using the above scheme to approximate the solution of (3.1) can be
shown to be O(Ax*+ At?) (see §5) and, since & remains bounded as Ax — 0, there are no stability
limitations on At or Ax. The same methods can be used to develop schemes of arbitrary order of
accuracy by using higher-order derivative corrections for the trapezoidal rule (i.e. the Euler—
Maclaurin formula) and higher-order prediction—correction methods. But before studying the
accuracy of the approximation theoretically we shall first describe some numerical tests made
with the scheme.
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4.4. Convergence tests

The theoretical convergence rate of the scheme was checked by comparing numerical solu-
tions for the propagation of a solitary wave with the exact solution for the continuous equation.
With g = 0 and for xe R, there is a family of exact solutions to (3.1a) of the form

7 = fgsech®{[Bno/12y (e + §Ano) 1} [x + 20— (2 +3510) 41}, (4.16)

where 7, > 0 is the (maximum) amplitude of the wave and x, is a real constant. The wave
propagates without change of form at a steady speed o +1/,. The constant x, is a parameter
used to ‘offset’ the solitary wave so that, at ¢ = 0, the wave crest is located at x = —%,; alter-
natively, the wave crest passes an observer stationed at x = 0 at time ¢ = x,/(x + 447,). Suppose
therefore, at x = 0 and for ¢ > 0, that (4.16) were used as the boundary data A(t), then there
would result an exact solution to (3.1), subject of course to some non-zero initial data g(x), say.
By choosing x, sufficiently large, the exponential decay of (4.16) implies that the maximum value
of [g| can be made arbitrarily small, in which case the specification g = 0 provides a close
approximation to an exact solution of (3.1). It should, however, be noted that such a specifi-

cation introduces an incompatibility at the origin and this may slightly pollute the numerical
solutions.

TaBLE 1. THE ERRORS E_(7") INDUCED IN INTEGRATING A SOLITARY WAVE (4.16)
WITH 7, = 0.25, FOR A TIME T

(NAx = 180.0; 4 = Al = Ax;a =1, f =%, p = 0,7 = }. An entry in a row labelled ‘ratio’ is the ratio
of the numbers above and below that entry.)

(@) 7(0,0)/7, = 0.1x 105, x, & 27.029

V| T 19.2 38.4 67.2 96.0 172.8
0.6 0.933(—4) 0.209(~1) 0.564(—1) 0.923(—1) 0.169
ratio 12.4 14.3 13.1 12.5 10.0
0.3 0.753(— 5) 0.146(—2) 0.429(—2) 0.740(—2) 0.169(—1)
ratio 13.6 15.6 15.5 15.7 16.3
0.15 0.554(—6) 0.938(—4) 0.276(—3) 0.470(—3) 0.104(—2)
ratio 14.2 15.8 16.1 16.3 16.9
0.075 0.389(—7) 0.595( - 5) 0.171(—4) 0.288(—4) 0.616(—4)
max i?]| 0.110(—1) 0.250 0.250 0.250 0.250

(6) 7(0,0) /55 = 0.1 x 1079, x, ~ 29,899

A T  19.2 38.4 67.2
0.15 0.556(—1) 0.790(—4) 0.259(—3)
ratio 14.2 15.7 16.1
0.075 0.391(—8) 0.502(—5) 0.161(—4)
ratio 15.0 15.8 16.1
0.0375 0.260(—9) 0.317(—6) 0.100( — 5)
max |7| 0.110(—2) 0.250 0.250

Nevertheless, for the initial data g(x) = 0, we have taken (4.16) as an ‘exact’ solution and have
made a convergence test for the scheme, the results of which are given in table 1. Let u;(T) be
the computed solution at time 7" and at x = {Ax, 0 < ¢ < N. Then the entries shown in table 1
are E (T) = max {|u,(T)—n(iAx, T)|:0 < { < N}. The computations reported in table 1a were
made with 5, = 0.25 (which was roughly the largest wave amplitude encountered in the
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experiments), with x, chosen so that /5, = 0.1 x 10-% at (0,0), and with A¢ = Ax (= A). The
choice of Az = Ax was made because preliminary tests suggested this was near the optimal choice,
in terms of accuracy achieved for a given amount of work, and because it is sufficient to take
At/Ax = constant to check the convergence rate, if the error is proportional to A#*+ Ax% The
domain used for these computations was approximately the same as that needed tc make com-
parisons with the laboratory experiments.

Itisseenin table 14 that, apart from the smallest time quoted, the errors decreased at approxi-
mately the 16:1 ratio expected of the scheme when the mesh is halved. At ¢t = 19.2 the wave
crest had not yet emerged from the ‘wavemaker’, so that the wave amplitudes were quite small
(cf. the value of max |5| quoted in the table) and the influence of the truncation of the input
waveform is reflected by convergence rates being smaller than expected for the scheme. With
7(0, 0) /7, chosen to be 0.1 x 10~ the errors £, (see table 15) were of a similar form to those given
in table 1a. Indeed, the difference between (a) and () is not as great as might appear from
table 1. For example, when the error £, was determined at the times at which the wave crest
had reached x = 45.70, the errors for each experiment were nearly the same (for 4 = 0.15, 0.075).

A similar test of the convergence of the numerical scheme was made by comparing solutions
with 9(X,t) for X fixed. If #/(X) is the computed solution at posmon X and at time ¢ = jAt,
0 € j < M, then we have calculated

i
B(X) = % [w(X)-y(X80 8, B(X) = 3 WX -a(X,ja0 1Al

M

and EL(X) = max {|u/(X) —n(X,jAt)|:0 €5 < M}.

The results of such a calculation for 3, = 0.25 and X = 36.0 are given in table 2, and again a
convergence order of about 4 was obtained.

TaBLE 2. THE ERRORS E, E,, E INDUCED IN INTEGRATING A SOLITARY WAVE (4.16)
WITH 5, = 0.25, X = 36.0

(MA? = 180.0.4 = At = Ax;a = 1,1 = 3, 0= 0,7 = };9(0, 0) /5, = 0.1x 10-8, x) & 27.079. An entry in
a row labelled ratio is the ratio of the numbers above and below that entry.)

4 E\(X) Ey(X) Ep(X)
0.6 0.286 0.178 0.165
ratio 15.6 13.6 13.8
0.3 0.183(—1) 0.131(—1) 0.120(—-1)
ratio 16.6 15.1 15.5
0.15 0.110(—2) 0.870(—3) 0.774(—3)
ratio 16.9 15.8 16.0
0.075 0.651(—4) 0.551(—4) 0.485(—4)

With g # 0, we do not know of an exact solution to the continuous equation, so the con-
vergence rate of the scheme was checked in a different way. To ascertain that the coding of the
dissipative term was correct, experiments were run with the linear model (i.e. 8 = 0) with A(¢)
chosen to be sinusoidal in time, and the decay rate of these waves was compared with that
deduced from the dispersion relation. (The results of a test of this kind are described in §7.5.)

Having checked that the dissipative term had been correctly coded, the convergence rate for
the full equation (with £ = 1.5) was estimated by taking the ‘exact’ solution to be the results
from a computation made with a small value of 4 (i.e. 4 = 0.0375) and comparing this solution

48 Vol. go2. A
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with numerical solutions at larger values of 4. Thus, using (4.16) at x = 0 for the boundary data
h(t), with 9(0,0) /7, chosen to be 0.1 x 10~ (i.e. x, ~ 27.079), and with # = 0.014 (the value

used in the comparisons of §7.3) the convergence orders, as shown in table 3, were again found
to be about 4. '

TABLE 3. A CONVERGENCE TABLE FOR THE NUMERICAL SCHEME WITH p#0

(MAt=1T5.0;4 =At=Ax;a =1, =%, p = 0014,y = 3. An entry in a row labelled ratio is the ratio of
the numbers above and below that entry.)

4 E,(15.0) E,(15.0) E,(15.0) E(30.0) E,(30.0) E,(30.0)
0.6 0.105 0.707(—1)  0.851(—1) 0.176 0.133 0.118
ratio 16.0 14.4 14.9 14.3 13.6 13.6
0.3 0.655(—2)  0.492(—2)  0.438(—2) 0.123(—1)  0.975(—2)  0.866(—2)
ratio 16.4 15.2 15.6 15.9 15.3 15.7
0.15  0.400(—3)  0.323(—3)  0.280(—3) 0.772(—3)  0.639(—3)  0.553(—3)
ratio 17.1 16.6 16.8 17.1 16.8 16.9
0.075  0.234(—4)  0.195(—4)  0.167(—4) 0.451(—4)  0.380(—4)  0.327(—4)

5. ERROR ESTIMATES FOR THE DISCRETE SCHEME

In this chapter we shall let ¢;, i = 1, 2, ..., denote real constants. Also, we shall assume that
At, Ax < 1 so that the dependence of constants on positive powers of At and Ax can be ignored.
The notation is the same as that used in §§3, 4.

5.1. Spatial discretization errors
The error associated with the trapezoidal rule with derivative end correction, as given in
(4.1), is as follows.

LemMa 5.1. If V has four bounded, continuous derivatives on the open interval |jAx, kAx[, then

kAxV i Axt [FAz -~
[ vwar-nam| < g T Iveway

This is a standard result (see, for example, Davis & Rabinowitz 1967).

The error arising from the use of the vector F* can be estimated as the sum of a term pro-
portional to Ax* and a term arising from the approximation used at the right-hand extremity of
the interval:

LeMMA 5.2. Suppose that v has four continuous derivatives on the interval [0, NAx]. Let v = (vg, ..., vy),
where v; = v(iAx). Then, fori =1,2,..., N,

NAz _
F(t, 0) — b (8) e=ineivy j R(idx,5)v(y)dy
0

< o Axtmax {|v9(x)|:x€[0, NAx],j = 0, ..., 4} + ¢ Ax max {|vy_s|:k = 0,1, 2},
where the constants ¢y, ¢, depend only on y.
Proof. By definition (see (4.1), (4.2), (4.7)) it follows, for { = 1,..., N—1, that
Ej(t,0) = k' (t) e~idar + I (K (iAx, + ) v) + I y (K(iAx, + ) v)
_%% e—iAT/y [v’ (1) i Vs ';‘zf;l - 3%] i % [U, (iA%) — Ui+12;;"i—1]
+3Ax K(iAx, NAx) vy + 5 Ax2 (R (iAx, + ) )’

NAz-
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The difference approximations in the fourth and fifth terms are less than
$Ax* max {[v¥(x)|: 2 [0, NAx]}.
The last term can be estimated as follows:
[(K(iAx, * ) 0) | yas| = |K, (1A%, NAx) vy + K (iAx, NAx) v'(NAx)|,
<y How| +y7 ' (NAZ) — (uy_g — doy_y + 30y) /25|
+ (v 28x) [oy_y— vy + Buy),
< (Ax?/3y) max {|v®(x)|:x €[0, NAx]}
+ (774 (2/yAx)) max {loysl:k =0,1,2}.

Combining these estimates, together with a direct estimate for the penultimate term, we have
that
|Filt, 0) =B (8) e~y — I (K (iAx, ) v) = I, (R (iAx, + )v)|

< 22 max {[u(x)|: x [0, NAx]} + Ax (2 4 A k=0,1,2). (5.1
\12,}, : ] x 3,}, 127’% maX{IUN-—k" T gL } ( 1 )

But lemma 5.1 implies that

E=

gty s NAz _

Io (R0, )0) LR, )0 = [ Rt ot
0

Axt ide NAz
<gaa| [, 1&aas Yy [ | RGisw 00 ) ay],
84| Jo Az
which can be estimated further through the use of Leibnitz’s rule (together with (3.6)) and the
Hélder inequality. Thus, it follows that

E < cyAxtmax {[v9(x)|:x€[0, NAx],j = 0, ..., 4}

3

where ¢; depends only on y. Then, combining this estimate and (5 .1), we have the required result
fori# N. Fori = N,

Fy(t,0) = k' (£) e=¥aaldy 4 I, o (R(NAx, + )v) + Ax R (NAx, NAx—) vy

Ax? — vy +4v, — 3v Ax
——_ a—NAazl/y | 5 R P W )| W ) . ¢ il
75,° [y (0) S ]+ A (K (NAx, +)v) vas. T3Ey N1

The techniques used when ¢ # N apply in the same way in this case. (The constants here can be
chosen to be the same as for i # N.)
A similar result can be established in relation to the vector G.

LeMMA 5.3. Suppose that v has four continuous derivatives on the interval [0, NAx]. Letv = (v, ..., vy),
where v; = v(iAx). Then, fori = 1,..., N,

NAx _
Gy(0) — -1, +y-Le—taeivyy, f (i, y)oly) dy
0

< caAxtmax {[v9(x)|:x €[0, NAx],j = 0, ..., 4} +¢;Axmax{[vy_;|:k = 0,1, 2},

where the constants cy, ¢5 depend only on y.
The proof of this lemma follows a similar pattern to that for lemma 5.2 and is therefore omitted.
The above lemmas can now be combined to give the following estimate,

48-2




———+]

476 J. L. BONA, W. G.PRITCHARD AND L. R. SCOTT

CoRrOLLARY 5.1. Suppose that v has four continuous derivatives on the interval [0, NAx]. Let v = (v,,
vy), where v; = v(iAx). Then, for i = 1,2,..., N,

. NAz _ .
lF‘i(t, v) — k' (t) e~iATVY — L K(iAx, y)v(y)dy

Az
Gy(v) —y~lv, +y-te-ibay y  — Juy H(iAx, y)v(y) dy ’
0

< ggAx*max {|v9(x)|:x€[0, NAx], j = 0, ..., 4} + c; Ax max {Joy_,|:k = 0,1, 2}

N
4 e—(N+1) Azidy [|h'(t)| +cgAx 3, efAzy |”i|] 3
i=0

where cg = ¢, + ¢4, ¢; = €5+ ¢5 and cq 15 another constunt depending only on y.

Proof. Define 5; = sinh ({Ax/\Jy) /sinh [ (N + 1) Ax/Jv]. (5:2)

Recall from §4.2 that F! and G? respectively differ from F! and G! only because the terms
involving Fy ., and G}, were not retained. Thus, it follows from the definitions (4.9)—(4.11) that

Fi(t}”) = Fi(t,v) —s; Fy (L v), Gi(”) = Gi(v) —5; Gy a(0), (5.3)

fori =1,2,..., N. From the definition (4.7) of F* we see that

N
[FRa(t, )] < cmeematr{[1(0)] +-§(&x/) | B, =554 oy + Hool + o] + Faloal

N
+ ijz eG=N-18aiy |y |,
=1

N
< e—(N+1}ﬂ2i«/?{|h'(t)[ + G ij?o efﬂmf«/‘}‘ |yj|} ,
where ¢; = 1 +2(Ax/7y). Similarly, it follows from (4.8) that
|GN+1| cloAx e"(N-i-l) Axlyy 2 e?ﬁxf‘\/'}’ iy |

i=0

where ¢,, depends only on y. Therefore, on defining ¢; = ¢4+ ¢4, we have that

1Fi(t,0) = Fi(t, )] +16,(0) ~ Gu(o)]| < e-vemasir [ [1(0)] 4,45 3, eisettr oy,
i=0

and the result follows from lemmas 5.2 and 5.3.

5.2. Lipschitz estimate for

In this subsection |#| will be used to denote the /, norm of »; i.e. if we denote the ith com-
ponent of @ by v;, then |[2| = max {|v,|}.

The map v = (v, ..., vy) — F1(t, v) is an affine map, taking the form F(t,») = L(t) + Mo, say.
f (Recall that F* = (F}, ..., F}) and similarly for the other F and G vectors.) The /,, operator norm
of M (it is the maximum, absolute row sum of M) can be estimated as

l e Ax (N Ax N o

| [M]| < max |e-italvy=2( 3 e—fdalvy 4 2) 422 % e-li-ilazivy |
i 1<iSN+1 2y \;So 2,54

; N

| §—x 3 e-iazivy 4 1A%

27 i< 3y
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Since Ax g} e~i8alVy < \Jy, it follows that |M| < $y-#+2y1 = k¢,;. Therefore |Fi(t,v)

—Fi(t, w)| = | M(v— w)| < }¢;]v— w||. (Note that, here and below, the norm on v —w is a
norm on (N +1)-vectors whereas all other norms are taken on N-vectors.) Similarly, we have
that

'Et%’+l(t= ‘0) _'E%Hl(t: W)| < %611”0 - w":

and a Lipschitz estimate for F1 can be obtained by using (5.2)7 and (5.3) thus:

| F1(2,v) — F1(t, w)| < | F'(t,0) — F\(t, w)| + | F1(t, ) — FY(t, 0) — (F1(1, w) — FY(t, w))],
[ FY(¢, v) — F(t, w)| + | Fya (8, ©) — Fy, (8, w)),

<
<
< epfv—w).

The map v+ F?(v) is linear and its [,, operator norm is bounded by Ax/12y (see (4.7)), so that
an estimate for F = F1 4 F2 s
| E(t,v) — F(t, w)|| < eplo—w], (5.4)

where ¢z = ¢;; + %Y. A similar argument can be applied to the map v+ G(v) leading to an
estimate of the form
- 1G(0) -~ G| < colo—wl, (5.5)
where ¢; depends only on .
A combination of these two estimates can be used to obtain a Lipschitz estimate for & (as
defined in (4.12) and (4.13)). Let v denote the vector (A(t), vy, ...,vy), let D denote (v, ..., vy)
and let v o v denote (h2(¢), 22, ..., v%). Then, since F(¢,v) is affine in v,

Hﬁ"(t,i})—g?(t,w I < lF(t av +3}pvov) - F(t’aw'f'%ﬁwow)“ '{'ﬂ"é(”)*é(u’)”:
< al|F(t,0) = F(t, w)| + 3| F(t,000) - F(t, wo w)| + | G (v) — G ()],
< cp(alo—w|+iplvov—wow|) +egulv—w|,
_ < [ex (o + 380 +W]) +cop] |2 -5
Thus it follows that
|#(&,8) —F (1, B)| < ep(1+]5+]) 5], (5.6)

where ¢; depends only on «, £, v and . So & is uniformly Lipschitz continuous in o on bounded
subsets of /.
5.3. Existence and bounds for the semi-discrete approximation

Let 9(t) represent the vector function #,(t) = 9(iAx,t), ¢ = 1, ..., N, where 7 is the solution to
(3.1). Then, from corollary (5.1) and lemmas (3.1), (3.2) it follows that

[7(8) = F (&) < crpAxt P(RD(2), 0 (), £) + e WHDAT AR (1)
c3Ax

r N
o (g O'(t) +h§7}i)(3)) I-cOt—rNA:c_i_ e—W+D Azlvy Z eldxl/y eCt——r}'A:v] ,
i=0

+

where P(§, o,7) = max {(1 + P(§,0,7)) Bi(£,0,7):0 < i <j < 4}, C = C(0o(t)), ¢;,and ¢;3depend
only on @, 8,y and p; and 0 < r < y~? (cf. lemma 3.2). This expression can be simplified by the
use of the inequality

N
Ax e—N+D Azivy » ejAzy+Ct-riAz < (y—i _ r)ﬁl eCt—r(N+1) A;n,
i=0
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so that e —F e, 1) < cipAxd P(RD (D), o (8), £) + AD (1) e~ N+D Aaldy

Elé 'L_L (1) Ct—rNAz 5.7
+ C [’}’ o(t) + ki (t)]e : (5.7)

= a(t) [ = &A1), (1), t, Ax, NAx)],

and ¢;, depends only on a, £, 7, # aud r. Note that, by definition, e, is an increasing function of ¢.

Under the assumption that e %Y, it follows from §5.2 that & is locally Lipschitz continuous.
Thus there is a unique solution w(t) to (4.12) for ¢€[0, 4] for some £, > 0. Suppose that 7 is
grven by Ty = sup{ty = 0:u(t) exists and |u(t) — (1) < 1 for te[0, 4]} (5.8)
Since 1(0) = »(0) =0, and both u and 5 are continuous, then 7, > 0. We shall now obtain a

lower bound for 7§ and show that Ty oo as Ax-> 0 and NAx - o0, For e [0, T5] it follows from
(5.6) and (5.7) that

la() =i(0)] = 1# (6 w@) @) < |# ) -F @) +]|Z 6a) i),
<ep 1+nu(t +n()]) () ~n(0)] +ex(0),
< 205 (1 +0(0)) () ~n(8)] +e,(0). (5.9)

Since (d/d¢) [max {[u; —9;|}] < max{|(d/d¢) (u;—n,)|}, except on a set of zero measure, it follows
from Gronwall’s lemma that

() =n(8)]] < ex(2) [e2s4®® —1]/[2¢f, (1 +0(2))],

= Y(t), (5.10)
for te[0, 7,].

However, if T, were such that 1 (T;) < 1, it would contradict the maximality in the definition
(5.8), as follows. In this case w(f) is still defined for e [Ty, T+ 4], t; > 0, because & is locally
Lipschitz continuous; and [u(¢) —y(¢) | <1, for te[Ty, Ty +1t,], since u and 5 are continuous.
Therefore (7;) < 1 cannot hold.

Since ¢,(¢) and o(¢) are non-decreasing in ¢, it follows that y(¢) is strictly increasing in £, as
soon as ¢;(f) > 0. Lemmas 3.1, 8.2 imply that ¢ is continuous and hence (1) is continuous. Also
¥ (t) -0 as t->co. Thus it follows that 7, > T, where T is the unique solution of

W (T) = 1. 7 (5.11)
Note that, since ¢,(¢) > 0 as Ax— 0 and NAx—> oo (with t fixed), T — o0 as Ax— 0 and NAx — oo.

Thus u exists on an interval [0,7,] that becomes arbitrarily large as Ax—0 and NAx— c0.
Moreover

lu@l < lw@-2@)] + 28] < 1+0() (5.12)
for te[0, 73]. From now on we shall drop the distinction between T, and T', and we shall think of
T as the upper limit of the time interval over which the above estimates are valid. Although
< 7, the advantage of using T is that it is determined by the equation ¢(7') = 1, whereas T,

is not.
The above estimates are valid under the assumption that £ %([0, T1). We shall now derive
bounds for the temporal derivatives of # under the assumption that he%*([0,T]), for some

integer £ > 1. These may be obtained directly from (4.13). Observe that & can be written in
the form

F (1, 0) = F[t, (ah(t) + 3B3(t), o0y + 1B}, ..., aoy + 3Bek)] — wG (1), vy, ..., vy]
=I(t)+ Mp(av + jfvov) —uMgo, (5.13)
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where I'(t) = F[t, (ah(t) + 3 8h2(1), 0 »0)] =2G[h(1),0,...,0] and My, M, are matrices such
that | M| < ¢y and | Mg| < ¢, as deﬁned in (5.4), (5.5). (We recall the netation for the product
uowv, namely that (x0v); = w9, i = 1,2,..., N.) The vector I'(¢) is given by (cf. definition 5.2)
34
Ti(t) = swaae1 ) +~8§ (a4 1AHE))
Ax ;
5 (ah(t) + 1BR2(2)), if i=1,

Thus || (d/de)* ()] < g, (ROt ) ., i%¥(2)), where g, is a quadratic polynomial with coefficients
that are polynomials in a, 8, vy~ %, 4 and Ax, with numerical coefficients.
From this partitioning of % we see that

0, if i3

2@l < q(A(0), K () + [en(a+ 3B ()] +ne] fu (@),
Qu(k(8), K (2), ()],

where @, is quadratic. Then, on differentiating (5.13) we have

ii = '+ My (a1t + fuol) — pMy,
so that '

] < ga(A(e), BO(8), (1)) +[e(e + Bl ()])) + mea] @u(h(2), AV(2), [u (D)),
= Qg(lz(t),}z(l) ), [|u(?)]]).

In this manner it can be shown inductively, together with the estimate (5.12) for |u(¢)|, that

[(d/de)*u(t)] < Qu(AV(r), ..., hP(2), 1 + (1)), (5.14)
where @, is a polynomial of degree at most k+1, and te[0,7]. Also, it follows that
(d/d6)ku(0) = 0 if A(0) = ... = A®(0) = 0, k > 1, and that

max {||(d/dt)*u ()] :2€[0,T1} < QuAD(T), ..., KE(T), 1 + o(T)).

Comment. Bounds for these temporal derivatives can also be obtained from (5.9) and
(5.10). Proceeding from that starting point, estimates can be obtained showing that
| (d/de)% (1 —n)(£)] - 0 for any £, ¢, when Ax— 0 and NAx — co.

5.4. Bounds for the fully discrete problem

Having shown in §5.3 that the semi-discrete approximation u is close to % we shall now
consider the fully discrete approximation as effected by the prediction—correction method (4.15).
The following proposition is a direct adaptation of the results given in Isaacson & Keller (1966,
see p. 38811.).

ProposITION. Let T', At > 0 and let || -|| be any norm on RY. Suppose that'y = y(t) e?s([-3A¢4, T,
RY) is such that y = f(t, ) on the interval [ — 3At,T], that y = 0 on [ — 3At, 0] and that f is Lipschitz
continuousin y, with constant K, namely || f (t,u) —f (t, )| < K|u—v|, for u, veRY and for te[ — 3At,
T). Let y», n > 1, be determined by

Fr = yrLl At (55fn1 — 59f"‘2+37f"‘5—9f”““)+Atﬁ"‘,}

-1 1 n—z -3 n (515)
Y7 =y AL (9fn 4 19fn-1— fn—2 4 fu-3) 4 Aran,
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where f = f (AL y), fi=f(jAL ) and y* =y 1=y P =y = 0. Suppose that the errors 6™ and o
are such that ) ~
|67 +3KAY 0" <6 for n<T/AL

Then, for all n < T/ At, it follows that

ecal — 1
lym = y(nAL)| < [(bs+ by KAL) At sup [[y®(D)] +6] ,
tel0, T) ]

with by = A8, by = £k and ¢; = 75K(17+ 30KA?).

To apply this proposition to the scheme (4.15) we shall use the /, norm on RY and let the
errors 7, 0 be

we T2 o . i
0 H[ﬁjglajh((n—jjzit)ﬁ-dh J]z

, (5.16)
and o = [i > a;h'((n—j) At) —dh“—f] z, |
24,5

where z; = sy.1_; (cf. (5.2)), di* is defined by (4.14),
(@, = 55, dy = —59, @3 =37,a,=—9) and (¢,=9,a,=19,8,=—5,a3= 1).
Thus, 8™ and #* can be estimated as
107, 187 < ez Attsup {|#®(5)|:t/Ate[n—6,n+ 2]},

and ¢, is simply a numerical constant.

A necessary condition for u to be of class %° is that 2e%®. Let us therefore assume that
FO(0) = AP(0) = ... = A®(0) = 0 and that he®s ([0,T +2At]), where T is the solution of
(5.11), and define A(f) = 0, u(¢) = 0 for ¢ < 0. (The relationship of this assumption to the
experimental situation is discussed in §6.2.) Then u e%5(]—o0,T]) and u(f) = F(t,u(t)) for
all te] — oo, T']. Moreover,

max {07, [07:n < T/At} < cisAtt  sup  {|AO()]}-
te(0, T+2A0)

Since the Lipschitz estimate on & is not a global estimate the above proposition cannot be
used directly for the scheme (4.15). But an argument similar to the one used to prove the existence
of 1 in §5.3 can be used to show that the proposition is applicable to & over a time interval
[0,7;] where T; - o0 as Af— 0. However, because we are interested in deriving a posteriori error
estimates for o we shall follow a different argument.

Let T < T and set &(T") = max {|un|, |@i"]|:n < T/At}. Note that & depends implicitly on A¢,
| Ax and N, but we shall view these as being fixed for now. Regard & as a quantity computed by
the above method. Therefore & is known, at least a posteriori. Define

B(7) = {veR¥:||v|| < max{d(r), 1 +o(7)}}.

’ Thus, when T < T, all the quantities u, @i" and u(t) belong to B(T') for ¢, nAte[0, T]. Then, '

" define f to be equal to & on [0, T] x B(T) and such that f (¢, v) is globally Lipschitz continuous
in v (for te[0, T7]), with a Lipschitz constant not exceeding that for & restricted to B(T). This
is possible because the temporal dependence and the v-dependence in & decouple (cf. (5.13)).
In particular, a bound for the Lipschitz constant for f is afforded by

K(TY=¢ (1 +2max{6(T), 1 +o(T)}).




ON A MODEL EQUATION FOR WATER WAVES 481

Since u™, " and u(t), for £, nAt [0, T'], may be viewed equivalently as having been generated
either by & or f, the above proposition applies, yielding

eal 1

e —u(rAL)| < eq(1+3K(T)AL) Att -
a

[ sup. [u®()]+ sup [aO(1)[],
telo, 7 tero, 7+240

for all n < T/At. Here, ¢,4 is a numerical constant and
ca = ca(o(T), #(T)) = HK(T)[17+30K(T) At].

Then, combining this estimate with (5.10),and (5.14), we have, for 0 € T'< T and for all
n < T /At, that

el 1

”u“—q(nAt)” < W(T) +eg(1+3 (T‘)At) At P

X [Qs((T)y oo, BT, 14+0(T)+  sup  [kOF)|] = &5 (5.17)

tel0, T+2A¢)

The quantities e;(¢) = (AP (1), ..., AD (), o (t), 3(t), 4, At, Ax, NAx), i > 2, will be used to
denote error expressions that tend to zero as At, Ax — 0 and NAx — oo. Thus, ¢, provides an esti-
mate for the total error in the discrete scheme. In particular, for fixed 7° > 0, (5.17) shows that

o5 — (A2, nAL)| < cp (AL + Axt + e-rNVAT)

forall n < T/At,fori=1,..., N and for any r such that 0 < r < y~4. The constant ¢, is inde-
pendent of At, Ax and N but depends on «, 8, v, s, r and h, as well as on T, and a bound on
&(T) that is assumed to hold independently of At, Ax and N.

However, the above estimates have the shortcoming that the quantity o(T') appears expo-
nentially on the right-hand side and that the a priori bound (3.3) for o allows the possibility of
growth in time. To obviate the possibility of such large growth rates, we shall derive an 4
posteriori bound on ¢ based on our knowledge of &, Estimate (5.17) and the mean-value theorem
imply that ‘

max {[7(x,?)|:x€[0, NAx], te[0, TT}

< max{|n(nAf)]:0 < n < T/Af
+4/2 (Ax + At) max {|9,(x, )| + |9, (x, £)|: x € [0, NAx], te[o0, T},
< O(T) ep+42 (v +88) [BUS(T), o (T, T) 449 T)
+yH oo (T) + 3802(T)) + (3u/y) o(T)),
= (T) +e,
Then an upper bound for |y (x, )| for all x > 0 follows from lemma 3.2 and we have that

eCT 1

o(T) < &(T)+6’3+((#/}’)’lﬁg’(T)-i-ﬁ%)(T))—T greiida,
=&(T)+e, (5.18)
As in the definition (5.11) of 7', there is a unique 7, > 0 such that
es(KQ(T3), .y BTy, 1+ 5(T3), 6(Ty), Toy At, Ax, NAK) = 1. (5.19)

Furthermore, T, - coas Af, Ax— 0 and NAx - oo, provided that & (t) remains bounded on bounded
time intervals as these limits are approached. Thus, it follows from (5.18) that

o(t) < 14+6(t) for te[0,T,], (5.20)

49 Vol. go2. A
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and T, < T. Also we see that
]u}" 7 (iAx, nAl)| < e(RO(T), ..., BD(T), 1 +8(T),6(T), T, At, Ax, NAx),

for1 <¢ < T/At and 0 < T < Ty, where ¢, is defined by (5.17) and T} is glven by the
solutlon to (5 19)
Thus, in summary, we have the following result.

THEOREM. Let At and Ax be positive parameters not exceeding one. Let N be a positive integer and let T > 0.
Suppose that kD(0) = 0 for i =0,1,...,5, ana’ that 3 is the solution to (3.1). Let u™ be the solution of
(4.15) and let #(T) = max {|u}|, |2}|: 1 < N1 <n< T/A If T < Ty, as defined by (5.19), then

max {|5(iAx,nAf) —u}|:1 < i < N,1 <n < T/Af}

< e P(KP(T), 1 +«rm, T) Ast
CC'(H»E(T)) T—rNAz CQCL(2+5'(T))T -1

CA+6(T)) 2o, (2+5(T))

Foyg(2+3(T)) [,),(1+o(T)>+h,,%(T)]

+ i (1 +3R(T) At )ed( L 1Qu (T, o BO(T), 2 +6(T)) +  sup  |KO(1)[]Ar,
{el0, T+24t]
where K(T) = ¢, (5+26(T)) and éo(T) = 5K(T) (17 +30K(T)At). Here, 0 <7 <y ¥; ¢, €1
¢,4 and ¢y are constants (introduced previously) that depend only on o, 8, v, pu and 5 P is defined in the
proof of lemma 3.1 and in §5.3; C is defined in lemma 3.2; k), i = 0, ..., 5, are defined by (3.10); Q5 is
defined in §5.3 (¢f. (5.14)).

Remarks. (i) The effects of round-off error can be incorporated into the above theorem as
follows. Let the errors 87, 8 of (5.15) include the rounding error associated with the compu-
tation of f*, y", etc., at each time step. Suppose this additional error is bounded by 0, (which will
depend on N, Ax etc.). Then, from the proposition as stated, the final estimate in our theorem
is modified simply by the addition of the term 0p[ef™ 7 —1]/2,(T).

(ii) A consequence of the a posteriori estimate is that we can replace the bound o by 1+&
wherever it appears in the preceding estimates. However, ¢ and & may be small with respect
to one, say O(e), and this replacement might not be a particularly good one. If we were to define
T, T, by the unique solutions to ¥{T") = ¢ and ¢,(7;) = ¢ respectively, then o < &+¢ on [0, T3]
so that o may be replaced by & +¢ wherever it occurs. In fact, we could define € = max, &(t)
and then o can be replaced by 2¢ on [0, 7;]. Note that, regardless of the size of ¢ > 0, Tand T,
tend to infinity as Ax, At— 0 and NAx 0.

6. EXPERIMENTAL APPARATUS AND PROCEDURE
6.1. Experimental apparatus

The experiments were made in a uniform channel of length 5.5 m and width 30 cm. One end of
the channel was fitted with a plane beach of slope 1in 10; at the other end there was a rigid plane
flap which was used to generate the waves. The gap between the flap and the sides and bed of the
channel was packed with foam plastic to restrict leakage past the wavemaker. In its rest nosition
the flap was vertical and normal to the walls of the channel. It was supported by a horizontal
shaft, the axis of which was normal to the walls of the channel at a height of about 1 m above the
bed of the channel. The shaft was free to rotate about this axis. Since the water depth in the
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channel was only 3 cm for these experiments, the action of the paddle was effectively equivalent
to that of a plane piston. The paddle was forced in an oscillatory motion by a long crank attached
to an eccentric on the shaft of a synchronous motor. Thus, the frequency and amplitude of the
paddle motion were fixed for any given experiment and the arrangement was such that the
paddle could be set oscillating almost instantaneously under these conditions.

The walls and bed of the channel were made from plate glass. The width of the channel was
uniform tc v-ithin 0.01 cm and the bed was levelled so that it deviated from a mean horizontal
plane by no more than 0.040 cm. (The r.m.s. variation in depth from the mean was 0.020 cm.)
The levelling of the tank can be important, as any unevenness in the bed gives rise to reflected
waves, and systematic variations in depth lead to phase speeds different from those expected for
a uniform channel. The walls of the channel were lined with an absorbent bandage to provide
even wetting at the waterline.

Wave heights were measured by means of proximity transducers placed near the surface of
the water. (Briefly, the principle of the instrument is that these transducers form one plate of a

capacitor, the liquid surface being the second plate. By determining the capacitance it is possible _
to infer the distance of the water surface from the transducer.) The output from these transducers '
was relayed to an ultraviolet chart recorder, giving a continuous record of the surface elevation. !
The frequency response of the system extended from d.c. to about 1kHz. Since the sensitivity
and range of a given transducer is related to its area, we have, by choosing the appropriate
transducer, recorded wave amplitudes ranging between 0.005cm and 0.5cm with about the
same relative accuracy over the entire range. The wave heights thus determined were accurate

to within about 2 % of the maximum recorded amplitude in any given run.

6.2. Experimental procedure |

The tank was filled with water to roughly the desired depth, and surface films were skimmed
off. The water was then topped up until the level was within 0.001 cm of a reference level, set by
the tip of a pointer gauge. For all the experiments to be described the mean water depth was
3.00cm (the main uncertainty deriving from the unevenness in the bed, see above). Several
transducers (usually four) were then positioned along the channel, the distance of each transducer

from the mean position of the wavemaker being known to within about 1 mm. Typically, the
first transducer was placed about 15 to 20 cm from the wavemaker. On the basis of linear wave-
maker theory (see Havelock 1929), we judged this distance to be well beyond the extent of the
parasitic field of the wavemaker. The other transducers were then placed at distances of about
120, 220 and 320 cm from the wavemaker.

When the surface of the water in the tank was free of disturbances the wavemaker was set in
motion, executing sinusoidal oscillations at a fixed amplitude and frequency, and the water
elevation at each of the transducers was recorded. Because the first transducer was located well
away from the wavemaker, any possible discontinuities in the wavefield arising from the start-up
procedure were found to have been well ‘smoothed out’ at that position (cf. §7.3, figures 2
and 10). The experiment was stopped when the wavefront reached the beach at the far end of
the channel. All experiments to be described here were made at a fixed period of 0.6930s
(i.e. @, = 0.5014) for the motion of the paddle, but the amplitude of the motion was changed
from experiment to experiment by adjusting the throw on the driving crank.

Under the above conditions the theoretical wavelength of infinitesimal waves is 36.00 cm,
giving a wavelength: depth ratio of 12: 1. (The reasons for this choice are outlined in §2.5.) Itis
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‘ instructive, then, to examine typical experimental conditions in relation to some of the theoretical
assumptions for the model equations, as described in §2.1.
(a) The wave amplitude, €, took values ranging between 0.002 and 0.2.
(b) The wavenumber, k,, was nominally 0.5234. The main reason for requiring that £ be
‘small’ is that the dispersion relations for the model equations should be good approximations
to the dispersion relation derived from the full linear theory (see equations (2.4)). For k = 0.5234
the phase speeds w/k for the three models are
model exact (KdV) (M)
w/k 0.9580 0.9543 0.9562
‘ so that the error in the phase speed for infinitesimal waves, arising from the use of model M, is
i less than 0.2 9%, (but cf. the discussion in §7.6).
(¢) The parameter § (= ¢(A/d)?) took values between 0.4 and 36.
(d) The influence of surface tension is to increase the phase speeds by about 0.19% (see
Whitham 1974, p. 403), which is smaller than the differences indicated in (8) above.

6.3. Comparison procedure

The analogue data representing the wave profiles were recorded at a chart speed of 300 mm s~
so that, in one period of the wavemaker, roughly 200 mm of chart paper moved past the marking
beam. A discretization of this signal was made by measuring the wave amplitudes at 4 mm
intervals. The peak-to-trough amplitude of the trace on the chart paper was adjusted to be about ‘
60 to 70 mm (by suitably amplifying the output from the proximity gauge), and the displacement \
of the trace from its undisturbed position was measured to within about + 0.3 mm. The above
discretization corresponded to a temporal step of 0.2401 but preliminary tests suggested this
would be too coarse for the degree of accuracy we would like for the numerical solutions. So, to
use a time step of half this value, a (second-order) interpolation was made of the data obtained
from the transducer nearest the wavemaker, and the resulting data set was then used as the
| boundary datum 4 for the numerical computation. The initial datum g was taken to be zero for

all experiments.

If the theoretical solution at the location X is given by (X, ¢), t€[0, T], and the observed wave
amplitude at the same position and over the same time interval is denoted by v(X, t), let us define
an error E(jAt), j€Z, between these two functions by

—f- M-—j_
E(at) = % |5, ibt—jat) —o(X,ia0] [ 3 [u(X, iAt)], (6.1)
i=j, i=iy
where J. =max{;,0}, j-= —min{j,0} and MAt=T.

The local minimum of E(jAt) closest to zero was determined, say at j = j,. The errors E(jAl)
were then interpolated by a quartic polynomial £(7), 7€ R, at the points 7 = ( jo+1) At |i| < 2.
A minimum of £, denoted inf{£}, was sought by Newton’s method, the iteration being started at
1 = joAt. (This procedure was successful in all cases.) This minimum value of E gives essentially

a measure of the difference in shape between the functions  and v, whereas the value of 7 that
realizes the minimum is effectively a phase error and can be used to provide a measure of the
difference in speed of propagation of the two waveforms. Thus, 7 and v could have a very similar
“shape’ but give a relatively large value for E(0) by virtue of only a small ‘phase’ error. So, in
making comparisons between theoretical and experimental data, it is useful to evaluate £(0),
inf{E} and the ‘phase’ error,
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The numerical solutions used for the comparisons to be described in §7 were obtained on a
Cyber 175 computer. With At = 0.12005 and Ax = 0.15, as used in the computations, the '
difference E(0) between an exact solitary-wave solution of the model equation and the computed
solution, under conditions comparable with those of the experiment, was about 0.1 %,.

7. EXPERIMENTAL RESULTS
7.1. Damping coefficient

A determination of the damping along the channel was made from the steady wavefield
established after the wavemaker had been working for a long time. Although this situation
greatly simplifies measurements of the wavefield, it adds the complication of our having to
identify the incident and reflected wave components. However, such a separation can be made |
without too much difficulty if there are no nonlinear effects present and if the waves are mono- i
chromatic. Indeed, for the same conditions as those used in the present experiments, Mahony &
Pritchard (1980) measured a lapse rate 41y, of 0.38 x 10-2 at a wave amplitude of about 0.009.
Before the present study another measurement of the decay rate was made at an amplitude of
about 0.003 and this gave the same result as that found previously. Such a decay rate leads to a
value for 4 in (M*) of 0.014. (Recall that all the physical quantities are given in dimensionless
form. Note also that the rather small numerical value of x is merely a reflexion of the property
that the term 7, islarger than the terms 7, , and 37, by a factor of order e~%.)

7.2. Two-dimensionality of the wavefield

The magnitude of the cross-channel variations of the wavefield were measured to see by how
much the assumption of two-dimensionality of the wave motions was violated. This measurement
was made by placing two transducers at different positions across the channel, but at the same
distance along the channel from the wavemaker, and the difference between the signals from
each of the transducers was formed.

The most important cross-channel structure was that of a transverse wave motion, an example
of which is given in figure 1. The waveform observed at the centre of the tank, at a distance 46.34
from the paddle, is shown in figure 14, and the difference between the wave in the centre and
that at a distance 5.9 cm from the side of the tank is shown in figure 14. The transverse wave is )
seen to have an amplitude of about 4 %, of that of the longitudinal wave and a frequency twice g
that of the forcing frequency of the wavemaker. This is roughly the scale of the transverse motions
at each of the observation points, at all amplitude settings. By moving one transducer across the
tank relative to the other, it was also found to be the scale representative of the size of the cross-
channel variations. At the smaller wave amplitudes used in the experiments (¢ less than about
0.01) a transverse motion was also evident, but the voltage differences between the two trans-
ducers were so small that they were only comparable with the noise level and it was therefore
difficult to make any definitive statements about the frequency content of the transverse wave.
However, the relative size of the transverse waves was certainly no greater than at the larger ‘
amplitudes. '

The structure of the cross-channel motions was evidently complicated, being forced by the
meniscus on the side walls or through the second harmonics of the longitudinal waves. We would
expect (see, for example, Madsen 1374) the transverse motions to consist mainly of a mixture of
wave modes of the form cos (mny/b), where y is the cross-channel coordinate, & is the width of




486 J.L.BONA, W. G. PRITCHARD AND L. R. SCOTT

the channel and m is a positive integer. Since waves at a frequency 2w, satisfy the dispersion
relation @ = (ktanhk)?¥ at a value of k & 1.2043, corresponding to a wavelength of 15.65cm
here, it would appear that the modes most easily excited should have been those with m = 3 or 4.

Waves with m = 3 would have been able to radiate along the tank, whereas those withm = 4
would have been decaying modes.

N AN ANANAN
ol NV ARV RV
Syt NSNS

time

FIGURE 1. A tracing of the transducer voltage recorded at a distance 46.3d from the paddle. The scaling for the
ordinate has been made dimensionless; the frequency of the paddle was 0.6930s (w, = 0.5401). (a) The

wave profile at the centre of the channel. (b) The difference between a transducer at the centre and one
placed at a distance 5.9 cm from the side of the channel.
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Ficure 2. The boundary data A(t) used for the calculation at § = 5.5.

7.8. The main comparisons

The main results of this study are summarized in table 4 and illustrated in figures 2-14.
Several different kinds of tests have been made, as indicated in the table, but only a selection of
the results are shown graphically. The eight experiments described in the table are defined by
the parameter §, which ranged between 0.38 and 36. The ‘stations’ A, B, C are used to reference
the locations of the transducer relative to the one used for the determination of A(f), the actual
distances between the two transducers being given in the column headed ‘x’. The wave amplitude
¢ is taken to be sup {|4|}. The column headed —Inx/Ing, indicates the position of the station
expressed as a power of €, where ¢, = max{¢,02}. Henceforth we shall refer to the station at
which the boundary data A(¢) were measured as the ‘boundary station’.

The comparisons given in columns I-III are the differences £ and E, as defined in §6. The
upper left-hand entry at each station is the difference £(0) and the entry below that is inf{E(7)}.
The entry to the right indicates the ‘phase error’ 7 at which the infimum of E was realized, the
error being expressed as a percentage of the time taken for a wave of speed 1.0 to reach the
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station. It is taken to be positive when the computed speed exceeded the experimental value.
Column I shows the comparison between the experimental results and the wave amplitudes
predicted by (M*). The second column shows the same kind of comparison, but no dissipative
effects were included in the computations. For the results in the third column the nonlinear

corrections were not included but dissipation was retained in the theoretical model.
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Ficure 4. The experiment at § = 5.5 is compared with the
inviscid version of (M*) (¢ = 1, =3, £ =0,y = ).

The final two columns of the table show comparisons between different mathematical model:
so only the difference E(0) is given. Thus, the penultimate column shows the difference betwee
the solutions with and without dissipative effects included and the last column gives an ind
cation of the importance of the nonlinear term.

In the figures the unit used for the temporal axes is the time step At and that used for spatic
coordinates is Ax. The diamond-shaped symbols represent the experimental data, in the
discretized form, and the continuous curves are piecewise linear segments linking the compute
values of the wave amplitudes at the mesh points.

The graph shown in figure 2 is the discretized form of the function % used for the experimer
at § = 5.5. The various comparisons for this experiment are shown in figures 3-5. Figure 3
shows computed wave amplitudes as a function of x at four different times, and figure 35 giv«
the comparisons between the nonlinear, dissipative version of (M*) and the experiment:
results. As given in table 4, the relative differences £(0) between the two functions were approx
mately 11 %, 119 and 21 %, at stations A, B, G respectively but, after allowances had bee
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made for small phase-speed corrections of about 0.2 %, these differences were reduced to about
8% 8% and 12 %, respectively. The importance of including the dissipative term is indicated
by the results in figure 4, where the numerical solution is scen to differ markedly from the experi-
mental results (cf. columns IT and IV of table 4). On the other hand, the inclusion of the non-

linear term at this value of § is not so important, as shown in figure 5 (and see columns 111, v
of the table).
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Ficure 7. The experiment at § = 4.5 is compared with (M*)
whena =1, =%, u = 0.014, v = .

Note that, under these conditions, namely § = 5.5, the nonlinearity had the effect of modifying
the waveform by about 179, at a ‘distance’ ¢4 from the boundary station, whereas the
dissipative effects had iodified the waveform by 47 9, at the same distance along the channel.
The nonlinear effects seem to have brought about only a slight flattening of the wave troughs
and sharpening of the crests, a feature that can be scen by comparing figures 35 and 5.

An experiment for which the nonlinear effects were of only very minor importance is shown
in figure 6. In this experiment § = 0.95 and the nonlinear term affected the waveform by only
about 2 9%,. The agreement between the theoretical prediction of (M*) and the observed wave-
form is not quite as good as for the results at § = 5.5, the main discrepancies apparently arising
at the crests and troughs of the waves. Similar comparisons are shown in figure 7 (for § = 4.5),

in figure 8 (§ = 11.8) and in figure 9 (for the case § = 18.1). The experiment at § = 11.8 showed
roughly the same kind of agreement as at the smaller values of § and this was confirmed by the
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quantitative comparisons. For the experiments at S = 4.5 and 5.5 the nonlinear term had had
only a small beneficial effect on the theoretical prediction of the observations but, at § = 11.8,
theinclusion of the nonlinear term provided asignificantly better model than the linear dissipative
theory (cf. columns I, III of the table). On the other hand, the inviscid model gave a very poor
representation of all these experiments. Thus, while there was some advantage to be gained from
retaining the nonlinear term under these conditions, it was far more important that the dissipa-
tive effects be taken into account.
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Ficure 10. The boundary data A(t) used for the calculation at § = 26.3.

The theoretical prediction of the experimental results at § = 18.1 was significantly worse than
in the earlier cases. Whereas for all the previous experiments the difference inf {£} was less than
about 109, it was about 15 %, for the conditions at § = 18.1. One of the main reasons for the
poorer agreement at.§ = 18.1 is that the theoretical speed of the leading wave appears to have
been too large (see figure 9), with the result that the phase correction needed to minimize £(7)
was quite different from that found for the earlier experiments. The contribution from the non-
linear terms at § = 18.1, which was quite large, is indicated in column V of the table.

Two experimentsat yetlarger amplitudes were made, one at.S = 26.3 and the otherat$ = 35.9.
For the experiment at .S = 26.3 the stations A, B, C were located much nearer the boundary
station than in the other experiments so that they would not lie beyond the (formal) range of
validity of the model equation. The form of the boundary data 4(¢) for this experiment is given in
figure 10, and the computed structure of the wavefield along the channel at four times is shown in
figure 11a. The comparisons between the numerical solutions and the observed waveforms are
shown in figures 114-13. As indicated in the table, the agreement between the theoretical pre-
dictions and the experiment was not very close and the reason for this is apparent from the
graphs. The experimental results indicate the presence of a substantial amount of second-
harmonic component which is not nearly so strongly evident in the theoretical solutions of
figure 11 4. (In retrospect, this property is also evident in the results shown in figure 9 (§ = 18.1),
and figure 8 (§ = 11.8).) At station B the agreement is seemingly much better than at the other
stations, but the reason for this appears to be that the phase of the second harmonic is such that it
reinforces the trough and diminishes the crest of the observed waveform and so the agreement is
probably fortuitous.

The experiment at § = 35.9 gave similar kinds of comparisons (see figure 14) to those shown
for the experiment at §= 26.3. :
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T 4 Assessment

The model appears to have given a fzurly good description of the experiments at the smaller
values of S, the differences being about 8-10%,. To give more meaning to these comparisons it is
worth while to examine some of the sources of error. There are two kinds of error involved: one
arising from uncertainties in making the physical measurements and the other from not matching
accurately the assumptions on which the model is based. For the present experiments, un-
certainties in the physical measurements were not more than 2%, but since quantitative esti-
mates of the other errors are not so easily made we shall attempt only a rough assessment of them.
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The non-uniformity of the waves across the channel (cf. §7.2) was of the order of 4 or 5%, of the
wave amplitude. This feature could influence the results both through the inaccuracy of repre-
senting the initial data £(¢) and through the error in making the comparisons at each of the
stations A, B, C. In addition, there are uncertainties in the representation of the dissipative
effects and deficiencies arising from the use of a one-dimensional model. Thus it does not seem as
though we could expect closer agreement than the 8-10 9%, found at the smaller values of 5.

However, as § was increased, both the quantitative and the qualitative agreement between
the experiments and the theory deteriorated, and it is of interest to ascertain why this should
have been so. There appeared to be three possible causes for the discrepancy.

(i) The dissipative effects were poorly modelled.

51 Vol. go2. A
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(ii) The presence of a non-negligible transverse-wave component.

(iii) The dispersion relation w = (ktanh k)} was not very closely approximated by (M*) for
wavenumbers near k;, where &, is the wavenumber corresponding to 2w,. Thus, although the
phasc speeds of waves with wavenumbers near k, were closely approximated, the phase speeds of
the shorter wavelengths evident in the experimental results were inaccurately represented by the
model, and this feature could account for some of the disparities.

Without developing new theory or undertaking new experiments, it is not easy to account for
(i) and (ii). We have, however, tried to make an appraisal of our modelling of the dissipation
(see §7.5) and it is our view that this was not the main source for the discrepancies. It is, on the
other hand, relatively straightforward to test the importance of (iii) (see §7.6), and the tests
suggest that this was a major source of weakness of the model with regard to the present experi-
ments. A discussion of (ii) has been given in §7.2.

> oo

I _
0 100 200
x
Ficure 15. Computed amplitudes of wave crests as a function of distance from the boundary station for linear
models (8 = 0), with boundary data (t) = 7 sin wyt. Time ¢t = 172.8. 0, Inviscid model (v =0,p=0);
@ v=0p=001; 5 v=024x% 10-2, g = 0.11 x 10-2. The slopes of the straight lines are — (v+ uk3).
The computations were made with At = Ax = 0.15. .

7.5. Modelling the dissipation

The comparisons described in §7.3 indicate that the inclusion of dissipation is crucial if the
model is to give a reasonable description of the experimental results. Therefore, in view of the
discussion of §2.3, it seemed propitious to examine the sensitivity of the theory to different ways
of modelling the dissipative effects.

In the comparisons of §7.3 the theoretical solutions gave a reasonably good account of the
experimental results at small values of §, but at larger values of § the agreement was not so good.
A possible explanation of this is that wavenumbers different from &, were being dissipated at an
incorrect rate and, in particular, the harmonics were likely to have been considerably over-
damped because the dissipation was taken to be proportional to k% This would certainly be the
case if all the damping occurred in the boundary layers (cf. equation (2.5)). To test the sensitivity
of the model to the way the dissipative effects were represented we have examined the con-
sequences of using some alternative models for the damping. For this purpose we shall work
from the Ansatz that the entire damping at wavenumber & is proportional to |k|}, as suggested
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by the boundary-layer theory, with the constant of proportionality, p,, chosen to match the
experimental decay rate at k = k. However it appears, at present, to be rather complicated tc
implement a numerical scheme to solve the initial- and boundary-value problem when the
model equation includes the pseudo-differential operator whose symbol is |£|. Thus, for the
purposes of this study, we have chosen to interpolate the function p,|k|? by the polynomial
v+ pk? The interpolant used in §7.3, to be referred to as the (0, k,) interpolant, matched the
magnitude of p, |k|* at k = 0 and at k = k,. But since this interpolant will dissipate waves with
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Ficure 16. Computed wavefields at time ¢ = 172.8 for nonlinear models (f = %) with boundary data A(t)
= 0.25sinwyt. ++-+, v = 0,4 = 0.014 ((0, k) interpolation ofp0|k|%); , vV = 0.340x 102, ¢ = 0.168

% 1072 ((ky, &) interpolation). The computations were made with At = Ax = 0.15.

wavenumbers £ > k, much faster than implied by p,|k|}, we have also considered (k,,)-
interpolation of p |£|¥ where £, is the wavenumber corresponding to the frequency 2w,. This was
done to provide a different representation of the damping of the wavemodes at the frequency
2w, evident in the experimental results (for example, see figure 115). (We have, incidentally,
also examined the consequences of using Hermite interpolation of p, |£|* by the function v + pk?
at k = k;; i.e. the magnitude and derivative of the functions were matched at %,. But since the
results were similar to those for the (%, £;)-interpolation we shall not describe them here.) Note
that the terms v + u42in the dispersion relation correspond to the terms v — u7,, in the differential
equation.

A series of numerical experiments were made with boundary data of the form /(f) = 9,sin w,t.
To check that the dissipative terms had been correctly coded, a preliminary test was made, with
the linear model (# = 0) for which the decay rate is known theoretically. To estimate the decay
rate along the channel from the computed solutions, the amplitudes of the wave crests were
found at a given time (f = 172.8) and were plotted as a function of their distance from the
boundary station. This graph (figure 15) shows that, except for a few crests near the front of the
wavetrain, the amplitudes of the crests decreased at roughly the rate expected from the dispersion
relation and that the two forms of dissipation gave similar results. For comparison, we have also
included in the graph the results of the same experiment with no dissipative effects (i.e. v = 0,
o= 0).

However, with f# = £, the computed solutions differed significantly under the various repre-
sentations of the dissipation, as illustrated in figure 16. This graph shows the computed wave-
fields, for 9, = 0.25, at a time ¢ = 172.8 corresponding roughly to the duration of a laboratory
experiment. The comparison shown in this graph is that between the solutions obtained with the
(0, ky)-interpolation of p, ||} (dotted line) and with the (k,, k,)-interpolation of p, |£|? (full line).

HI-2
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The substantial differences between these two solutions suggest that it could be very important
to model the dissipative effects accuratcly.
To quantify the differences between these solutions we have evaluated the quantity & =
SN o |7y (A%, £) —pa(jAx, 1) |Ax/ T2 g |9, (A%, )| Ax, where 7, 75 are the functions being com-
pared. Thus, for the comparison in figure 1€, the difference & = 0.313. A more complete list
of comparisons, at various values of 7, and at various times, is given in table 5 . At small values of
7, the differences were not too large, but with 77, = 0.1 the differences had risen to about 10 %o
The solutions given in figure 16 suggest that the form of dissipation used for the comparisons

of §7.3 probably dampened the larger wavenumbers too rapidly, which could account for the

TABLE 5. VALUES OF & WHEN (0, k,) INTERPOLATION OF po|k|# waAs comPARED

(ko .|}, FOR A(1) = 7, sin wyt
The computations were made with At = Ax = 0.15.
7o [time 57.6 115.2 172.8
0.005 0.034 0.039 0.041
0.050 0.048 0.068 0.078
0.100 0.065 0.098 0.119
0.250 0.136 (.248 0.313
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Ficure 17. The experiment at § =

26.3 is compared with (M1) (see §7.6)
whena = 1,8 =3, v = 0.340x 1072, u = 0.168x 1072, y = .
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theoretical solutions not yielding the shorter wavelength components apparent in the experi-
mental results. Such a possibility was checked, for the experiment at .S = 26.3, by using the
(kq, ky)-interpolation of p, |£|? to model the dissipative effects. A graph of the comparison is given
in figure 17, the error £(0) being 0.386, 0.283, 0.378 at the stations A, B, C respectively. These
errors could be reduced to 0.368, 0.283, 0.363 with phase corrections of 0.84 %,, 0.07 9, and
0.90 %, at the respective stations. The agreement is slightly worse here than in §7.3. Af stations
A, C the amplitudes at the crests of the computed solutions were much smaller than those
observed experimentally, whereas at station B the computed amplitudes of the crests were too
large. But similar features to this were als8 evident in the solutions with no damping,ie.v = p =0
(seefigure 12), and for» = 0, & = 0.014 (see figure 115), which suggested tous that the inaccurate
model for the damping of the larger wavenumbers was probably not the main source of these

discrepancies.
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Ficure 18, Graphs of the linear dispersion relations for various models. (a) = — -, Shallow-water model, w = &;
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(6) Magnified version of (a): ———, w = £; , w = (ktanh &)}; — .= @ = 0.9898k/(1+0.13254%);

-------- o= kf(1+ 30 ——, 0 = k(1—}k2).
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7.6. The approximation to the dispersion relation

First we examine the dispersion relations for the various models. These are shown graphically
in figure 18 where the shallow-water model (o = £) and (M) (as well as (KdV)) are compared
with the ‘exact’ relation w = (ktanh k). By construction, these relations are all close at small
values of k; at k = 0.5 it is evident that the shallow-water approximation is a poor model and at
k = 1 all thrée models give a poor approximation to w = (£ tanh k)t

However, for the wavenumbers arising in our experiments, the equation

N+ g+ BN+ VI = Mg — Vgt = O (7.1) (M1)

can be used to provide a better interpolation of the ‘exact’ dispersion relation than that afforded
by (M). This is achieved through a suitable choice of the parameters e, y. Since the dominant
wavenumbers appear to have been those corresponding to the frequencies w, and 2w,, we have
chosen a, ¥ so that the phase speeds for the linear form of (M) (i.e. f# = 0) coincided with those
for the ‘exact’ theory at the wavenumbers &, and ;. However, the displacement effects of the
boundary layer lead not only to a damping of the waves but also to a correction in the phase
speed of a wavemode (cf. equation (2.5)). Therefore, taking the boundary-layer correction to
the dispersion relation to be of the form suggested by the theory of Kakutani & Matsuuchi (1975),
we have chosen to interpolate the dispersion relation

w = (ktanh k) —py (= 1+1) |£|3,

with p, taken to be the empirical constant used for the comparisons in §7.3.

Under the conditions of the present experiments this interpolation gives a = 0.9898,
y = 0.1325, for which values the real part of the dispersion relation for (Mf) is shown in
figure 185, together with that for some of the other models. The theoretical solutions that result
from the use of (M7) for the experiment at.§ = 26.3 are shown in figure 19. The spatial form of
the wavetrain, which is given in figure 194, shows a number of qualitative differences from that
obtained with (M*) (cf. figure 114), and the comparison between (Mt) and the experimental
results is given in figure 194. This comparison also shows a qualitative improvement in the
prediction of the experimental results over the comparisons given in figures 114 and 17. The
quaniitative comparisons for (Mt), which gave differences for this experiment of 14 %, 16 %
and 18 %, at the stations A, B, C respectively, are summarized in table 6. Indeed, (M) represents
all the experimental results to within about 8 %, except for those for § = 26.3 and § = 35.9.

A graph of the comparison at § = 35.9 is given in figure 20. The leading wave at each station
is represented very well by the model (cf. the results of figure 14 for (M *), where this was not so),
but the subsequent oscillations were modelled less accurately. To illustrate further the significant
improvement obtained through the use of the form (M{) to describe the experimental results,
additional comparisons made with the model are given in figures 21-25. Figure 21 shows the
comparison at § = 0.95 (cf. figure 6). The comparison at § = 5.5 is given in figure 22 (cf.
figure 34 for (M*)), and the comparison at § = 18.1 is given in figure 23. The influence of the
different representations of dissipation that we have considered are shown in figures 24 and 25,
for the experiment at § = 26.3. The theoretical solution shown in figure 24 is that for (Mf)
(@ = 0.9898, y = 0.1325) with no dissipation, i.e. » = 0, # = 0, and the one given in figure 25
hasv = 0, p = 0.014 (cf. figures 115, 17 and 195).
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Figure 22. The experiment at § = 5.5 is compared with (M1) when
a=0.9898, f =2 v=0340x10"2 u = 0.168x 102, y = 0.1325.
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Ficure 23. The experiment at § = 18.1 is compared with (M7) when
o = 0.9898, f = &, v = 0.340x 10-2, & = 0.168x 102, y = 0.1325.
52 Vol. 302. " A




506 J.L.BONA, W. G. PRITCHARD AND L. R. SCOTT
0.2 @ ; ﬂ '”ﬂ ’ ' ﬁ‘} fi\ f A ﬂ /\ /\
N 3 : e
) [
. UWWVVWWWVJVJV‘WW
Q‘
E' f A & :ﬁ% i3 3 A
g , /\ﬂigﬂﬁéi,ﬂ/ﬁﬁﬁ\ﬁ
MAAVAVAVAVAVAVAVAVAVAVASS
[ e e
VA A AR AR R
5, /\ﬁf‘i ﬁ\fiﬁﬁﬁxﬁ
NAVAV \, WV INAY W BV
=0 100 200 300 100 500 600 700
t/At
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FIGURE 25. The experiment at § = 26.3 is compared with (M1) when
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Thus, it would appear that some of the major discrepancies between the predictions of the
model and the experimental results originated in the poor theoretical representation of the phase
speeds of some of the larger wavenumbérs arising in the experiments.

TABLE 6. THE COMPARISONS BETWEEN THE EXPERIMENTAL RESULTS AND (M{) wiTH
a = 09898, f# = 3, v = 0.340x 102, u = 0.168 x 10-2, y = 0.1325

(The scheme is the same as for column I in table 4.)

station | § 0.38 . 0.95 4.5 3.5
A — 0.098 0.117 0.082
— —— 0.098 —0.03 0.091 0.24 0.076 0.12
B 0.225 0.092 0.143 0.063
{0.064 0.46 0.090 —0,05 0.088 0.20 0.059 0.05
a 0.326 0.114 0.244 0.103
{0.061 0.41 0.103 0.07 0.100 0.28 0.069 0.11
station | § 11.8 18.1 26.3 35.9
A 0.133 0.075 0.149 0.313
{0.077 0.35 0.075 —0.03 0.141 0.38 0.192 0.66
B 0.167 0.091 0.156 0.514
0.104 0.26 0,048 0.17 0.1566 0.05 0.161 1.01
I 0.367 0.107 10.194 0.745
0.090 0.47 0.077 0.11 0.177 —-0.21 0.221 1.07

3. RisumE

The theoretical model predicted the experimental results, to as good an accuracy as could be
expected, for the experiments made at values of § ranging up to 11.8. For these five experiments
it was found that the inclusion of a dissipative term was much more important than the inclusion
of the nonlinear term, although the inclusion of the nonlinear term was undoubtedly beneficial
in describing the observations.

At larger values of § there were features of the experiments that were not predicted by the
model. These features appear mainly to have been associated with harmonics (generated through
nonlinear properties of the fundamental wavefield) having wavenumbers too large to be well
represented by the small-wavenumber model. But by introducing a modification to the basic
model that represented more accurately the phase speed of these harmonics, the description of
the experimental results was significantly improved. This improvement suggests that a modifi-
cation of the nonlinear effects, to allow a better representation of their influence at the larger
wavenumbers, might also be helpful. Thus, in short, we feel that the original model would provide
a good description of experiments in which the dominant wavenumber is much smaller than that
used here, over a fairly wide range of values of the parameter S.

]
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APPENDIX A. DEFICIENGIES IN AN APPROXIMATE PROGEDURE
BASED ON THE PURE INITIAL-VALUE PROBLEM

We wish to solve the pure initial-value problem

N+, +%7]77m_%7/'zmt =0, xeR, (M bw)

with the initial condition y(x, 0) = &(x). However, the initial datum g, to be determined empiric-
ally, is not easily obtained. Instead, a measurement of data 7(0,¢) = 2(1), ¢ > 0, is made and, to
recover the intended problem, the function £(#) is transformed to an ‘equivalent’ spatial repre-
sentation #(x) by the leading-order approximation 9, +%, = 0 to (M). This transformation
gencrates a small error, of order ¢, in the representation &(x) of the initial data g(x), which would
seem to be unimportant but, in the present example, is equivalent to the introduction of a forcing
term on the right-hand side of (M) of size comparable with that of the nonlinear and the dis-
persive terms.

Toillustrate the kinds of error that can arise in a practical case, let us consider the solitary-wave
solution of (M), namely

7(x,8) = Mosech?{[39,/(4 + 27]0)]%[x+x0— (1 +37,) i1}, .(AI)

where 7, is the (maximum) wave amplitude and #, is a constant. Suppose that the measured
data (t) are given by

&) =, sech?{[37,/(4 + 2770)]% [%— (1 +§7m,) t]},

then, by choosing x, large enough, the solution to the initial- and boundary-value problem for
(M) with
7(x,0) = 0, 7(0,2) = ()

(taking (0, 0) /7, = 0.1 x 10-8), is a close approximation to (A1) for x,¢ > 0 (cf. §3, table 1).
If g(t) is now transformed to an ‘equivalent’ spatial form, it follows that

&(x) = mosech®{[3no/ (4 +270) 1% [y + (1 + 31,) 41},

from which we sce that g(x) differs from the ‘exact’ form of £ (the solution (A1) at time ¢ = 0)
in both its shape and phase, the phase difference between g(x) and g(x) being

%1 = $7M9%0/ (1 +37,).

Notwithstanding the phase error, let us, for the time being, investigate the importance of the
‘shape’ error in & by using #(x — x,) as the initial data for (M).

Thus, using a scheme similar to that described in §3 (which can also be analysed similarly),
we have solved numerically the pure initial-value problem (M) with y(x, 0) = g(x —x,), which
solution we denote by 7(x, £), and have compared 7 with the ‘exact’ solution (Al).

The kinds of error that can arise in practice are shown in figure Al. Here the wave amplitude
7o = 0.25 was chosen to correspond approximately to the largest amplitudes used in the labora-
tory experiments and the integration was carried on to about the same time as that occurring
in the experiments. In figure A1 the dotted line represents the function 7, and the full line
represents the solitary-wave solution. Let

N L :
&= 'Eo |n(jA%, t) —7(jAx, t)|Ax _20 |7(jAx, &) | Ax
I= 1=
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measure the difference between 4 and the ‘exact’ solution. The initial difference between g
and g was approximately 0.111. At time ¢ = 32.0 the approximate solution 4 had developed a
distinct oscillatory tail, and the difference & had increased to 0.254. This difference then
continued to increase with time, roughly linearly, taking values of 0.561 at ¢t = 96.0 and 0.898
att = 192.0. (The error & in integrating numerically a solitary wave of amplitude 0.25 under the
conditions of this experiment was less than 0.55 x 10=2 at ¢ = 192.0.) The figure shows how the
tail developed by # gradually separated from the leading wave. The speed of the leading crest of

fi_ 96
JiL 64

A 32
0.2

1 o \\ time=0
0
1 | | |
0 800 1600
xfAx
Figure A 1. The solitary-wave solution of (M) (full line) is compared with the solution to (M) with the initial

data 7(x, 0) = §(x—x,) (dotted lines). The amplitude 7, = 0.25; the computations were made with
At = Ax = 0.16.

the oscillatory tail was approximately 0.9719 at ¢ = 192.0. On the other hand, the leading wave
of 7 appeared to be evolving towards a solitary wave of the form (A1) with an amplitude of
approximately 0.2139, as determined from a fourth-order interpolation of the discretized
solution. For example, the speed of this wave differed from a solitary-wave solution (A1) of the
same amplitude by less than 0.28 x 10-® at { = 192.0, and the difference & between the two
waveforms was less than 0.27 x 10-3. (For this latter comparison the crest of the solitary-wave
profile was chosen to coincide with that of the leading wave of , and the domain for the com-
parison was terminated at a distance a from the crest, where z was chosen so that the solitary
waveform had decayed to 0.1 x 10~% of its maximum amplitude.)

Similar results were obtained with 5, = 0.1, except that the initial error & at ¢ = 0 was 0.048
and this degraded to 0.095 at¢ = 96.0 and 0.155 at ¢ = 192.0. At = 192.0 the amplitude of the
leading wave of 7 was 0.0971, but the wave was still undergoing significant modifications.

It should be noted that the above comparisons underestimate considerably the actual errors
arising with this method because we have removed the initial phase error induced by the
approximate transformation of the data. (For example, with 74 = 0.1 and x, = 15.44 the error &
between g(x) and #(x) was 0.197; cf. the difference of only 0.048 between g(x) and g(x —x,).)
With more general data it would not be easy to eliminate this initial phase error.
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