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A Comparison of Solutions
of Two Model Equations for Long Waves

J.L. Bona, W. G. Pritchard and L. R. Scott

Semmary. Considered herein are the partial differential equations,
u, + u, + uu, + Lu =0, ' (*)

where L denotes 32 (equation A) or — 929, (equation B). In (x) u is a real-

‘valued function defined for all real x and for ¢+ > 0, and interest will be
focused on solutions of (A) and (B) that correspond to the initial condi-
tion that u(x, 0) is a given function. Equation (A) is the Korteweg-de
Vries equation {1895] while (B) is the model studied, for example, in
Benjamin, Bona and Mahony [1972]. It has been argued in the last-quoted
reference and elsewhere that either (A) or (B) can be used with equal
justification to model various physical phenomena.

. To establish this claim an exact relation connecting solutions of (A) and
(B) is derived, showing that the two models yield predictions whose dif-
ference, over significant time scales, is only of the small order that is
formally neglected by either model.

Complementing the theoretical study are some numerical experiments
based on (B). These experiments suggest that the aforementioned theoreti-
cal estimates are sharp, and that they are valid up to the time scale for
which either equation formally ceases to be an accurate model of underlying
physical phenomena. The experiments also indicate that (B) has the prop-
erty, which is well known for (A), that certain classes of initial data evolve
into a sequence of solitary waves followed by a dispersive wave train.

1. Intreduction. This paper is ,cbncerned with mathematical models re-
presenting the unidirectional propagation of weakly nonlinear dispersive
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long waves. Interest will be directed toward two particular models that
were originally studied in the context of surface-wave phenomena in open-
channel flows. The rationale behind the derivation of these models,
details of their mathematical properties and their applicability to a host of
quite disparate physical systems are well documented (see, for example,
the review articles of Benjamin [1974], Bona [1980, 1981], Jeffrey and
Kakutani [1972], Kruskal [1975], Miura [1974, 1976)], Scott, Chu and
McLaughlin [1973] and Zabusky [1981]). '

In attemptingto describe open-channel flows the underlying principle in
the derivation of these model equations is that their solutions should
approximate solutions of the two-dimensional Euler equations, posed
with appropriate boundary conditions at the bed of the channel and at
the free surface. Within the context of procedures for generating such
models it is possible that several different equations may emerge.. The
choice of which approximation to use will then depend on properties of one
model vis-a-vis those of another. For long waves on the surface of water,
two models have received particular attention. One is the equation of Kor-
teweg and de Vries [1895] (equation (A) or the KdV equation hereafter)
and the other is an equation first studied theoretically by Benjamin, Bona
and Mahony [1972] (equation (B) hereafter). The qualitative mathematical
properties of solutions of these two models have been studied in detail.
This theory is rich and interesting, but appears to offer no definitive reason
for preferring one or the other of these models as regards the sort of
task for which they were originally derived.

The purpose of the present paper is to make a quantitative comparison
between the solutions to the initial-value problem for each of these
models. The basic conclusion of the study is that, on a long time scale
T naturally related to the underlying physical situation, the equations
predict the same outcome to within their implied order of accuracy. In this
situation the choice of one of these models over the other to describe a
physical problem is apparently immaterial, with factors of incidental
convenience probably providing the main criteria in a given situation.
It is worth noting that if one is only interested in the evolution over a
much shorter time interval than [0, T, then a model simpler than either of
the aforementioned (a factored version of the linear wave equation)
- will suffice. The main analysis leading to the above-stated conclusions is
presented in §4. The earlier §§2 and 3 give, respectively, a brief account of
the assumptions and formal limitations inherent in the models, and some
mathematical definitions and results needed for the analysis of §4.

The question of the relationship between the two model equations has
been discussed in general terms by Benjamin et al. [1972], Kruskal [1975]
and Whitham [1974]. Showalter [1977], working carefully through the
standard formal scalings and expansions leading to models such as those
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considered here, derived some alternative systems and conjectured expli-
citly that the KdV equation and equation (B) will give similar answers on
a time scale much smaller than the scale 7 mentioned earlier. Bona and
Smith [1975], in their paper on the initial-value problem for the KdV
equation, deal with exactly the issue considered herein, but give no at-
tention to the time scales over which their results are valid. For practical
purposes, these time scales are crucially important.

In relating the solutions of the two model equations, the present work
supplements the studies of Berger [1974] and Nishida and Kano [1983] in
which the relation of the model equations to the Euler equation is ex-
amined. It is also complementary to the various studies comparing predic-
tions of these model equations with the outcome of some laboratory
experiments (see, for example, Bona, Pritchard and Scot: [1981], Hammack
[1973], Hammack and Segur [1974], and Zabusky and Galvin [1971)).

In addition to the theoretical relation linking the two equations, we
have also made numerical experiments designed to afford further compari-
son between the two models. The first set of numerical experiments relates
directly to the results of §4, showing how particular solutions of the two

_models differ as a function of time. The second experiment appears to
confirm that equation (B) shares the property with the KdV equation
whereby certain classes of initial data evolve into a sequence of solitary
- waves followed by a dispersive tail. These results are reported in §5.

2. The model equations. A model often used to describe the unidirection-
al propagation of irrotational, weakly nonlinear, dispersive waves on the
surface of an ideal liquid in a uniform channel is the equation proposed
by Korteweg and de Vries [1895],

pt + 77: + %777]1 + %’ 771::: = O (la)

In this equation 5 = 7(x, ) represents the vertical displacement of the
surface of the liquid from its equilibrium position, ¢ is the time and x is
the horizontal coordinate (which increases in the direction of propagation
- of the waves). Equation (la) is written in dimensionless form, with the
length scale taken to be the undisturbed depth # of the liquid and the
time scale to be (4/g)!/2; g is the gravity constant.

It is assumed in the derivation of (la) that the maximum amplitude ¢ of
the waves is small and that the waves can be characterized by a horizontal
scale 9~1, which is large. In particular, it is crucial that the amplitude
scale and the horizontal scale of the waves are such that 52 is of order
one so that the nonlinear and dispersive corrections to the primary terms
7 and 7, are of comparable importance (see, for example, Meyer [1979]).
These considerations suggest the introduction of a new dependent variable
N and new independent variables & and 7 such that
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n=¢eN, x=¢V¥ =g @

in which case N and its derivatives are, by assumption, all order one
quantities. In these variables, equation (la) may be rewritten as

N, + N¢ + 3eNN; + LeNgee = O(e2), (1b)

where the order of the terms neglected in the derivation of (1) has been
indicated explicitly on the right-hand side. It is apparent from (1b) that
the nonlinear and dispersive terms, 3¢ NNg/2 and eNg./6, respectively,
constitute corrections of order ¢ to the order one primary terms. Thus a
formal calculation based on-the simple equation,

N.,+Ne=8,

suggests that, on the time scale r; = ¢~1, the nonlinear and dispersis terms
may have had a significant influence on the structure of the waves. In the
coordinates appearing in (la), r; corresponds to the time scale t; = ¢=3/2.
By the same reasoning the terms neglected in the derivation of (1) could
have had a cumulative effect of order one on the time scale 7, = -2
(corresponding to the time scale ¢, = ¢5/2). These arguments further
suggest that the equation N, + N, = 0 would suffice to describe wave
evolution on a time scale 75 = 1 (or £, = £~1/2),

Because of the relative sizes of the terms in (1), it has been argued (see,
for example, Peregrine [1966] and Benjamin et al. [1972]) that the equation

Nr + Ne + %€NN5 - %'SNEG‘F = 0, (33.)

or equivalently,

Net e + 390 — 92 = 0, (3b)

provides a model comparable with (1) for the physical problem in ques-
tion. (It is worth remarking that the present discussion applies to situations
other than surface waves on an ideal fluid. Indeed, one or the other of
these equations has been derived as a model in a wide range of physical
contexts. Discussions of certain applications may be found, for ex-
ample, in the review articles of Jeffrey and Kakutani [1972], and Scott,
Chu and McLaughlin [1973] as well as in the text of Lamb [1980]; an ac-
count of the principles underlying the frequent appearance of these model
equations is given in the article by Benjamin [1974].)

In this paper we shall concentrate on the initial-value problems posed
by (1) and (3) with

7(x, 0) = 7o), (4

for x e R, the real numbers. This corresponds to the presumption that
the wave profile is known everywhere at some given instant of time, and
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that inquiry is directed to the subsequent evolution of the wave field. Of
particular interest will be the comparison of solutions of the two model
equations, subject to the same specification (4), over the time scales ,
t; and t,. A ,

To illustrate the kind of results we have in mind, consider the initial-
value problems for the linear versions of (1) and (3),

N, + Ne + 3eNgee = 0 (52)
and | ‘
M, + M — teMg, =0, (5b)
together with the initial condition .
NE, 0) = M(E, 0) = F(©, (5¢)

where F is order one. The problems (5a)(5c) and (5b)—(5¢c) are easily
solved by taking the Fourier transform in the £ variable. Let m, n and
f, respectively, denote the Fourier transform with regard to & of the
functions M, N and F, the transformed variable being denoted by k. We
see at once that '

n(k, ) = exp(—ik[l — ek?/6]c)f (k)
and
m(k, 7) = exp(—ik[1/(1 + ek2/6)]z')f(k).

Suppose for simplicity that fis smooth and has bounded support (f = 0
outside a bounded region). If the integral with respect to & of the absolute
value of the difference between m and n is computed, as a function of
7 = 0, there is obtained :

e, ) = e, Doy = §_lmlk, 1) = nle,2)| dke < Cer,  (6)

valid for 0 < ¢ < 1, say, where C is a constant depending only on f. It
follows, forz > 0and 1 = ¢ > O, that

sup |M(@ 9-N& Dl =_sup |3 7 ecsimli,2)—nlk, )1k
—0oELo0 —oof<oo | 4T o —co
< %t 5 ® im(k, 7) — n(k, 7)| dk < Cs2s,
where C denotes C/2z. Remember that M and N are, like F, both of order
one and that the neglected order in the variables in (2) is e. Then (7) shows

explicitly at time 7 of order ¢~1, when dispersive effects may have signifi-
cantly modified the shape of the initial wave profile, that A/ and N are still
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within ¢ of each other. That is, M and N are the same to the inherent
accuracy of either model at time 7 = ¢

Expressing (7) in terms of solutions of the linear versions of (la) and
(32) the following result emerges. Let » and v be, respectively, solutions of
the initial-value problems,

u +u, + tu,, =0 and Ve + v, — 3y, =0, (8)

with u(x, 0) = v(x, 0) = ¢F(cl/2x), where 0 < ¢ < L. Then there is a con-
stant C independent of ¢ and ¢ such that,

sup fu(x, t) — v(x, 1)| < Ce7’2t )]
oo g<loo

forallt > 0. The inequality in (9) ceases to be interesting when ¢ is of order
€752, since both « and v are of order ¢ in absolute magnitude.

The principal object of the present study is to determine whether ®)
holds when nonlinear effects are retained in the model equations. More
precisely, suppose g is a given sufficiently smooth function decaying
appropriately to zero at +oo. Let 5 = 9(x, t; ¢) and { = C(x, t; ¢) be
the solutions of the differential equations,

e+ 0+ 3905 + e = 0, (10a)
and

Ct + C: + %CC: - %'Cxxt = O’ (1Ob)
with ‘

7(x,0) = {(x,0) = eg(e!2x). (10c)

CONJECTURE. There is a constant C dependent only on g such that for
O<e<land0 <t <52

sup |p(x, t;¢6) — x, t: &) < Ce'2t. an
—oox <00

In §4 this conjecture and similar bounds involving derivatives of 7y and
and { will be established for ¢ in the range [0, ¢=% 2. In the next section
some notation and useful auxiliary results are set forth in preparation
for the analysis in §4.

3. Notation and preliminary results. The standard notation L, = L,(R)
will be used for the (equivalence classes of) pth power integrable functions
f:R—R, for 1 <p < oo, with the usual modification for p = co. The
norm of a function fin L,(R) is

£z, = {j‘io [f(x)|2 dx}l/p.

For nonnegative integers k, H*is the Sobolev space of L, functions whose
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first k (generalized) derivatives are also in L,. The norm in H* is taken to
be

1A = {113 + I fwlE 2

where f ;, denotes the jth derivative of f. Of course, H? = L, and we shall
use || | to mean the same as | ||o. By Plancherel’s theorem, the norm in H*
may be expressed as follows:

1= {7 @+ e 7@,

where f denotes the Fourier transform of f. If k is a negative integer, then
H* is defined to be the dual space of H—*. The space H* for k < 0 may
be identified with the class of tempered distributions T whose Fourier
transform T is a Lebesgue measurable function for which

1T = |~ 15w TP & < +.
The spaces H* for k < O intervene only tangentially in our analysis. By
H> we denote (), H*. The elements of H*are infinitely differentiable
functions, all of whose derivatives lie in L,.

If X is an arbitrary Banach space and T > 0, the space C(0, T'; X) is the
collection of continuous functions : [0, 7] — X. If T = + o0, itis required
in addition that u be bounded for 0 < ¢ < T. This collection is a Banach
space with the norm supgc,<r ||u(?)] x, where | ||y denotes the norm in X.

In the analysis given in §4 the forms (1a) and (3b) of the two model
equations will be used. More precisely, by rescaling 7, x and ¢ by the order
one constants 3/2, (1/6)1/2 and (1/6)1/2, respectively, we may take the model
equations in the tidy forms

P+ 0+ 9+ Perx =0, (12) or (A)
and
e+ s + Pz — Pame = 0. (13) or (B)

‘Results pertaining to the initial-value problem for both (A) and (B) will be
needed. Also intervening in our analysis is a regularized version of (A),
written in moving coordinates, namely, »

7 + s + Naxx — ENxxt =_ 0, (14)

where ¢ > 0. (In due course the ¢ appearing in (14) will be identified with
the amplitude parameter ¢ appearing in the last section.) The needed the-
oretical results relating to (A), (B),.and (14) are presented in the following
sequence of propositions. We commence with results for the KdV equation

(A).
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PROPOSITION 1. Let g € H™ where m > 2. Then there exists a unique func-
tion u in C(0, 0o ; H™) which is a solution of (A) in R x R* suchthat u(-, 0)
= g. Furthermore, 0% u e C(0, co; H™=3%) for k such that m — 3k > —1.
" The correspondence g — 0f u is, for each T > 0, a continuous mapping of
H™ into CO, T; H™ %) for all k > O such that m — 3k > —1.

REMARK. By ‘solution’ we shall always mean a solution u of the differen-
tial equation in the sense of distributions for which the initial condition is
satisfied in the sense thatas r — 0, u(-, t) — g(.) tends to zero in an appro-
- priate function space. Of course if m > 3 in the above proposition, the
solution will in fact be classical. That is, all the derivatives -appearing in
the equation exist classically and are continuous, and the equation is
verified pointwise by u everywhere in the relevant domain.

Proposition 1 summarizes some of the theory appearing in Kato [1975,
1979] and Bona and Smith [1975). The next result collects together Theo-
rems 2, 4 and 5 of Benjamin et al. [1972] supplemented by Lemma 2 and
Theorem 5 of Bona and Smith [1975].

PROPOSITION 2. Let g € H™ where m > 1. Then there exists a unique func-
tion u in C(0, oo; HY) which is a solution of (B) in R x R* such that
u(-,0) = g. Foreach T > 0, ue C(, T: H™) and, for each k > 0, % ue
CO, T; H™*1). For each T > 0, the correspondence g — u is a continuous
mapping of H™ to C(0, T; H™) while, if k > 0, the correspondence g otu
is a continuous mapping of H™ into C(0, T; Hm+1),

In the above proposition, m is an integer. Results of a similar nature are
available for both equations in Sobolev spaces with noninteger order
(see, for example, Bona and Scott [1976], Kato (1975, 1979], Saut [1975]
and Saut and Temam [1976] for equation (A) and Benjamin and Bona
[1983] for equation (B)).

Both (A) and (B) have invariant functionals associated with the solu-
tions described in Propositions 1 and 2. These will play an important role
in the subsequent analysis. The simplest of these functionals corresponds
to the conservation of mass. More precisely, if u is a solution of either
(A) or (B) corresponding to initial data of the kinds indicated in Proposi-
tions 1 and 2 (with the restriction for (A) that m > 3) then the total ‘mass’

j " u(x, 1) dx (15)

does not change with time. Thus if the integral in (15) converges as an
improper integral at ¢ = 0, then it converges for all subsequent times and
the value of the integral is independent of ¢. For (B) there are only two
further invariants known, and indeed Olver [1979] has established that



COMPARISON OF TWO MODEL EQUATIONS 243

(B) has no invariant functionals of the form {20 p(u, u,, u,,, ...) dx, with
p a polynomial, other than those given in (15) and below in (16). (Such
invariants will be referred to as polynomxal invariants.)

PROPOSITION 3. Let g € H™ where m > 1 and let u be the solution of (B)
with initial value g, as guaranteed by Proposition 2. Then

j- [wi(x,t) + u?(x, t)ldx and j. [e(x, 1) — $ud(x, 1)) dx (16)

are both zndependent of t.

For the KdV equation (A), an infinite sequence of polynomial invariants
is known. These take the form

]k(u) = j'_oo [u%k) - ckuu%k-l) + »Qk(u’ Ugy ooy u(k—Z))] dX, (17)

where u,, = ojuand, foreachk =0, 1,2, ..., 0, isa polynomial of rank
k + 2. Here the definition of rank employed by Miura ez al. [1968] is being
‘used. For a monomial, let

rank(u@ufly - - “?‘,?)) = ﬁ (1 + —.JT> a;
7=0
The rank of a polynomial is then just the maximum of the ranks of its
monomial components. In fact, Q, is composed entirely of monomials
of rank k% + 2. The next proposition is derived from Theorem 1 and
Proposition 6 of Bona and Smith [1975].

PROPOSITION 4. Let g € H™ where m = 2 and let u be the solution of (A)
corresponding to the initial value g. Then Ii(u), . . ., I (u) are independent of
time. Furthermore, the invariance of these functionals implies that, for
O0<k<m

luo G D1 < gu(llgh), (18)

independently of t > 0, where q,: Rt — R* may be taken to be the square
root of a polynomial with nonnegative coefficients which vanishes at 0.

Finally, the initial-value problem for the regularized equation (14) will
occur at a crucial point in §4. For this problem we have the following
result.

PROPOSITION 5. Let g € H™ where m > 1. Then there is a unique function u
in C(0, co; HY) which is a solution of (14) in R x R* such that u(-, 0) =
For each T > 0 and integer k in [0, m), 9f u € C(0, T; H™*) and the mapping
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g — 0% u is continuous from Hm to C(0, T; H™*). Furthermore, the func-
tionals

f " e, 1) + el(x,)]dx and ji" [2(x, 1) — $u3(x, )] dx  (19)

are both independent of t > 0. If m > 3, there is a positive constant &,
dependent only on ||g| s, such that for 0 < ¢ < ggand0 < t < 1,

T e nax <o, 20)

where ay: Rt — R* is continuous, monotone increasing and ay(0) = 0.

This proposition is a minor modification of Propositions 2 and 3 in
Bona and Smith [1975]. Note that the two invariant functionals in (19)
are, apart from the term containing an ¢, the same as for KdV. It follows
as in Proposition 4 that the solutions u provided in Proposition 5 are
bounded in H1, independently of t > O and ¢ > 0.

COROLLARY 1. Let g € Hm where m > 1 and let u be the solution of (14)
guaranteed by Proposition 5. Then, for 1 > ¢ > 0,

luC-, O < lghy and |ul-, O] < q(iglly) 1)

SJorall t > 0, where q(0) = 0, and g is continuous and monotone increasing.

PRrOOF. The first invariant in (19) shows that, for0 < ¢ < 1,

(-, D2 < j * [x, 1) + ey, )] dx
N (22)

= |7 1% + egiN ax < lelt

Similarly, it is adduced from the second invariant in (19) that,

I, D17 = gt + 3 (7w 0y ax — L[ g3 ax
< llglhf + 4 uC, Ol lu(-, 12 + 4 llgl2lgl 2 (23)
< lgl} + $ligl} + § lglf lluC-, )1
where the elementary inequality
Vliz= < Ivll vl < $1ivi3 29

and (22) have both been used. Adding (22) and- (23), it follows that (21)
holds, with, for example,

96) = [Bs? + }5% + } st
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4. Analytic comparison of the two model equations. Attention is now
focused on the imital-value problems for the model equations (A) and
(B). Let gy be a given, physically appropriate, initial wave profile. In the
scales implied in both (A) and (B), g, must therefore be of small amplitude
and large wave length, and these must be appropriately related as explained
in §2. These assumptions on g, may be made precise by introducing the
positive parameter ¢, which is taken as a measure of the small amplitude
of the wave profile, and assuming that g¢ may be represented in the form

go(x) = eg(eV/%x). (25)

Here g is viewed as fixed and interest lies in the regime ¢ < 1. Thus con-
sideration is given to the initial-value problems

7%+ 7% + 79+ P =0, for(x,f)eR x RY,
with (26a)
7°(x, 0) = eg(el/2x), for x e R,
and _
G+G+ 00— 0 =0 for(x,t)eR x RY)
with (26b)
C(x, 0) = eg(eV2x), for xe R.

In what follows, we shall refer to a quantity of the form g(|ig| ), where
¢: Rt - R*is a C! function with g(0)=0, as an order-one quantity. Thus
an order-one quantity is a function of 2 Sobolev-norm of g. The principle
result of our investigation may now be stated.

THEOREM 1. Let g € H**S where k > 0. Let ¢ > 0 and let ¢ and [* be
the unique solutions, guaranteed by Propositions 1 and 2, of the initial-value
problems in (26). Then there is an ¢y > O and order-one constants M ; such
that if 0 < e < &, then

I7EnC-s 2) = Lep(es DI < M e/2F74(e321) @7

at least for 0 < t < ¢%2, where 0 < j < k.

REMARK. We continue to use the symbol u,, introduced in (17) to denote
the rth derivative of » with respect to the spatial variable x, 37u.

A comparison over a short time interval. Before giving the proof of
the just-stated theorem, a related issue will be addressed. This somewhat
simpler point is of interest in its own right, and its resolution suggests an
analysis of the more complex situation reflected in Theorem 1.

As explained in §2 either model equation (A) or (B) may be viewed as
a small perturbation of the basic one-way propagator u, + u, = 0. More-
over, in the formal derivation of these models from more complete sets of
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equations, assumptions are made concerning the sizes of various combina-
tions of the dependent variable and its derivatives. These assumptions
play a crucial role in the derivation of the model equation, for they allow
certain terms in a formal expansion to be retained while others are drop-
ped. Asalready explained in §2 it is this procedure that leads ultimately to
equations such as (A) and (B). Moreover, at a cruder level of approximation
than that anticipated for in (A) and (B), this procedure would yield exactly
the factored form of the one-dimensional linear wave equation u + u,
= 0. It is our purpose here to establish rigorously the natural suppositions
concerning the size of the dependent variable and its derivatives. It will
also be shown that either model (A) or (B) may be replaced by the equa-
tion u, + u, = O without loss of order of accuracy provided time scales
no longer than ¢~1/2 are in question.

In view of the theorem stated above concerning the relation between
the two models, it suffices to consider only one of these models at the pre-
sent stage of discussion. Results established for one model will apply to
the other model by virtue of Theorem 1.

Consideration is therefore given to solutions of (26a) and their relation-
ship to solutions of the initial-value problem,

of + 0 =0, for(x,t)eR x R™, (28)

with g%(x, 0) = eg(¢'/%x), for x € R, where 0 < ¢ < 1. The solution of (28)
is

o(x, 1) = eg(e"Xx — 1)). 29)
Define
u(x, t) = e ly(e~Vex + &2, ¢—3/2)

and 30)

W()C, t) = E—-lo-e(e~1/2x + 6—3/21" 8—3/21‘)_
Then u and w satisfy the initial-value problems,

Mo T Mty o e = 0}, for (x, t)eR x R*, @31
w, =0
with
u(x, 0) = w(x, 0) = g(x), forxeR.
Leth = u — w. Then, A is a solution of the initial-value problem
hi = —uu, — u,,,, for(x,t)eR x R+,
h(x,0) = 0, forxeR.

(32)
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If (32)' is integrated over the temporal interval [0, ¢], there appears the
formula, ’

W, 1) = = {0, D, @) + i, ] d.

It then follows that for any nonncgativé integer k

I, Ol < ) G, D Dl + T DD b (3

This inequality is the key to the proof of the following result.

THEOREM 2. Let g € H™ where m > 3; Let 7p* and o¢ be the solutions of
(26a) and (28) corresponding to the initial data ¢g(c'/2x), where ¢ > 0. Then
there are order-one constants C; such that for 0 < ¢ < 1 and 0 < ¢,

(s 1) - oin(ss DI < Ciei’2i9/4y, 34
forO0 <j<m-—3.

PrOOF. Fix ¢ in the range (0, 1] and perform the change of variables
indicated in (30). Let u, w and 4 be as defined in(30) and just below (31).
Forany T > 0, y* e C(0, T; H™). Hence, forany T > 0,u e C(0, T; H™).
From (29) it is plain that g¢e C(0, T'; H™) for any T > 0. Hence h e
C(, T; H™) for any T > 0. Thus, provided & < m — 3, the right-hand
side of (33) is finite, and the formal calculations leading to this inequality
are easily justified.

But, (33) immediately implies the estimate,

”h(" t)”k < t{”uux”C(O,t;Hk) + ”uxzx”C(O,t;Hk)},

for 0 < rand 0 < k < m — 3. Elementary considerations involving the
‘Sobolev norms then yieid

A, Ol < Mut{llull, 0y + “a”C(O,t;HkH)}, (35)

holding forallt = 0and 0 < & < m — 3, where the constants M, depend
only on k. Proposition 4, which applies equally to the KdV equation (A)
and to the KdV equation (31) written in coordinates moving with speed
one, allows the right-hand side of (35) to be bounded in terms of the data
g as follows:

4G, DUl < Mit{go(llg])? + grs1(llgllss1)? + [qo(l 1) + Grsra(ligl +2)V/2}
= th,

for 0 < k <'m — 3, where the g, are defined in (18). According to the
earlier definition, C, is an order-one quantity. It follows that

(-, DI < Cut, | (36)
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for 0 < k < m — 3. It remains simply to express 7 and ¢* in terms of u
and w, so inverting the change of variables (30). This gives

7e(x, 1) = eu(eVHx — t), e¥%), (37

and similarly for ¢* in terms of w. It then follows from (36) and (37) that,
for0O<k<m-—3,

I9t(, £) — dfk)(-, DIl < Ceb/2t9/44,
where C, is an order-one constant. This is just what we set out to prove.

COROLLARY 2. Let g, 9 and g¢ be as in the statement of Theorem 2 and
suppose m > 4, Then, there are order-one constants B, such that, for all
t >0,

SUP [7tn(X, 1) = oln(x, 1)l < Byre®*io72 (3%)
< -

provided 0 < k < m — 4,
Proor. First note that if f'e H1, then according to (24),

Sl < 1AL/, (39)

for all x e R. Apply this with f = 7}, — g%, and then use (34) to bound
the resulting right-hand side.
It is instructive to consider the case k = 0 in (38). The result then reads

SUp [75(x, 1) — o*(x, )] < BoeX(e!/?). (40)

Recall that both 7* and ¢* are of order ¢ in maximum magnitude, and that
€% 1s the neglected order in the scaling appearing in (26a) and (28). The
inequality in (40) states therefore that 5 and ¢ agree to the neglected order,
at least over the time interval [0, ¢~1/2]. In other words, if interest lies in
the evolution of the wave profile over a time ¢ < ¢%/2, then one might as
well employ (28) (that is, translate the initial wave profile at speed one
without change of shape) rather than one of the more complicated models
in (26). Over longer time scales, this may not be true. Indeed, examples
are presented in §5 showing clearly that the estimates in (34) and (38)
cannot be improved in general. So nonlinear and dispersive effects are
increasingly felt for times in the range ¢t > ¢~1/2, When ¢ is of the order
¢~%2, the difference between 7 and ¢ is of order ¢, the basic size of each
term separately. The models in (26) and the simple model (28) have thus
diverged in their predictions by this time. This accords with the formalism
explained in §2.

Scaling and longer term comparisons. We now show that solutions 7* of
the initial-value problem (26a) scale with respect to ¢ in the way that is
expected and used in formal studies of this equation.
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THEOREM 3. Let g € H™ wherem > 1 and let ¢ > 0. Let 7* be the solution
of (26a) corresponding to the intitial data sg(e/2x). Then there are order-
one consiants D; such that for all t = 0,

l9tn(, O < Djei/zten, 41)
whenever 0 < j < m.

Proor. This is a straightforward consequence of Proposition 4. First
let u be defined by (30) as before. Then u satisfies the initial-value problem
(31). Proposition 4 thus implies that for all ¢ > 0,

len(-s DI < q{lgl) = D, ' 42)

for 0 < j < m, as in (18). The inequality (41) now follows upon using the
expression (37) for 7 in terms of u in (42).

COROLLARY 3. Let g, m, ¢, and 7 be as in Theorem 3. Then, there
exist order-one constants F; such that, for all t > 0,

sup Intn(x, )] < Fiettir2 43)
2

Jor0<j<m-~-1.

ProorF. This follows immediately from (39) and (41) if we define F; =
(D;D 1)V,

Theorem 3 and its corollary show that solutions of (A) corresponding
to initial data of the form eg(el/2x) scale with respect to the parameter ¢
Just as the data does. In particular, (43) yields

¢l = Oe), il = O(e¥3), and |7t = O(5?), (44)

as ¢ | 0, so that [7p;| = O(e%?), as ¢ | 0. Solving equation (A) for %;, and
~ taking account of (44), it follows that I75] = O(e%/?), as ¢ | 0. These results
emphasize again that the nonlinear and dispersive terms in the KdV
equation represent small corrections to the basic wave equation 7, + 7, =
0. We turn now to the more exacting and technical task of proving The-
orem 1. ‘

ProoF (OF THEOREM 1). Suppose at the outset that ge H>, thatis, gisa
C= function all of whose derivatives lie in L,. As in (30), define

ulx, 1) = e7lyp(eVex + e73/2, £3/21), }

, (45)
v(x, 1) = e 108 V2x + £73/2t, ¢~3/2f).
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A short calculation shows that u and v satisfy the initial-value problems

U, + uu, + ug,, =0,
Vet W Vi — EViyy = 0, (46)
u(x, 0) = v(x, 0) = g(x).

Letw = v — u, so that v = w + u. Then w is seen to satisfy
W, + ww, + Weer =™ EWpgy = EUy - (uw)x’ W()C, O) = 0. (47)

We continue to use the notation f{ ;, to denote 3% f.

The task to be accomplished now is the estimation of |w; |, for j =
G, 1,2, ... . Because g € H~, both 7 and {¢, and hence u and v, are C=
functions of x and ¢ all of whose derivatives are in L, with respect to the
spatial variable. This fact justifies the following computations.

Multiply (47) by w(,;, and integrate the result over R and over [0, ¢].
After a few integrations by parts, and taking account of the fact that
w(x, 0) = 0, the following identity is seen to hold, as in Bona and Smith
{1975, equation 7.9],

j.io {W%;)(x» 1) + ewliy(x, 1)} dx
°° t (48)
=2 Io j‘_w W {ette, 42y — (W + 3 w?) iy} dx do,

forj=0,1,2,.... This relation will be used repeatedly.
First, for j = 0, there appears, after two more integrations by parts,

(w2 + ewd)dx = 2 j' ; j " e(wu,,)dxdr — f ; f () dx dr. (49)

-0

From this the following inequality is derived:

w12 < | Qellwl Tieeel + Nl 1912) i,

where, as before, || | denotes the norm in L, and, throughout this proof,
| | denotes the norm in L. By a variant of Gronwall’s lemma it follows
that

wl| < &(Ca/Cy) (65 — 1) < etCoeCt = Met, (50)

where C; and C, are bounds for 4|, and |u,,| respectively and ¢ is
restricted to the range [0, 1]. Using the results of Proposition 4 in §3, and
using the differential equation, the following estimate can be made:

sup ”uxxt” = §up ”a:zr(_uxxx - uux)”
t=>0 =0

< sup {le Il + lulloo ey | + 3luglleo e}
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As remarked in (24), || f|% < | fIl |/, |. Hence, in the notation of (18),
with the g, referred to g of course, C, may be defined by

Sup lueell < g5 + (g0g1)Y2g3 + 3(9192)'%g; = Co. (51)

It is even easier to estimate a value for Cy;

SUp [lu,fle < sUD (sl fuesl)V? < (q192)"% = Cy. (52)
£20 120

Since both C; and C, are order-one quantities, so too is M. This resuit is
already interesting, as will appear shortly. Further bounds lead to a better
overall picture, and to L_, estimates.

Integrating (48) by parts, in the case j = 1, the following relation is
derived.

[ ozremza=2 [* ) drae
” e (53)
— j‘oj‘ (W8 + 3uw? + 2u,_ww,)dxdr. '

The integrand on the right-hand 51de of the latter equation may be
bounded above by

2e Juexzell [Wall + Wz + St IWol12 + 2l Wl Wl
S (@G ludle + 1l IW.l? + @ llttarell + 20 sl ot ) 2M oD W -

Now using the equation satisfied by u and the results of Proposition 4, we
may derive the following estimate, valid for 0 < 7 < 1.

Osup {200 crsell + 200l 24,2V 2M 7}
< sup 20183 —uu, — u,.)|| + 2qa99V2Myr)

< 2g6 + 2(q091) %4 + 8(411‘]2)1/ 2g3 + 6(g295)'/%q, + 2(‘12‘13)1’ My = Cy.

‘Since M is an order-one quantity, C, is an order-one quantity. Also, using
~ Proposition 4 as before and relying on Proposition 5 and its corollary for
the bounding of ||v.| .., there appears

sup {4li,llee + [Villw} < 4(g1g)*? + sup ([v][v,.l)V?
0<r<1 0<r<1

< Hg19)Y? + (ga(ligll g)¥? = Cs.

This latter quantity is order-one also. Thus at least over the interval
0 <t < 1, the inequality

oz < [ (Calwilz + eCulwil) dz
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is implied. It follows immediately that
Iw.ll < e(Cy/Co)(e® — 1) < etCye = etM;, (54)

for 0 < ¢ < 1. Since C; and C, are order-one quantities, M; is also an
order-one quantity.

For the case of a general j, the procedure for obtaining a bound on
lwe |l is similar to that followed above in the cases j=0and j=1.
Suppose inductively that for j < k, where k > 1, there have been es-
tablished bounds of the form,

Wl < e(Coyl Coja) (€% — 1) < etCoieCei-t = atM;,  (55)

for ¢ € [0, 1], where C,,;_; and C;; are both order-one quantities. The goal
now is to establish the same type of bound for j = k. To this end, consider
the equation (48) in the case j = k. Using Leibnitz’ rule, (48) may be
written as

o0 4 (o]
f (Why + ewhyy) dx = 2 joj LWl g2 dx dr
e _

t oo kt1

- 2.‘0.“ Zoaj{%wuﬂ-j) Wi + Worr-plpiwe dxdr.
-0 J=

Here the a; are the constants that appear in Leibnitz’ rule. Separating the

top-order derivatives and estimating the rest directly, we have

o t
(Why + ewhyyy) dx < 2 5‘0 Iwas l e, oy | dT
—-—00

t oo
- zjo j—w (WW W ey + UW (W) dx dr
t oo k (56)
+ jof 2 iAW W ar1-H W] dx dr

! Poo kE1
+2§0j Zlajlw(k)u(j)w(k-i—l—j)l dx dr.
oo £
The induction hypothesis (55) assures us that on the time interval {0, 1]
iwinll and w, |l are bounded by order-one constants if 0 < J<k-—1
and 0 < i < k — 2. By Proposition 4, e lls lluesylle and, using the dif-
ferential equation, ||u, (.4 | are all bounded by order-one constants, for
0 <j <k + 1, independently of ¢ > 0. Also, by Proposition 5 and its
corollary, for r €[0, 1], |w|, ||w,| and |w,.|l are bounded by order-one
quantities. Because of (24), [w,| ., and ||w|, are similarly bounded. The
second integral on the right-hand side of (56) is equal to

t ffoo ¢
1§ e+ wwty dxdr < T vwied,
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where, provided 0 < 7 < 1, C'may be inferred to be an order-one quantity.
The third and fourth integrals on the right side of (56) are both estimated
similarly:

e _. _ .
j 2 AW @mWar-p W] dx dr
o 0 —c0 j=1

t i k-1
< Cf wdatwalpde + Cef [ Wl Z MMn-? ] de
J=

¢ i
< cf wwlzd + < [ Iweld,

valid for 0 < ¢ < 1 at least. The constants appearing in this inequality
are order-one. The same estimate holds for the fourth term on the right
side of (56). Hence in sum, for0 < ¢ < 1,

o t i
j (Why + ewhypy) dx < Copy 50 W ll2dt + eCyy ;0 Iwwll dr,
—00

-where Cy;; and Cy; are order-one quantities. The result (55) for j = &
now follows and the inductive step is completed.

It is worth noting that the constants Cyp, ; and C,, depend only on
gl for 0 < j < k + 5. In fact, this consideration is dominated by the
term u,, ;+2), appearing on the right-hand side of (56) which, by use of the
differential equation and Proposition 4, is bounded in terms of gy, .. .,
Gr+s, and so in terms of |g|, ..., |lgssl-

This last remark, coupled with the continuous-dependence results in
Propositions 1 and 2, allows the weakening of our initial assumption that
- g € H>. By approximating g € H¥5by a sequence {g.}21 = H>, we may
conclude that

Iwipnll < etM, 57D

forO0<t<1and 0 <j<k, where w =u — vand v and v are as in
(46) with initial data g. ‘

- Now it is only necessary to translate the result (57), a relation concern-

ing u and v, into a result relating »* and {¢. This simply involves inverting

the transformation involved in (45). It appears immediately that,

P(x, t) = eu(eVHx — 1), /%), (58)

- and similarly for { and v.
Thus, supposing now that g € H#5 and that j < k, we deduce that
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I78nCes £) = TH(-, D)2

— j {ej/2+1[u(j)(€1/2(x — 't), 63/2t) — v(,-,(el/z(x _ t), 63/2t)]}2 dx
—0

T e
= e/t32w (-, e¥2)|2 < HZMYEY2)?,
and this is valid as long as 0 < ¢%% < 1. Hence if 0 < ¢ < ¢7372,
I7EnCs 1) — L5 DI < &/ 2HAM (3/21), (59)
where M ; is an order-one quantity. This finishes the proof of the theorem.

COROLLARY 4. Assume the hypotheses and notation of Theorem 1. Then
there is an ¢y > O and order-one constants N; such that for 0 < ¢ < ¢
and for 0 < t < ¢392,

sup [8n(x, 1) — Ceplx, D) < Nt %e3/%), (60)
for0<j< k-1

Proor. This follows instantly from (27) and the inequality (24) if N, is
defined to be (M ;M ;)12

COROLLARY 5. Let g€ H¥5, where k =2 0. Let ¢ > 0 and let (¢ be the
solution of (26b) corresponding to the initial data eg(c'/%x). Let g¢ be the
solution of (28) corresponding to the same initial data. Then, there is an
gg > 0 and order-one constants E;,0 < j < k, such that for 0 < ¢ < ¢
and0 <t < 732,

86a(> 1) = oo, O < Egterraors, (61)
forO0 <j < k,and ifk > 1,
sup [Lis(x, 1) — otpx, 0] < Ete 97, (62)

Jor0 <j<k— 1

COROLLARY 6. Assume the hypotheses and notation of Theorem 1. Then
there is an ¢y > O and order-one constants F;, 0 < j < k, such that for
0<e<egandd <t <e¥2

188HCs DN < Fer2t3/4, (63)
for0 <j < k,and, ifk =2 1,
sup [C5(-s B)| < Fjei2tL, (64)

RemaRrksS. Corollaries 5 and 6, which are concerned with the model
equation (13), are immediate consequences of Theorems 2 and 3, and
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their corollaries, once Theorem 1 is established. For example, to obtain
(63), proceed as follows. For ¢ < &, we have from (41) and (27),

1ZEHCs DI < NITHCS 1) = 250G, DI + ligiy(-, DI

< M ei/2VU4(e3/21) 4 D pil2+3/4,

at least for 0 <t < %2 Take E; = D; + M, which is an order-one
quantity since D; and M ; both have this property. The result then follows.
Corollaries 5 and 6 can be improved somewhat in the sense that weaker
hypotheses concerning g suffice for the stated conclusions. The conclusions
themselves cannot be improved in general, as is shown in the next section.
An interesting case in Corollary 4is j = 0, when (60) yields the estimate

sup |p(x, £) — Ce(x D < Noe™2t, (65)

holding for 0 < ¢~32, Inequality (65) is exactly that obtained in (9)
when comparing solutlons of the two linearized model equations. Note
in particular that at t = #; = ¢%2,

ilelg lpe(x, t1) — Te(x, t1)|. < Nee?,

showing explicitly that the two solutions are the same to the formal order
of accuracy ¢2 achieved by either model. Recall from §2 that, is the tem-
poral scale over which it is expected that significant modifications of the
wave profile will occur, due to the accumulation of nonlinear and dis-
persive effects.

Whilst ¢#; is indeed a loncr time scale for the present considerations, it is
nevertheless expected that the estimates (27) and (60) will continue to
hold for 7 in the range [e—3/2, ¢=5/2]. So far this kind of result has proved
elusive to analytical methods for the nonlinear case. Such resulis are
easily established if the nonlinear terms in the two model equations are
neglected, as in the sample calculation in §2. Numerically obtained evi-
dence supports the validity of the estimates (27) and (60) on the longer
time scale f, = ¢ 52 This and some other results are presented in the

next section.

5. Further comparisons of the model equations. Additional amplification
and interpretation of the theory developed in §4is provided here. This is
accomplished prmclpally by way of some specific examples. In the present
discussion, we retain the notation and scaling appropriate to (26) in §4.
1In particular, ¢ continues to be used as the measure of the small amplitude
of the initial wave profiles. According to the presentation in §2, ¢~1/2is
therefore a measure of the length scale characterizing these profiles.

It is worth reiterating that ¢~32 is the smallest time scale over which
the nonlinear and dispersive terms in either model equation, written in
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the forms (26), act effectively to alter the shape of the initial wave profile.
On time scales significantly smaller than ¢—3/2, Theorem 2 and its corollary
show that the dominant effect experienced by the initial profile with the
passage of time is induced by the top-order portion, ¢, + ¢, = 0, of the
equations, and is therefore simply translational. As pointed out in (65),
solutions of the two model equations corresponding to the same initial
data, as in (26), differ by order at most ¢2 over the entire temporal interval
[0, £73/2]. For the models written in the form (26), both 7* and {¢ are quanti-
ties of order e. Thus their difference is seen to be a factor of ¢ smaller than
the functions themselves. This is exactly the formal order that the terms,
neglected in the derivation of these equations, would be expected to con-
tribute over this time scale. Put another way, both 7¢ and (¢ have formal
resolution of order ¢ over the time interval [0, ¢=3/2]. Hence our results
show unambiguously that on this time scale the solutions of the two
equations are the same to the formal order of approximation afforded by
either equation.

Two issues arise naturally upon further consideration of Theorems 1, 2,
and 3. First, the sharpness of the results deserves consideration. Second,
it seems probable that the estimates expressed in (27) and (60) are valid
on the longer time scale ¢, = ¢=52, as asserted in our conjecture at the
end of §2. For the linearized model equations it may be readily demon-
strated that (27) and (60) are sharply valid for ¢ in the range [0, ~5/2].
Moreover, as pointed out in §2, formal arguments indicate that (27) and
(60) are sharply valid for ¢ in [0, ¢-5/2] for the nonlinear problem as well.
Both of these issues are addressed below, though neither has been
conclusively resolved.

To fix ideas in the present context, let us agree to call an inequality
of the general form ||65;,| < Cer, where C, is an order-one constant,
sharp if there is another order-one constant C; such that

CjE' < |16 I

Here ¢¢ is a solution, or difference of two solutions, of equations (26) or
(30), r is some fixed real number and | || denotes some norm, not neces-
sarily that of L,.

One way to test the sharpness of the results obtained thus far is by
resort to examples. A particularly simple class of examples is obtained
by choosing the initial data eg(¢’2x) to be a small-amplitude solitary-
wave solution of (26a), namely

g(x) = 3 sechz(4x). (66)

This function is an element of B>, so it certainly satisfies the hypotheses in
Theorems 1, 2, and 3 for any value of k or m. Fore > 0 given, the exact
solution of (26a) for this choice of g is
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S.(x, 1) = 3¢ sech? (%12_ [x — (1 + a)t]). 67

For this special similarity solution, it is obvious that the norms appearing
in Theorem 3 and Corollary 3 do not vary with ¢. Hence, forallj > 0,

194S.(-, DI = ladleg(e2 N = d,ei'z+2%,
where d; is a positive constant determined by g. Similarly, for all j > 0,

sup |3iS.(x, 1)] = sup |pileg(cV/2x))| = f;e//2H,
=R zER

where again the f; are positive constants determined by g. These simple
caiculations show that, in general, the bounds obtained in (41) and (43)
cannot be improved. We have not proved a theorem of genericity, that all,
or, more likely, nearly all sufficiently smooth choices of g result in solutions
that sharply obey (41) and (43).

The examples in (67) may also be used to show that, in general, Theorem
2 and Corollary 2 are sharp. For the exact solution of (28) subject to the
initial condition eg(el/2x) is

o(x, t) = 3esech?((3e1/?) [x — ¢]). (68)

The functions in (67) and (68) are identical except that they propagate
at slightly different speeds. Because of this, they draw apart and the
norm of their difference grows. ‘A straightforward calculation shows
that (34) and (38) are sharply verified in this particular instance. Thus
both Theorem 2 and Corollary 2 are sharp in general. Again, a generic
result along:these lines has eluded us.

Finally, we try our example (67) in the context of the mxtzal-value
problems for (A) and (B) posed in (26). There is not -available a closed-
form solution of (26b) corresponding to the initial data eg(el/2x), with g is
~ as in (66). Consequently, we have had to rely upon a numerical integration
of (26b). The numerical scheme used for these experiments has been
described in Bona, Pritchard and Scott [1980]. It results essentially from
discretizing an integral equation that is equivalent to (26b). The resulting
scheme is quite efficient, and has been proved to be unconditionally stable
and fourth-order accurate in both the spatial and temporal mesh size.
Extensive convergence tests for this scheme have been carried out using
the solitary-wave,

se(x, 1) = 3C sechz{[ - c]] [x — (C + 1)t]} (69)

For any C > 0, this is an exact solution of (26b), and the convergénce, or
lack thereof, of a numerical scheme may be conveniently tested on it.
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In Tables | and 2, we show the errors arising when our scheme was
used to integrate (26b) (in the variables appurtenant to (10b)) with the
initial condition

h(x) = 2C sech? {[%(f—fc—)}mx}.

The errors recorded are with regard to the discrete L, norm of the
difference between the exact solution

Ulx, 1) = 2cSech2{[_2_(l_§f_c—)]m [x — (C + 1):]}, (70)

and that predicted by our scheme. If u;; is the value given by the numerical
scheme at the point ({Ax, jAt), where Ax and At are, respectively, the
spatial and temporal mesh size, then the error at the jth time step is defined
to be

E; = {2][u; — U(iAx, jADPAx}2, (71
and the relative error at the jth time step is taken to be

E;
¢1 = (%, Ulhx, jAnEAX}/E

It is the relative errors that are tabulated. (Note that the summation in
the above formulas must be truncated. Because of the rapid spatial decay
of the solution in question, such a truncation can be made without
sensibly affecting the approximation to the L, norm. In all cases, spatially-
truncated values for U;;/2C were less than 10-% in our computations.)
Preliminary experiments had shown that the choice Ar = Ax gave the best
results (in the sense of accuracy achieved for the work expended) and for
these computations we have taken Ax = Af = A, say.

Having determined the sort of accuracy inherent in the numerical

(72)

A Time 0.640 9.600 30.720 72.320 120.320

0.16 0.147E—-3 0.688E—-3 0.249E—-2 0.141E—1 0.400E - |
ratio 15.7 17.2 28.4 31.3 31.3
0.08 0.937E—-5 0.400E—-4 0.876E—4 0.451E—3 0.128E-2
ratio 15.9 16.7 26.5 32.2 324
0.04 0.588E—6 0.240E—5 0.330E-5 0.140E—4 0.395E—4
ratio 15.7 16.1 21.4 244 28.8
0.02 0.374E—7 0.149E—-6 0.154E-6 0.574E—6 0.137E-5

TasLE 1. The relative error e; induced in integrating a solitary wave (70) of amplitude
2C = 1.0. (Ax = Ar = A; an entry in a row labelled ‘ratio’ is the ratio of the
numbers above and below that entry.)
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A Time 0.640/9.600 30.720 51.840 72.320 93.440 120.320
0.32 0.227E-3 0.334E—2 0.108E—1 0.I183E—~1 0.256E—1 0.332E—1 0.429E—1
ratio 16.0 15.7 15.8 15.8 15.7 15.7 15.7
0.16 0.142E—4 0.213E—3 0.685E—3- 0.116E—2 0.163E—2 0.212E—2 0.274E-2
ratio 16.0 15.9 15.9 15.9 15.8 15.9 15.9
0.08 0.890E—6 0.134E—4 0.430E—4 0.731E—4 0.103E-3 0.133E-3 0.172E-3
ratio 16.0 16.0 16.0 16.0 16.1 16.0 15.9
0.04 0.557E~7 0.837E—6 0.269E—S5 0.457TE—5 0.641E—5 0.832E—~5 0.108E—4

TasLE 2. The relative error ¢; induced in integrating a solitary wave (70) of amplitude
2C = 0.1. (Ax = Ar = A; an entry in a row labelled ‘ratio’ is the ratio of the number
above and below that entry.)

scheme, we then introduced the initial data gg(¢!/2x), where g(x) =
2sech?([3/2]V/2x) (corresponding to (66), except for the equation in the form
(10a)). Equation (10b) was integrated numerically, with the just-mentioned
form of initial data, for a range of values of ¢. At time ¢, the difference
between the numerically computed solution of (10b) and the exact solu-
tion of (10a) was formed. Let M () denote the maximum value of this
difference, and consider the function log(M (¢)). Because of the estimate
(65), it is expected that

log(M (1)) = constant + (7/2)logé + log 1.

Attention is fixed on the particular times, 1, = ¢ V2, t; = 732, 1, = ¢752,
and t; = /2 considered earlier. For these times, we expect

log(M (t;)) = constant + (7/2 — 1/2 — j)log ¢ = constant + (3 — j)loge.

An idea of how well this relation is obeyed may therefore be obtained by
plotting log M (t,) versus log ¢ for various small values of e. This is shown
in Figure 1. The general pattern appears to confirm that (65) is sharply
valid over the entire temporal range [0, ¢~5/7, at least for this particular
example. In Table 3, the results plotted in Figure 1 are tabulated, along
" with the numerical values of the slopes determined therefrom.

REMARK. A direct comparison of (A) and (B) could also be made by
posing as initial data a small-amplitude solitary-wave solution of (B).
One could then attempt to use the inverse-scattering theory to infer
properties of the resulting solution of the KdV equation (A). We have
investigated this possibility and have found the fruits of our labour to
be suggestive, but not cenclusive. For.the expert, it is worth adding
that we were not able to gain sufficient control of the dispersive tail to
effect the needed estimates. '

A final and more delicate way in which these two model equations
were compared is now described. _ :

It is an interesting fact that certain classes of solutions of the KdV
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10.0

- 1
1.0 2.0 3.0 4.0
~loge

FIGURE 1. The logarithm of the maximum difference between solutions of the model
equations (10a) and (10b) (with a solitary wave initial-data of amplitude) e plotted
against-fog e,

equation (A) have a rather simple structure for large values of ¢. Basically,
the asymptotic form of these solutions comprises a widely-spaced sequence
of independently 'propagating solitary waves followed by a small-ampli-
tude dispersive tail. This behaviour was first noted numerically, and was
then established analytically by use of the so-called inverse-scattering
theory for KdV (see, for example, Miura [1974, 1976]).

It is natural to inquire whether or not the same property holds for
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equation (B). A related property of the KdV equation, whereby solitary
waves recover’ their exact form upon emerging from an interaction,
~appears to be false for (B) (see Bona er al. [1980] and the references
included therein). This latter result does not preclude the possibility that
solutions of (B) exhibit the aforementioned asymptotic form. The issue
seems to:be beyond the reach of the analytical tools currently at our
disposal. ‘Consequently, it has been investigated using the numerical
integration procedure for (B) discussed earlier.

We present here an example of the kind of outcome observed in a
number of numerical experiments. In this example, the initial data was
taken to be

U(x, 0) = exp(—x?/10). (73)

The calculations were performed with Ax = At = 0.16, and a check was
made by comparing with the same integration where Ax = Af = 0.08.
The procedure appeared to have converged, for all practical considera-
tions. As always, the calculations were run on a finite spatial grid which
was chosen to be large enough that values of { truncated by this
limitation did not exceed 10-8. A feature of our numerical procedure was
a peak-finding subroutine which, at each discrete time step, located local
maxima in the bulk of the solution and compared the wave profile near
such a peak with a solitary-wave solution of (10b) having the corre-
sponding amplitude and positioned so that its peak coincided with the
local maximum in question. (This routine ignored peaks of amplitude
less than 0.01.) The routine also computed the local speed of the wave
based on the movement of its crest. The result of our calculation is
pictured in Figure 2, which is now described in some detail. In the ensuing
discussion the terms ‘speed error’ and ‘shape error’ are used, respectively,
to mean the difference in speed and shape between the computed wave-
form and a solitary wave (70) having the same amplitude 2C as that of
the computed wave. All differences between the computed profile and
various solitary-wave solutions of (10b) are relative discrete L, norms,
as defined in (72).

(1) The initial profile differed from a solitary wave of the same am-
plitude by 0.963.

(2) Two peaks were visible by time 6.4, one of amplitude 1.307 and
another of amplitude 0.4442,

(3) By time 16.0, three peaks had resolved themselves, with respective
amplitudes 1.358, 0.4633 and 0.0883.

(4) By time 35.2, four peaks were discernible with amplitudes 1.357,
0.4738, 0.07206, and 0.01072.
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YA 64.32
N J \ 53.60

42.88
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- ,\L/\\ 3216

21.44
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0 250 500 750 1000
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10.72

FlGURﬁ 2. The development over time of the numerical approximation to the solution
of (10b) with initial data exp(— x?/10).

(5) A fifth peak had emerged by time 105.6. The amplitudes of the
peaks at this time were 1.351, 0.4748, 0.0595, 0.0161, 0.0101. _

Now the finer structure of the evolution of the various peaks is de-
scribed. ' : A

Peak no 1. The first peak grew steadily in amplitude to a maximum
value of 1.358 at about ¢ = 13. Thereafter its amplitude decreased very
slowly to a value of 1.348 at ¢ = 144. This latter decrease is believed to
result from numerical errors; such slow attrition was consistent with our
integration of solitary-wave solutions of (10b).

At ¢ = 12.8, when the wave had virtually reached its ultimate height,
its speed of propagation was 1.679, which differed by 0.3E — 2 from that of
a solitary-wave solution of (10b) with the same amplitude. The difference
between the profile near this first crest and a solitary wave of the same
height was .067. At 7 = 32.0, the speed differed from that of the
‘appropriate’ solitary wave by only 0.35E—3 and the error in shape
was 0.89E—3. At 7 = 48.0 and 144.0 the speed error was .35E —3 and
.34E — 3, respectively, and the shape error was .89E—3 and .89E -3,
respectively. o
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 Peak no. 2. This crest emerged fairly quickly, beginning its independent

existence with an amplitude ‘of 0.4480, and growing steadily in amplitude
to a maximum of 0.4748 at about time 55. It held this latter value
thenceforth. At # = 9.6, the speed of this wave as determined by the move-
ment of the peak was 1.208, which is 0.015 slower than a solitary wave
of its amplitude. The difference in shape was 2.476.

Both the error in speed and shape decreased rapidly as this peak became
more isolated. At ¢ = 16.0 and 32.0 the speed errors were .36E—2 and
96E — 3, respectively, and the shape errors were .72 and .072, respectively.

When the amplitude had stabilized, at about ¢ = 55, the speed error
was .42E — 3 whilst the shape error was .68E —2. At ¢t = 144.0, the speed
difference was .37E—3 and the shape difference .14E —2.

Peak no. 3. This peak first emerged at time about 16 with an amplitude
of 0.08828. Its speed at this time was 0.9477 and it differed markedly
from a solitary wave (shape error 5.73). The amplitude decreased mono-
tonically taking values 0.07339, 0.06458, 0.06038 and 0.05695 at ¢ = 32.0,
64.0, 96.0 and 144.0, respectively.

The speed of the crest increased monotonically, surpassing 1 by ¢ =
28.8. At this time its speed differed from that of a solitary wave by 0.0345
and the shape difference was 4.13. These two measures continued their
development follows.

t speed error shape error
48.0 0.165E—1 4.51
64.0 0.117E-1 4.66
96.0 0.708E -2 0.50
128.0 0.483E-2 0.46
144.0 0417E-2 0.44

Peak no. 4. This peak first emerged at ¢ = 35 with an amplitude of
0.01072. Its initial speed and shape were quite different from those of
the appropriate solitary wave; the relevant errors were 0.1129 and 43.8,
respectively. The amplitude of the crest initially increased to a value of
0.01421 at t = 51.2, to 0.01540 at ¢t = 64.0 and reached a maximum of
0.01615 at t = 96.0. The amplitude thereupon decreased slowly, taking
values 0.01586 at ¢ = 128.0 and 0.01560 at ¢t = 144.0.

The speed of this crest increased with time, taking a value of 0.9091 at
t = 51.2, a value of 0.9221 at ¢+ = 64.0, and a value of 0.9417 at ¢t = 96.0.

For ¢ in excess of 96.0 the speed of the crest continued to increase, even
though the amplitude was now decreasing, taking the values 0.9527 and
0.9564 at ¢t = 128.0 and 144.0, respectively. At ¢t = 144.0, this wavelet
differed in shape from that of a solitary wave by 2.96.
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Peak no. 5. This peak first emerged near ¢ = 105.6 with an amplitude
of 0.01008. It seemed to have grown from zero. Its amplitude then
increased with time to a value of 0.01097 at ¢ = 144.0.

The initial speed of the crest was 0.9135 at 1 = 108.8. This rose steadily
to the value 0.9291 at ¢ = 144.0,

As the reader will easily discern from the foregoing description, it
would be optimistic to claim that the full picture of the evolution of the
initial data (73) under the action of (10b) is captured by our numerical
calculations. Fully realizing the need for some caution here, we never-
 theless feel the following summary is an accurate description of what
really happens to this initial data.

It appears that three solitary waves have emerged from this initial pro-
file, though the third solitary wave still had considerable evolution to
undergo before it could reasonably be said to have established its asymp-
totic form. The fourth and fifth waves were surely part of a ‘dispersive
tail’. They showed no signs of settling down to a uniform ainplitude.
More importantly their speeds were si gnificantly less than 1. By consulting
the formula (70), one determines that a solitary-wave solution of (10b)
propagates with a speed exceeding 1. Moreover, the other details of these
last two waves fit within the general structure observed for dispersive
tails arising in the integration of (10b) (see Bona et al. [1980]).

If one takes the view that this, and other like calculations, do point
to (10b) having the property that certain initial profiles resolve themselves
into a sequence of solitary waves and a dispersive tail, then a host of
questions present themselves. These questions will not be addressed here.
But it is worth pointing out that if indeed our surmise is correct, then
solutions of the two model equations corresponding to physically relevant
ipitial data may agree qualitatively over indefinitely large time scales.
This would be the case, for example, if by the time 1, = ¢~3/2, both solu-
tions had already sorted themselves into more or less independently
propagating solitary waves. For then, by Theorem 1, these solitary waves
must correspond to each other in number and be very close in amplitude.
The further evolution of these solutions will then be quite simple; an
observer far downstream would report of both, seeing like sequences of
solitary waves trailed by a small-amplitude dispersing disturbance.
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