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We consider solitary-wave solutions of model equations for long waves that feature a general form of linear dispersion.
Sufficient conditions for the non-linear stability of such solutions are derived. These conditions are shown to obtain for the
Korteweg—de Vries equation and certain of its generalizations such as the Benjamin-Ono equation and the intermediate

long-wave equation.

1. Introduction

Considered herein is a class of model equations
for the propagation of long waves in nonlinear,
dispersive media. These equations have the form

u,+u,+ufu,+Lu,=0 (1.1)
or
u,+u,+ufu,—Lu,=0, (1.2)

where x,¢ are real variables, subscripts denote
partial differentiation, p > 1 is an integer, and L
is an operator formally defined by

Lo(k) = a(k)d(k). (1.3)

Here the circumflex over a function denotes the
function’s Fourier transform, and the symbol a of

L will be restricted presently. The well known
Korteweg—de Vries equation,

u,+u, +uu, +u,, =0, (1.4)

which arose first in the study of small-amplitude,
long-wavelength, water waves [1] falls within the
category of models to be considered, but other
equations of the form (1.1) or (1.2) are also in
view. Examples that are specifically treated here
are the Benjamin—Ono equation (2, 3], which is of
type (1.1) with p=1 and a(k)=|k|; the inter-
mediate long-wave equation [4], also of type (1.1),
with p=1 and a(k)=kcoth(kH)—~ H™', where
H is a positive constant; and a generalization of
eq. (1.4) in which the nonlinear term uu, is re-
placed by uPu, where p>1. (Consideration is
also given to variants of the above equations which
are of type (1.2).) Many other instances of equa-
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tions of these types have been derived as models
for wave phenomena in various settings. As ex-
plained by Benjamin et al. [5], the value of the
parameter p appearing in the nonlinear terms of
eqs. (1.1) and (1.2) is related to nonlinear effects
suffered by the waves being modelled, while the
form of the symbol « is related to dispersive and,
possibly, dissipative effects.

An important aspect of equations of the form
(1.1) and (1.2) is their solitary-wave solutions. For
a given C> 0 a solitary wave of speed 14+ C is a
solution u. of (1.1) or (1.2) having the form
uc(x,t) = @c(x — (1 + C)t), where @c is typically
a smooth positive function having a unique
maximum, symmetric about its maximum, and
decaying monotonically to zero away from its
maximum. For example, the solitary-wave solu-
tions of (1.3) have the form

oc(y) = 3C sech? (CV%,2), {1.5)

as noted by Korteweg and de Vries [1], whilst for
the Benjamin-Ono equation

¢c(y) =4C/(1+ C%?), (1.6)

as determined by Benjamin [2]. For a broad class
of symbols « the existence of such similarity solu-
tions has been established [6-9]. These solitary
waves are interesting because they are known to
play a distinguished role in the large-time asymp-
totics of whole classes of solutions of certain equa-
tions of type (1.1) (see ref. [10] and the extensive
list of references given therein). The situation re-
garding equations of type (1.2) appears to be
similar to that obtaining for those of type (1.1), as
attested by various numerical experiments (cf. refs.
[11-13]). However, the beautiful analytical theory
pertaining to certain equations of the form given
in (1.1) has no known counterpart for equations of
type (1.2).

Laboratory and field observations suggest that
this special sort of plane wave of permanent form
generally comprises a very stable phenomenon (cf.
refs. [14-17]). It is our purpose here to examine

the question of stability of such travelling-wave
solutions when considered as solutions of the ini-
tial-value problem for (1.1) and (1.2). Sufficient
conditions will be presented that insure the stabil-
ity of solitary-wave solutions of (1.1) or (1.2) to
small perturbations in the waveform. These condi-
tions will be shown to be effective in a variety of
circumstances.

The results obtained here are an outgrowth of
the pioneering paper of Benjamin [18] (see also
refs. [19, 20]) in which the stability of the solutions
(1.5) of (1.4) was demonstrated. His result will
obtain as an easy corollary of our general crite-
rion, as will the recent theories of Bennett et al.
[21] pertaining to the solutions (1.6) of the
Benjamin—Ono equation and of Weinstein [22]
pertaining to solitary-wave solutions of (1.1) with
L= —9? and p<4.

The paper is organized as follows. In section 25
notation is introduced and certain mathematical
preliminaries are presented. Sufficient conditions
for the stability of a given solitary wave are de-
rived in section 3, whilst the examples to which
the theory has been applied are given in section 4.
The concluding section 5 sets forth a number of
open problems in this area.

2. The initial-value problem

In this portion of the paper notation is given
and a brief review provided of some aspects of the
initial-value problem for (1.1).

If X is a Banach space, its norm will be denoted
by ||+ || x, or in some cases by special abbreviations
introduced below. Similarly the inner product in a
Hilbert space H is written ( , ) g Forl<p<
®, L, is the (equivalence classes of) measurable
functions f: R— R which are pth power ab-
solutely integrable, with its usual norm

=/ "1 rax) ",

— o0
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and L is the class of essentially bounded func-
tions f: R — R with the norm

|f|, = essential supremum | f(x)|.
x€R

The norm of a function f in the Hilbert space L,
will be singled out and denoted simply by ||f|I.
For s > 0 the space H* is the linear subspace of L,
consisting of those functions f for which

I ={f "+ k) lzdk}m < oo,
(2.1)

If s<0, H* is the collection of tempered distri-
butions whose Fourier transforms are measurable
functions for which the above integral is finite. In
a natural way, H~* is the dual of H* under the
pairing

<f,U>s=f_+:fA(k)U(k)dk.

We let H® =, ., H’. The elements of H® are
infinitely differentiable functions all of whose de-
rivatives lie in L,.

The spaces L, (2<p <oo0) and H' (s> 0) are
related by the Sobolev Imbedding Theorem (see
e.g., ref. [23], p. 124). One consequence of this
theorem, which will be used later, is the inequality

[fl, =<4, fly 2 (2.2)

which holds for f in H'/? and 2 < p < oo, with 4,
independent of f.

For a detailed development of the theory of the
Sobolev spaces H’, the reader may consult refs.
[23-25].

If X is any Banach space and J a closed
interval in R, let C,(J; X) denote the bounded
continuous functions #: J— X. This is again a
Banach space with the norm

llullc, s, x) = sup () |l -
teJ

In case J is bounded, the subscript b for
“bounded” will be dropped. For T > 0 the symbol
C(0, T; X) wil be employed as an abbreviation for
(o, T]; X).

In the remainder of the paper, when Sobolev or
L, norms or inner products are taken of functions
of two variables x and ¢, they will always be
assumed to be taken with respect to the x variable
only.

If X and Y are Banach spaces, the space of
bounded linear operators from X to Y is denoted
B(X,Y) and its standard norm is || -|| . y. The set
of closed linear operators from X to Y is denoted
C(X,Y). These spaces will appear here only when
X=Y=L,or X=Y=L,XL,. When X=Y, we
abbreviate B(X, X) by B(X) and C(X, X) by
C(X). The norm in B(L,) is singled out and
written as |||}, ,.

Let u be a solution of (1.1) or (1.2). It will be
supposed that at some instant ¢, u resembles
closely a solitary-wave solution ¢ =g.. In this
circumstance interest will be focused on showing
that u resembles a solitary wave for all time. As
the theory presented here takes no note of whether
time runs forward or backward, it suffices to take
t,=0 and to show that u lies close to ¢ for all
t > 0. Attention is thus directed to the initial-value
problems

u,tu,+ufu,—Lu =0,

u(x,0) =¥ (x), @3

and

u,tu, +ufu +Lu=0,

24
u(x,0) =¢(x). 24)
The proposition in view is that, for either problem,
if y— ¢ is small in some suitable sense, then
u(-,t) — (- —(C+ 1)¢) is small, for all ¢ > 0.

As pointed out already in ref. [5] the last-stated
proposition is false without further qualification.
The bulk of the solution u that emanates from
may travel at a different speed than ¢, and conse-
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quently u(-, t) — (- ~(C+ 1)¢) will not be small
for all «. If X is a given Banach space of functions
defined on R, a pseudo-metric based on the norm
on X is defined as follows. For f and g in X, let

dx(f.8) = inL /() = g +2)

(In case X = H° for some s, d,(f, g) will also be
written as d,(f, g).) A correct version of the pre-
ceding proposition is stated as follows: for all
t>0, dy(u(-, 1), (- =(C+1)1)) is small pro-
vided it is small enough at ¢t =0.

In discussing the well-posedness of the initial-
value problems (2.3) and (2.4), we will use the
terminology of Kato [26]. In general, if X is a
Banach space, U an open subset of X, and f a
continuous mapping from U into another Banach
space Y containing X, then the initial-value prob-
lem

du/dt=f(u), u(0) =y, (2.5)
will be said to be locally well-posed in U if the
following two statements are true.

(i) For each y € U there exists a real number
T'> 0 and a unique function u € C(0, T; X) satis-
fying (2.5). (It follows that du/d¢ is a member of
C(O,T;Y) for each ¢ in [0, T].)

(i)) The map that assigns to the initial data ¢ in

X the solution u in C(0, T; X) guaranteed in (i) is
continuous,
If T can be taken arbitrarily large in (i) and (ii),
we say that problem (2.5) is globally well-posed in
U. For a large class of initial-value problems, local
well-posedness combined with the information that
solutions u are bounded in X on bounded time
intervals implies global well-posednes:.

Henceforth it will be assumed that the initial-
value problems (2.3) and (2.4) are locally well
posed in some H’-neighborhood of a given soli-
tary wave @ if s is greater than some fixed s, and
that solutions can be continued in time as long as
they remain bounded in H™, where m is another
index with sy > m > 0. Results of this nature are
known to hold at least under certain conditions on

the exponent p and the symbol a (cf. refs. [5, 27,
28)).

As a final notational point, the letters 4, 4;, 4,,
etc. will be used throughout to denote various
constants, and different occurrences of the same
letter will not necessarily represent the same con-
stant. The end of a proof will be marked with the
symbol M.

3. Analysis of perturbations of solitary waves

It will be assumed in this section that the sym-
bol a of L satisfies the inequalities

0<a(k)<A,(1+ |k>m), . (31)
for all kR, and
a(k) = A4,|k|*™, (3.2)

for all large values of k, where 4, and A, are
positive constants and m > 1/2. Adding precision
to our remarks in section 2, it is assumed that the
initial-value problems (2.3) and (2.4) are locally
well posed in an H*-neighborhood of a given
solitary wave, for all s> s, where So=m, and
that the local theory extends to arbitrary time
intervals in the presence of bounds on the
H™-norm of the solution. As the outcome of our
analysis is a demonstration that a solution starting
near to @ has a translation that remains near g in
H™ norm, over any time interval for which it
exists, the triangle inequality insures that such
solutions remain bounded in appropriate Sobolev
spaces. In consequence of this preview, we are
justified in making the stronger assumption that
(2.3) and (2.4) are globally well posed in an H*
neighborhood of ¢, and that this holds for any s
larger than the constant s,. The value of s, will be
left unspecified until the theory is applied to con-
crete classes of equations in section 4.

Define functionals ¥, ¥; and M by the for-
mulas

(D= [ "1,
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() = [TL) + L) ax,

M) =[] )

2 +2
S Er TS b
Then V, V;, and M are continuous maps from H"™
to R. To see this, notice that (3.1) implies that L is
a bounded linear operator from H® to H*~ 2™, for
any real s. In particular, L maps H" continu-
ously into H~", Therefore, the map defined by

= f_+:f(Lf)dx=<f, Lf,n

is continuous from H™ to R. For p=>0, the
estimate

‘f_wm(f””—g””)dx

<A[” 1= gl + 1) dx

- 1/2
<alf—gll [* (1 +1s)* " ax)
<ANf= gl (1f e+ 18l

follows from Holder’s inequality and (2.2). Taking
p =0, we deduce that V(f)=||f||? is continuous
on H™. 1t then follows that V,(f)=|f||*+
{f, Lf),, is continuous on H". Finally, using the
just preceding estimate for arbitrary p, the con-
tinuity of the map

1= [ 1ra(x) dx

is inferred, and therefrom the continuity of M is
assured.

The importance of the functionals V, V;, and M
is that they define invariants of the motion gener-
ated by (1.1) or (1.2).

Lemma 1. Suppose ¢ € H® where s> s, and let
u(x, 1) be the corresponding solution of (2.3).

Then for any ¢t > 0,

V(u(-,1))=V(y) and M(u(-,1)) =M(¢).

Similarly, if u solves (2.4), then for any ¢ > 0,
Vi(u(-,1)) =Vi(y) and M(u(-,t) =M(¢).

Proof. We may assume without loss of generality
that ¢ € H*®. The result for ¢ € H* follows from
the result for smooth ¢ by the continuity of V, V;,
and M as functionals on H° and the well-
posedness properties of problems (2.3) and (2.4).

If y € H® and u solves (2.3), then u and Lu
are infinitely differentiable functions of x and ¢,
all of whose derivatives lie in L,. Accordingly, the
following formal computations are rigorously
justified:

GO 2/_°o°°u(x, £, (x, £) dx

= —2/00 u(u, +ufu,— Lu,)dx

—2/00 ax(%u2+ p}_zu””— %uLu)dx

since L is symmetric and «# and Lu tend to zero
as x = + oo. Similarly, it appears that

d 0 up+1
-&M(u) = 2/_w(u,Lu - u,m)dx

0 up+1
= —2/_°°(Lu— —p+1)

X (u, + uPu,— Lu,)dx

ulu — +———7——cu?
% (p+1)(p+2)

u2p+2 2
. W +(Lu) dx
p

ptl
—2f_ww(u”uxLu + %Lux) dx.

The first integral on the right-hand side vanishes
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since # and Lu tend to zero as x — + oo, while
the second is seen to be zero after integration by
parts.

Next suppose that € H® and that u solves
(2.4) with initial data y. It follows that

d =]
3 Vi) = Zf_w(uu, +uLu,)dx

= —2/00 u(u, +uPu)dx
-0

p+2

—2/ ( p+2)dx=0.

To prove that M(u) is independent of ¢ in the
case where u solves (2.4), introduce the function

S

(Here (I+ L)™' denotes the Fourier multiplier
operator with symbol 1/[1 + a(k)].) Because u
and u”*! are in H®, w is also; moreover.

dw/0x=—(I+L) (u,+ulu)
=(I+L) "(u,+Lu,) = u,.
Hence the following calculation is decisive:
d o yrtt
a—t-M(u) = 2f_°°(uLu, - u‘T]) dx

up+1

=2f_w(uwa P+1)dx

p+l
=—2f qu+uu dx
‘p+

=2f°° Lw(w,+ufu,+Lw))
— 00

up+1
p+1

=f°°

+ (ux+u”ux+wa))dx

)
2ul™

wLw+(Lw)2+-—-—(p+1)(p %)

2p42
+—2—d
(p+ l)

+2f ( Lw + Lwu?u. )d

As before, the first integral on the right-hand side
integrates to zero, and the second vanishes after
an integration by parts. This establishes the lemma.

[

The main result of this section is now in view.
For the present, consideration is restricted to
equations of the type depicted in (1.1); the theory
for equations of type (1.2) is similar and will be
dealt with later.

Choose a fixed value of € >0, and let ¢ = Pc
be a solitary-wave solution of (1.1) with speed
1+ C. Thus ¢ satisfies the relation

Lo+ (C—-¢?)g =0. (3.3)
Define an operator &, by
Lof () = Lf(x) + [C = 9?(x)] £(x).

If, as will be assumed henceforth, ¢ € H', where
r>1/2, then a straightforward induction making
use of (3.3) and the fact that m > 0 in assumption
(3.1) shows that indeed ¢ € H®. This in turn
implies that &, is a self-adjoint, closed operator
on L, with domain H?". Notice that, according
to (3.3), &, has 0 as an eigenvalue, with corre-
sponding eigenfunction ¢/(x).

Theorem 1. Suppose that &, has the following
three properties:

(P,) the eigenvalue 0 of &, is simple;

(P,) the intersection of spec(.‘? } with the
negative real axis consists of a s1ng1e simple ei-
genvalue «; and

(Py) if Y, is any eigenfunction corresponding
to the eigenvalue a, the following inequality holds:

B\ (o.9a) \
(” Ial)(!lmll-wall) 2l (34)

where 8= inf{A spec(Z,): A>0}.

Under these hypotheses, ¢ is a stable solution of
(1.1) in the following sense. Given any ¢ > 0, there
exists a § > 0 such that if ¢ € H* and ||y — o,
<&, then the solution u of (2.3) satisfies d m(U @)
<eg, for all ¢> 0.
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Proof. Define

h(x,t)=u(x,t)—p(x+a(t)), (3.5)

where a(t) will be chosen presently. Whatever the
choice of a, one has

d,(u, ) <IA( )l - (3.6)

Hence if a(¢) can be chosen so that the right-hand
side of (3.6) is small for all ¢ > 0, the stability of ¢
stated in the theorem will be established.

In the previous work to which this study is a
direct successor [18, 19, 21], the crucial step was to
follow an idea of Boussinesq [29] and use the
functional

AM=M(u(-, 1)) - M(p)

as a Lyapunov function in the analysis of u. Since
M(u(-, 1)) does not depend on ¢, and since ¢ is
fixed, AM depends only on the initial data,
u(x,0) =y (x). In conjunction with the use of AM
as Lyapunov function, a side condition that plays
a considerable role in the analysis has been im-
posed in the previous theories, namely, that AV =
0, where

AV="v(u(-,1)) = V(9).

This slightly odd side condition is dispensed with
later in the proof by calling upon a simple prop-
erty of the solitary-wave solutions of the particular
equations that have been studied heretofore.

Here this latter step will be obviated by choos-
ing as the prospective Lyapunov function not A M,
but

A=AM+ CAV.

As both M and V are time independent when
evaluated on smooth solutions of (1.1), A =A(Y)
depends only on the choice of the initial data
of u.

It is useful to express A in terms of ¢ and A,
using (3.5) to eliminate u. By virtue of (3.3), it

appears that
+ 00
A=/ [RLh + (C - @?)h?] dx
"t oo
+f R(h,¢)dx, (3.7)

where

R(h, @)= mﬁ{(¢+h)p+z
—[@?* 2+ (p+2)p?*h
+3(p+2)(p+1)p?h?]}

(the argument of ¢ is x + a(¢) here and
throughout, unless explicitly noted to the con-
trary). From Taylor’s theorem, it follows that

|R(R, @)l <A|h|*(lp| + |r])" 7, (3.8)

where A4 is independent of A.

As will become apparent presently, finding a
suitable lower bound for A is the crux of our
analysis. This task would be very simple if the
function C — @? was positive. Unfortunately, it is
always the case that max  {¢?(x)} > (p +1)C, so
the second term in the first integrand on the
right-hand side of (3.7) is not everywhere positive.
(To see that the last assertion holds, integrate (3.3)
over R and use the fact that

[ “Lo(x)dx=a@¢(0)

+ 00
=a(o)f p(x)dx>0.
One then has that
+ o0 1
f_oo (C— mq)”(x))tp(x)dx <0,

from which the assertion follows since ¢ >0.)
Therefore, the quadratic form

f_+:[h(Lh) +(C-?)h?] dx
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is not positive definite, and obtaining a lower
bound on A may present difficulties. It will be
seen below that a successful estimate for A will
depend on a propitious choice for the function
a(t), and on the properties (P,)-(P;) of the oper-
ator .Z,.

Fix >0 and introduce temporarily the nota-
tion .Z, for the operator

Zuf (%) =Lf(x) + [C = 97 (x + a)] f(x),

so emphasizing the role of the as yet unspecified
parameter a =a(t). Formula (3.7) for A can be
rewritten in the form

+ 00, + o0
A =f m(Lh)dx+ [ “R(e, h)dx.
— o0 -0

Clearly properties (P,)-(P,), assumed to hold for
Z,» also hold for %, whatever be a.

Lemma 3. Suppose f€ H"” and a <R are such
that

(@) le(x+a)+f(x)l=lel,
(ii) f_+:(p’(x +a)f(x)dx=0.

Then there exist positive constants 4, and 4,
which are independent of f and g, and are such
that

[ (@) () ax
> 4115 = A, (IS 13, + 170, )-

Proof. By translating f, it may be assumed that
a=0, so that &, =% =%, say.
To begin, we have the easy estimate

(,sﬂf,f)=f_+wwl7(k)f(k) dk
+f+°°(C—qr>”)f2d)C
= A [Tk P dk - A 112

> A|lf1I5 — Al f11%. (3.9)

Now let ¥, denote an eigenfunction of % with
eigenvalue a. Take y, to be normalized so that
[|[¥,)i=1, and write
f(x) =p4/a+f1’ q)(x)=q¢a+(p1’ (310)
where p=(f,¢,) and ¢ = (9o, Y,) and, as before,
(+, ) denotes the L, inner product. Of course, q
and ¢, are independent of f and so |¢| and le4ll
are constants which are independent of f. As-
sumption (i) implies that

2(f, @) +IIf)>=0. (3.11)

. If the relations in (3.10) are substituted into (3.11),

and the result expanded using the identities

(¢a’ ‘Pa) =1 and (fl’ lI/m) = ((PD ‘Pa) = 05 there ap-
pears

2pg+2(f1, 1) +If11*=0.

Since g # 0, in consequence of (P,), it is inferred
that

_—ed A2
q 2q -

p

Squaring both sides of this equation and using
Schwarz’ inequality gives

PE<IAIPed 2 g + A(NF1P + 1 £1%)

=IAIP(leI/q* = 1) + AQIF1P + 1£114).
(3.12)

Now the spectral theorem is applied, taking into

account properties (P,) and (P,) of % and as-
sumption (ii) of the lemma, to obtain

(Zf, f) = ap®+ Bl fil|%. (3.13)
By (P;), there is an %, > 0 such that
=B~ (el +n.)(llol*/q*— 1) > 0.

Combining (3.12), (3.13) and the last relation leads
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to the inequality

(Zf, f) =mp* = (la| +0,) p* + Bl fill?
= 0%~ (la] + 1) (llel>/q> = DIl
+BILAIIZ = A5 (1F11° +11£14)
= P2+ nll Al = A (112 +1A114)
= A 12 =41 = 1A14), (3.14)

where 4, = min (7, 9,).
Now let # be any number such that 0 <8 <1,

multiply (3.9) by 8 and (3.14) by 1 — 6, and add
the resulting relations to come to

(L1, 1) = 40| 117, + [4,(1 - 0) — 48] 1111
—A;(L=0)(IAIP+171%)-
If @ is chosen small enough, the constant in the

square brackets on the right-hand side will be
positive. It is then concluded that

(Zf, 1) = A0)|f11%, = A;(1L = )N A2+ IFIP),

and since || f|| <||f|| ., this completes the proof of
the lemma. ™

Lemma 4. Let T>0 and suppose that u is a
solution of the initial-value problem (2.3) defined
at least on R X [0, T'). Define h and 4 as follows:

h(x,t)=u(x,t)—p(x+a(t)),
h(x,t)=h(x,t)+b(t)e(x+a(t)),

where a(t) and b(t) are real-valued functions also
defined at least for ¢ in the range [0, T').

Suppose that the following two statements hold
for all ¢ in [0, T'):

1) le(-+a(®) +h(-,0)l=llgll,
) /_+°°°°[<pf(x +a()h(x, )] dx =0.

Then there exist positive constants A, and A4,
(which depend on ¢ but are independent of a, b,

u, and y) such that

A=G(||Al,,) = y(6 (),

where

G(x)=A;x*—A,(x*+x7%3), (315)
v(x)=4,(x%+ x*).

Proof. As before, we have
+ +

A= ["(Lp)hdx+ [ "R(e, h)dx.
— o0 — o0

The second integral on the right-hand side can be
estimated using (3.8) and Sobolev’s theorem:

‘f_ (h)dx sAf

< A([|A13, +11R112F2).

(1R]+ |AP*2)dx

(3.16)

To estimate the first integral, write it in the form

f+°°h($,,h)dx

— o0

—f h(2,h)dx - 2b(t)/ “h(Zp)dx

bz(t)f “o(Lp)dx. (3.17)

Since h satisfies conditions (1) and (2), lemma 3
may be applied, with f(x)=h(x, t), to obtain

— A, (1IR3, + 1A112)-
(3.18)

+ o0 ~
[ h(Zh)ax = a2,
For any ¢ in [0, T'),

121, = Itk + bol,,

Z|All = 1B1 Il = 1121, — A1,
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and so (3.17) and (3.18) imply that

+ o0
[ Th(Zh)dx = ayn

— A, (A1, + NAl4, + 1] + |5]%)
—A(1b] 1]l + [B]2).

After an application of Young’s inequality, and
taking account of the fact that p is a positive
integer, this becomes

+ o0
| h(Zn)dxz A n2,

— o0

= A (I3, +RIEY + 1512+ 1B1%). (3.19)
This estimate combined with (3.16) proves the
lemma. B

The conclusion of the theorem will now be
established. Suppose € > 0 to be given. A search is
initiated for a § > 0 such thatif 0 <8 <§, y € H>,
and ||y — ¢[|,, <8, then d,,(u, p) <e, for all posi-
tive ¢z. The functions G and y appearing in the
conclusion of lemma 4 will be considered fixed
since they depend only on ¢ and ¢ is fixed. Let
8, >0 be such that the function G is strictly
increasing on [0, §,]. Now define

8, =min {&, 8, ¢lI>/2]l¢”ll Il /15}.

As previously noted, ¥ and M are continuous
functionals on H™. Therefore A tends to zero as
¥ — @||,, tends to zero. The continuous function
y defined in (3.15) also vanishes at zero. It follows
that a number 8 > 0 exists such that if 0 <& < 8,
then

(i) 8<8§,
(3.20)

(ii) if ||y — @l <8, then A +y(38/|l9])) < G(8,).

Suppose that 0 <8 <§, y € H®, and ||y — @l
< 4. Our aim is to apply lemma 4, and so we seek
to construct continuous functions a(¢) and b(¢)
satisfying the conditions (1) and (2). First define

the function F: [0, 0) X R - R by
+ o0
F(1,9) = [ “u(x,0)¢/(x+y)dx,

and search for a(t) as a solution of the equation

F(1, a(t)) = 0. (3.21)
For ¢ =0 this equation possesses a solution as the
following remarks demonstrate. Consider the con-
tinuously differentiable function

+ o0
P =] “[¥(x)-e(x+y)]*dx.
Quite generally, it appears that
lim p(y)=(1¥)1*+|lol*> ol
y—=teo

and because of (3.20) combined with the definition
of §,,

p(0) =¥ — @I <87 <92

Hence the function p must take its minimum at
some finite value of y, say at y = a,. Then p/(a,)
=0, and upon differentiating under the integral,
there appears F(0, a,) = 0.

Now define

(BE/31)(t, y)
K4 9) = GEa)(y)

and consider the initial-value problem

da/dt=K(1,a(1)), a(0)=a,. (3.22)
Clearly, if a(t) solves (3.22) on some interval
[0, T'), then F(t, a(t))=0 on that interval.

To determine that (3.22) is solvable, the regular-
ity of K is investigated. It follows from the
smoothness of ¢ and the assumption that (2.3) is
well posed in the sense prescribed earlier that both
the numerator and denominator appearing in the
definition of K are continuously differentiable on
[0, c0) X R. Moreover, the denominator has a lower
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bound, namely
oF + 00 '
= T e et ) dn
+ o0 2
—f Tlexe+y)Pdx

> 2= { " Tux,0

" 12
o) dx) 197l

Hence X is defined and continuously differentia-
" ble on the set

II<P’II2}
o™il
In particular, the definition of §, insures that
(0, a,y) € 2, and so the standard existence theory
for ordinary differential equations implies that
(3.22) has a unique C!-solution defined at least on
some interval [0, T'), where T > 0.

Let [0, T;) denote the maximal interval to which

this solution may be extended (of course T, may
be + o0). For t €0, T;)), define

0= {(t,y): lu(-, 1) —@(- +p)ll <

h(x,t)=u(x,t)—o(x+a(t)),
as before. Then it is established that
0=F(t,a(t))

= f+°°h(x, )¢ (x+a(t))dx,
for all ¢ in [0, T;). Because of the way a(r) is
determined, it is a continuously differentiable

function of ¢ in its domain of definition.
In order to define b(), solve the equation

lu(-, 1) + b (- +a(e))lI*=llgl? (3.23)
for b. The solutions are
12— llell? 172
b=b(1)= —p(1) £ | pi() - 12—l
|
(3.24)

where

p(t)=(u(-, 1), (- +a(1)))/lloll*.

It needs to be ascertained that the function b is
well defined and continuous. To this end, let T, =
sup{T: T<T, and |k|| <||¢||/2 on {0, T)}. (The
assumption that & <||g||/15 implies that the
parameter T, is positive.) Since u(x,t)=o¢(x+
a(t)) + h(x, t), we have

(1) < L2+ (AC. ). 9(+ a(2))

flpll®
s MO, (3.25)
[E4]
for ¢ in [0, T}), whereas for all ¢,
(s NP = el _ Nll* = llel)
llell® llll?
=l G+ llel)
- llell”
L OQlell+8) _ 3 1
T el T llell TS
(3.26)

The quantity under the radical in (3.24) is thus
seen to be positive, and consequently, for ¢ in
[0, T7), b(t) is a well-defined real number if the
positive square root is understood throughout.
From (3.25) and (3.26) it follows readily that

. 2\l
[ i A

()l < 2p(O)liell el

(3.27)

Moreover b(t) is continuous since a(t) is continu-
ous.

With the continuous functions a(¢) and b(?) in
hand on [0, T;), the function h is defined as in
lemma 4. Then plainly, from the way b(¢) is
determined,

(- +a(t)) +h(-, )l =llgl.
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In addition, for 0 <t < Tj,
f_+°°h~(x,t)q)’(x+a(t))dx
=/+°°h(x,t)q>'(x+a(t))dx
—w
+b(:)j_+:<p(x).pf(x)dx=o.

It therefore follows from lemma 4 and (3.27) that

A=G(l\All,) = v(b(e))
> G(||All,,) — v(38/llell),

and hence, by (3.20),

G(lIkllm) < G(8y). (3.28)

Since G is increasing on [0, 8,], and ||A|,, is a
continuous function of ¢+ whose value at =0 is
less than §,, (3.28) establishes that, for 0 <t < T,
A1l < 85 (3.29)

This immediately implies that T, = T, = co. For
if T)y<ow and T,<T,, then |h(x,T))|, <9,
< |loll/15 contradicts the definition of 7;. On the
other hand, if T; =T;< oo, then from (3.29) it
follows that the closure of {(¢, a()): 0 <t < Ty}
is contained in £. Hence (3.22) is solvable on
[0, T, + n) for some 7 > 0, and the definition of T,
is contradicted. Therefore the only possibility is
T,=T,=co.

Thus (3.29) is seen to hold for all ¢> 0. Since
8, <eand d,,(u, ) <||h||,,, the proof of the theo-
rem is now completed for the case ¢ € H™.

It remains to treat the case of general € H*,
For a given ¢ > 0, define § as above, and suppose
Y € H* satisfies ||y — ¢||,,<8/2. Let {{,} be a
sequence of functions in H* such that {|y, — 9|,
— 0 as n— oo, and ||y, — ¢|f,, <6 for all n. Our
well-posedness assumptions for problem (2.3) im-
ply that the solution u(x, t) of (2.3), with initial
data {(x), exists and satisfies

nli—?:o”un(" t) - u(.’ t)“-90= 0

for any fixed value of 1. It follows that d,,(u, ¢)
<e¢, and the proof of the theorem is thus com-
plete. &

In the applications to be considered in the next
section, conditions (P,), (P,), and (P;) will be
verified directly for the particular equations under
consideration. However, it is of interest to search
for general classes of equations for which these
conditions may reasonably be expected to hold.
The following two propositions summarize some
results in this direction.

Proposition 1. The spectrum of %, consists of the

- interval [C, c0) together with a finite number of

eigenvalues.

Proof. This proposition follows easily from the
spectral theory of closed operators as presented in
ref. [30]. First, note that the essential spectrum of
the operator L+ C is the interval [C, c0), while
the operator %, is a perturbation of L+ C by a
relatively compact operator (the verification of
these facts is similar to that given in ref. [30],
section IV.5.3, for the case where L is the Lapla-
cian). Therefore, by theorem IV.5.35 of ref [30],
the essential spectrum of %, is also [C, ). It
then follows from theorem IV.5.17 of ref. [30] that
the dimensions of the nullspace and deficiency of
&, — AI are independent of A if A &[C, o0), with
the possible exception of a set of isolated points
{A.}. Moreover, since %, is self-adjoint, theorem
V.3.16 of ref. [30] implies that null(&, —AI)=
def(Z,—AI)=0 for A& {X,}U[C, ). This
shows that the A, are isolated eigenvalues of Z,

To show that the set of all A, is finite, it suffices
to show that the spectrum of Z, is bounded
below. In fact, it will now be shown that if K=
(I9l)? + C, then spec(Z,) does not intersect the
interval (— o0, — K). To see this, let A < — K, and
consider £, —AI=(L—AI)+(C— ¢P). Since
L —AI has symbol (a(k)—A), and A <0, it ap-
pears that L — AT is invertible, as an operator on
L,, and that

1

L 1
||(L_>‘I) 2,2 = sup a(k)—}\‘ A"

keR
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As mentioned in section 3, the symbol 12,5
denotes the operator norm in the algebra of
bounded linear operators on L,. On the other
hand, one has that

1
C—@?, =K< A} = ————r—,
" ¢ "2,2 [A] ||(L—->\I)_1||2.2
Hence, the Neumann series for the inverse of
(L—=AI)+(C—9@?) converges, so that (&, -
AI)~! exists and is bounded. This shows that
Ag spec(.%,), and completes the proof of the
proposition. B

For any p>0, define R,=(L+p)~!. Notice
that R, is a Fourier multiplier operator with
symbol 1/(p+ a(k)). From (3.2) it follows that
1/(p+ a(k)) € L,, so that there s a well-defined
function K,(x) € L, satisfying K )k)=1/(n+
a(k)). It may be easily verified that, for any
fekL,,

R,/ (x)= [ "Ky(x=)f(5)dy,

(Notice that the existence of the integral is
guaranteed by Holder’s Inequality.)

Proposition 2. Suppose that for p> 0 sufficiently
large, one has K, > 0 for all x € R. Then the least
eigenvalue a of &, is a simple eigenvalue, and
any eigenfunction y(x) corresponding to «
satisfies either Y(x)>0 ae. or y(x)<0 ae.
(Hence part of (P,) is satisfied in this case, and the
quantity on the left-hand side of the inequality in
(P;) is at least non-zero.)

Proof. We first establish the following lemma.

Lemma 5. There exists g, > 0 such that the oper-
ator T'=(%,+p,)"! exists, is bounded on L,,
and has the property that if f(x)€ L? and f(x)
=0 for all xR, and f is not zero a.., then
Tf(x)> 0 for a.e. xER.

Proof of lemma 5. Let v >0 be chosen such that

v+ @? — C> 0. Then the equation

f=(Z,+u)g (3.30)

may be rewritten in the form
(I-M)g=Kf,

where Mg=R,,(v+¢? - C)g and Kf=
R,y f If p=p, is chosen sufficiently large, then
| M]),,<1, and so the solution g= Tf of (3.30)
exists and is given by

/= ¥ MK,

n=0

where the series converges in L, norm. From the
definitions of M and K, one sees that for any n,
the operator M"K is an integral operator with
strictly positive kernel. Therefore, if f(x) > 0, each
term of the series must be strictly positive at every
x € R. Since convergence of a sequence of func-
tions in L, implies pointwise convergence of some
subsequence almost everywhere, this establishes
the lemma. @

Proof of proposition 2. Let u, and T be as defined
in lemma 5. Then spec(T) is the image of
spec(%,) under the transformation A — (A +
p1) "L Denote the greatest eigenvalue of T by Ay,
and let ¢ be an eigenfunction corresponding to
Ao From the spectral theorem for bounded oper-
ators on L,, one has, for all p&€ L, such that

lell =¥l
(TY,¢) = (Tp, p).

But, from lemma 5, one sees that (T(|¢|), [¢|) >
(TY, ¥), and it therefore follows that

(T(1¥D), 191) =(Ty, ¢).

Now let Y™ and Y~ be the positive and nega-
tive parts of y, so that || =y + ¢~ and y =y*
— ¢ . Then from (3.31) one obtains

(3.31)

(Ty*,y7) =0. (3.32)
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We claim that this implies that one of ¢* or ~
must vanish almost everywhere. Suppose the con-
trary. Then y~(x) > 0 for all x in a set of positive
measure E, while TY*(x) >0 for a.e. x €R, by
lemma 5. In particular, there exists ¢ > 0 such that
Ty*(x)>e for all x in a set of positive measure
in E. But this contradicts (3.32), and the claim is
thus established. It follows that any eigenfunction
¥ of T corresponding to A satisfies either y(x) >
0 a.e. or Y(x) <0 a.e. But these eigenfunctions are
exactly the eigenfunctions of %, corresponding to
the least eigenvalue a.

It remains to show that « is simple, and for this
purpose it suffices to show that if y, and ¢, are
any two eigenfunctions corresponding to «, then
(Y1, ¥,) # 0. Indeed, the result of the preceding
paragraph shows that

(‘Pl’ ‘P2) = /::‘h‘h dx
n if::l"’l(x)"’z(xﬂ dx,

whereas |{,(x)y,(x)| >0 for a.e. x < R. There-
fore, (¢4, ¢,)#0. 8

In the sequel, it will often be convenient to note
that the condition (P;) in theorem 1 may be re-
placed by another condition, which is slightly
stronger, but which has the advantage of being
simpler to verify. For easy reference, this fact is
stated below in the form of a separate theorem.

Theorem 2. In theorem 1, the condition (P;) may
be replaced by the following condition:

®) [ o))" ax> 222 (ol - )

+ o0
x [ “lo(x)}*dx.
— 00
Proof. It is enough to show that the conditions

(P,), (P,), and (Py) together imply (P,). To see this,
note first that an integration of (3.3) yields

(pp
Lo+ (C_p_-F_T)(p_O'

Hence
(Z2.0)=(Lo+(C-¢?)g, o)
= ( —+p1 q)p+1, (p)

= + 00
=71 Te(0))7 .

It therefore follows from (P}) that

+ 00
(Z9.9) < (B~ la) [ “[o(x)]*dx,
and hence that

Bllell2 - (Zw,0)
B+ |al

lell?|al
B+ lal

(3.33)

On the other hand, properties (P,) and (P,),
together with the spectral theorem, imply that

(&, (@~ jta), (9= jta))
> B(((p _jll’a)s (‘P —j"‘a)),

where ¢, denotes an eigenfunction for the ei-
genvalue a (with ||y, || = 1), and j denotes (¢, ¥,).
Expanding the inner products in (3.34) and sim-
plifying yields

(3.34)

(L0, 9) — %> B(llol2—72),

and hence

L Blel* = (Z,9.9)
4 B+ ol

(3.35)

From (3.33) and (3.35) it follows that

2_ 2o lelPlel _ el Pival®
((p"l’a) =]°> B+[‘TI - 1+(B/|“[),

and this is (P;). ®

Whereas the theory detailed above for eq. (1.1)
depended essentially on the existence of the in-
variant functionals ¥ and M, a similar theory may
be constructed for eqs. (1.2) using the invariant
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functionals ¥} and M.

Suppose that D>0 and ¢ =, is a solitary-
wave solution of (1.2) with speed 1 + D. It follows
that

(1+D)L($) +[D-(§)"](§) =0,
and therefore the operator .2’71-0 defined by

Zof (x)=(1+ D) Lf(x) + [D~ ()" (x)] £(x)
has 0 as an eigenvalue, with eigenfunction ¢'.

Theorem 3. Suppose that conditions (P,), (B,),
and (P;) of theorem 1 hold with ¢ replaced by ¢
and &, by Z},. Then ¢ is a stable solution of
(1.2) (in the sense of theorem 1). The same conclu-
sion holds if (P,) is replaced by (Py).

Proof. To prove theorem 3, one notes that if

AM =M(u(-,1)) - M($),
AV, =Vi(u(-, 1)) - V(§),

then

AM + DAV, = f+w.?7¢,h(x)~h(x)dx

+f_+°°R(h,q”a)dx, (3.36)

where the expression denoted by R(4, ¢) may be
estimated as in (3.8). From (3.36), the proof then
proceeds exactly as does the proof of theorem 1. m

In fact, any application of theorem 1 to prove
the stability of a solitary-wave solution of (1.1)
automatically results in a proof of stability for a
solitary-wave solution of (1.2). It is easily seen
that the solitary-wave solutions ¢, of (1.2) are
related to the solitary-wave solutions ¢ of (1.1)
by the identity

1 1/p
‘T’C/a—C)(g)?(ﬁ) vc(£), §€R.

Moreover, for D= C/(1 — C), one has
Zo(f) =1+ D)%, (f).

Since properties (P,)-(P,) and (P;) are preserved
if the operator in question is transformed by scalar
multiplication, it follows that these properties hold
for .?7% if and only if they hold for %, .

4. Stability results for some model equations

The theory of the preceding sections will now
be applied to various model equations for
long-wave phenomena. These include, firstly, the
(generalized) Korteweg—de Vries (KdV) equation
u+u,+ufu,+u, =0, p=x1, (4.1)
whose solitary-wave solutions are given by u(x, ¢)
=q@P “(x— (1 + C)t), where

o7 (y)
=[3(p +1)(p +2)Csech? (4pVC »)]”,

and C is any positive real number. Also treated
will be the Benjamin—Ono (BO) equation

u,+u,+uu, —(Hu),, =0, (4.2)

where 5# denotes the Hilbert transform, defined
as a singular integral operator by

wr(e) =L 710,

or as a Fourier multiplier operator by (3?7 k)=
i(sign k)f(k). The solitary-wave solutions (dis-
covered by Benjamin [2]) of this equation are
given by ¢S(x — (1 + C)t), where C is a positive
constant and

4C

G __4c
(poo(y) C2y2+1'

Finally, we will consider the Intermediate Long
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Wave (ILW) equation

u,+u,+uu,— (Lyu), =0, (4.3)

where H denotes a positive parameter, and Ly, is
the Fourier multiplier operator defined by

(Lau)(k) = my(K)a(k),

my(k)=kcoth (kH) - ;11—

Joseph [31] found that (4.3) has tpe solitary-wave
solutions u(x, t)=¢$5(x — (1 + C)t), where the
functional form of ¢% is

C“
. C*sinh? (ay) °
16a*

o5(y) =
cosh? (ay)

and the wave speed 1+ C and the parameter a
are given as functions of C and H by

atan(aH) = C/4,
C=(1/H) - (4a/C) + (C/4). (4.4)

To emphasize the similarities between the above
equations, and to simplify notation, the quantities
—u,, and (s u), will be denoted below by Lyu
and L_u, respectively. Therefore the KdV equa-
tion (in the case p = 1) may be written as

u+u,+uu,— (Lou), =0, (4.5)

where (Lou)(k) = k2i(k), and the BO equation
becomes

u,+u,+uu,— (L u), =0, (4.6)

where (L_u)(k) = |k|a(k). Also, the notation ¢S
will be used for the solitary-wave solutions of
(4.5), as a substitute for the notation ¢ € defined
earlier. Thus ¢$(y) = 3C sech? [1/C y].

The operators associated by theorem 1 with the
solitary waves @5, ¢§ and ¢ (0<C< 0,0 <H
<o) will be denoted by Zf, £S5, and LS

respectively, where

Lf=Lof+(C~9§)f,
Zif = Luf +(C-9§),
LS =Lof+(C-oS)f.

It will be convenient in what follows to take
note of various similarity relations between the
solitary waves under discussion and their associ-
ated operators. For any real number 6 # 0, define
the dilation operator T, by (7,1 )(x) = f(8x). Then
the following identities are easily verified (for any
Co, C;>0):

Lo =8(TaLETR),
oo = 0(T 5os),
L5 =0(T,£51;),

(pocoo = 0(T0(po€)l)9

(4.7)

where 6 = C,/C,. Moreover, if Cy, C;, Hy, H; >0
and CyH,= C,H,, then, defining 6=C,/C, =
H,/H,, one obtains the formulas

25 =0(T,29T51),

4.8
9% =0(T9%,). =
Lemma 6. Suppose C,,C; > 0. Then any of the
properties (P,), (P,), (P;), or (P}) holds for £ o
(resp. £.S0) if and only if it holds for Z& (resp.
L), Also, if Hy, H; >0 and CyH, = C,H,, then
any of the above properties holds for ,?,foo if and
only if it holds for £,

Proof. 1t follows from (4.7) that spec(Z o) =
{OX: X € spec(LL1)}; and also that ¢ is an ei-
genfunction of £ with eigenvalue A, if and
only if T gy is an eigenfunction of Z° with
eigenvalue 6A. Clearly properties (P,), (B,), (P,),
and (P{) are preserved if the spectrum and ei-
genfunctions are transformed in this way. The
same argument applies to the operators £< and
Z5. m
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The stability of the solitary-wave solutions of
the KdV and BO equations has already been
proved by Benjamin [18], Bona [19], and Bennett
et al. [21]. Their proofs were essentially based on
spectral analyses of the operators £ and £f.
The objective of this section is, firstly, to recast
these results in the framework of the theory of the
preceding section, and, secondly, to use these re-
sults, together with a perturbation argument, to
establish the stability of certain of the solitary
waves of the ILW equation.

Theorem 4. Let C > 0 be given.

(a) Given any &> 0, there exists a § >0 such
that if ¢y € H? and ||y — ¢§||; <8, then the solu-
tion u(x,t) of (4.5) with initial value u(x,0)=
Y(x) satisfies d,;(u, ¢S) <e for all £ > 0.

(b) Given any &> 0, there exists a § >0 such
that if y€ H’, 522, and ||y — ¢{|l; , <, then
the solution u(x,?) of (4.6) with initial data
u(x,0)=y(x) satisfies d, ,(u,¢S)<e for all
t=0.

Proof. The well-posedness of the initial-value
problems for (4.5) and (4.6) in H®, s > 2, may be
found in refs. [28, 32]. By theorem 3 and lemma 6,
it is enough to show that £ and £ each
satisfy (P,), (P,), and (Pj) for some particular
value of C>0. For convenience, consider the
particular operators

12
F=Ly+ (4 P IIaY ) )

1 -

e+ (1- ).

The eigenvalue problem for the ordinary differen-
tial operator & is classical (see, e.g., ref. [33)).
The spectrum of %, consists of the continuous
part [4,00), together with simple eigenvalues at
A= -5, A=0, and A= 3. Hence properties (P,)
and (P,) are satisfied, and (Py) takes the form

f_+:[‘P3(x)]3 dx> 4f_+:[<p3(x)]2 dx.

But elementary integrations show that
+

[ T leb(0)]  dx=1728- 4,
— oo

[ a0 dx =144 -4,

so that the inequality is valid.

A complete spectral analysis of the operator £
was carried out in ref. [21]. There, it was proved
that spec(#.) consists of the continuous part
[1,0) together with simple eigenvalues at A=
1(=vV5 -1), A=0, and A=1(/5 —1). Hence
(P,) and (P,) are satisfied, and (P{) becomes

[l dxz2f gl ()] dx.
— o0 — o0
Again, elementary computations show that
/Ho[tp},o(x)]S dx =24,
-

+
| o] dx=s8a,
and thus (P{) is verified. ®

Remark. When combined with theorem 3, the
proof of theorem 4 shows that the solitary-wave
solutions of the equations

u,tu, +uu,—u 0

xxt

and
u,+u,+uu, — (Wu)x,=0
are stable.

An examination of the symbols of the operators
Ly, Ly, and L reveals a close relationship be-
tween the ILW equation and the two equations
discussed in the preceding theorem. When H is
near 0, the symbol my(k) of L, approximates
that of L, (at least for small values of k) while
m (k) tends pointwise to the symbol of L as
H — oco. This indicates that the ILW equation
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interpolates between the KAV and BO equations
on the interval 0 < H < o, approximating one or
the other equation near the endpoints of the inter-
val. (This relationship is also suggested by the
nature of the physical phenomena which the equa-
tions are intended to model, see ref. [4].) Hence,
one might expect that an analogue of theorem 4
holds for the ILW equation.

Such a result would follow from theorem 2 if
the properties (P,), (P,), and (P}) were verified for
the operators £ (0<C< 0,0<H < ). Un-
fortunately, a spectral analysis of these operators
is not available, and at present, the question of
whether these properties are satisified for all val-
ues of C> 0 and H > 0 remains open. In theorem
5, a partial result will be obtained, namely, that
£S5 satisfies (P)), (P,), and (P;) when CH is
sufficiently near 0 (resp. o), by virtue of being a
small perturbation of the operator £ /? (resp.
LEM,

Before proving this result, we state some of the
facts which we will need from perturbation theory
(see ref. [30] for details).

Give L, X L, the Hilbert space norm defined by
I/, @l=IFI?+11gl?)"% and for any closed
operator T on L? with domain D(T), define
G(T)={(f,8)€ Ly X Ly: f€D(T) and T(f)=
g}. Then a metric 6 on C(L,), the space of closed
operators on L,, may be defined as follows: for
any S, T C(Ly),

g(S, T) . ||Ps“ PT”B(LZXL,_),

where Pg and P are the orthogonal projections
on G(S) and G(T), and || || pz,xz,) denotes the
operator norm on the space of bounded operators
on L,XL,.

Proposition 3. Let S, T € C(L,), and suppose A is
a bounded operator on L, with operator norm
||A||2,2. Then

8(T+4,T) <|idll,,,,
B(S+A4,T+4)<2(1+413,)8(s,T).

If, in addition, S and T are invertible, then
§(s,T)=8(s1,TY).

Proposition 4. Let T € C(L,) and let U denote an
open subset of the complex plane whose boundary
is a smooth contour I'. Suppose that (spec(7T')) N
I' =4 and (spec(T)) N U consists of a finite num-
ber of eigenvalues of T, each with finite (alge-
braic) multiplicity. Then there exists § >0 such
that if S & C(L,) and &(S, T) <34, then
(Spec(S)) N U consists of a finite number of ei-
genvalues of finite multiplicity, the sum of their
multiplicities being equal to the sum of the multi-

» plicities of the eigenvalues of T in U.

In particular, suppose (spec(T')) N U consists of
a single, simple eigenvalue p. If {S,} is a sequence
m C(L,) such that S(S,,, T)—0 as n— oo, then
for n large, (spec(S,))N U consists of a single
simple eigenvalue p,, and p, > p as n — co.

The well-posedness properties of eq. (4.3), which
are necessary for the proof of the next theorem,
have been established in ref. [28].

Theorem 5. There exist constants 7, > 0 and 7, >
0 such that if 0 < CH <, or 3, < CH < o0, then
@ is a stable solution of (4.3). That is, given any
¢ > 0, there exists § >0 such that if y € H% and
¥ — @5l 2 <8, and u(x,t) is the solution of
(4.3) with initial data wu(x,0) =4y(x), then
dy ;(u, 9f;) <e for all 1> 0.

Proof. By theorem 3 and lemma 6, it suffices to
show that if H is sufficiently small or sufficiently
large, then the operator .£§ satisfies (P,), (P,),
and (P}) in the case C=4. In the remainder of
this proof, the value of C will be fixed at 4, and
the superscripts will be dropped from £$ and
@5, so that &, and @, are understood to mean
& and ¢} Also, %, and g, will be used to
denote £!* and ¢/, while &, and ¢, will
denote £ and ¢l

Lemma 7. For H >0, define y=vy(H)= viH/3.
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Then
(a) lLim @y(y)=9,(y), uniformlyforyeR,
(b) lim §(2,, £,)=0,

H—- o0
(c) lim T94(y)=go(y), uniformly for y € R,
(d) }Iiinoé (%u. T7%,T,) = 0.

Proof of lemma 7. For y €[0, c0), define g(y) to
be the unique number in {0, 7 /2) such that

g(y)tan(g(y))=y.

Then, in the present case where C = 4, the defini-
tions of a and C in (4.4) may be rewritten as

H
a=a(m) = &H)
C=C~(H)=l— 241

t

From L’Hopital’s rule one obtains

2
lim l(1— : (y))=%
y—0 y y—0

from which it follows that
li H) = oo, lim C(H) = 4.
Hlinoa( ) 00 - ( ) 3

Also, it is clear that

Hninwa(H)=o, I}Enwé(H)=l.
Since
4
ou(y)= ) ;
cosh? (ay) + _—smhagay)
P(y) =

1+y2’

part (a) of the lemma follows immediately.

On the other hand, since

4

Ty‘PH()’) .

sinh’ (ayy)
cosh? (ayy) + T

()= ——,
cosh® (y/v3)
part (c) of the Lemma follows from the fact that

i . g(H) 1
1 =1l =—,
Hl—n?oay HEIO VH\/§ \/5

For the proof of part (b), first write &, =L, +
My and &, =L+ M, where M,f(x)=[C -
ea(O)f(x) and M, f(x) = [1 ~ go(X)If(x).
Next, note that Ly—L_ and My—M_ are
bounded operators on L,, with operator norms
tending to O as H — oo. In fact, one has, for
fG L25

(L= LYF () = [ (k) = 151] FK),
so that

WLi = Lllz,a = Img (k) = 1k| |4

= | 3 (KH| - (k) coth (k) + 1) ,
1

= FlPlew>

where p(k) = |k| — kcoth(k) + 1. Therefore
lim ||L,y— L = 1 H=0.

H_{nw” H wll2,2 H_I}lw (lle)/
Also, since
1My = Miflop < |C= 1] + |9~ Pl o
it follows from part (a) that

lim || My, —M,_],,=0.
H— o0

Finally, §(.%,, Z,) may be estimated by means
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of proposition 4 as follows:

§( Ly, 2.)=8(Ly+M,, L, +M,)
<C(+ ||MH||2,2)
X8(Ly, L, + (M, — My))
< C(1+(1Myll55)
X[8(Ly, L) +8(Ly, Lo + (M, — M,))]
< C(1+(|Myll,,,)
XLy = Logliz,a + 1My, = Myl 5]
Since || M|, , remains bounded as H — oo, this
completes the proof of part (b).
To prove part (d), write #y=L,+ M, as

above, and let T, '¥%,T =L + M, where L=
T, 'L,T, = y°L, and

(M,f)(x) = (4 - T 90T ) £(x)
= 3/(x) = (T, %90)(x) - /(x).
Next, it will be shown that

’liiLnO”MH_My”LZ:O (4.9)
and

. - -1
Jm (74 L) = (14 L,) a2 =0, (410)

where I is the identity operator on L,. The asser-
tion (4.9) follows immediately from part (¢) and
the estimate

1My — M|, < |C(H) =41 + | T, 90— 9] -

To prove (4.10), notice that (/+ L) !~ (I+
LY)‘1 is a Fourier multiplier operator with symbol

1 1
1+31Hk? 1+kcothkH—-H '’

o(k)=

Introducing the notation y = Hk and B(y)=

(ycoth(y) = 1)/y?, one has
I+ Lg) ™ = (I +L,) Iz = saplo (k)
[

sup y? 38(y)-1
yer|3H+y? 1+ H y%B(y)

138(y) - 1
S R ITH YRy

(4.11)

Now, from the definition of B(y), it is easily seen
that lim, ,,(38(y)—1)=0, that y?8(y) is an
increasing function of y, and that there exists
# < oo such that 0 < 8(y) < p for all real numbers
y. Suppose that & > 0 is given, and choose 8 = §(¢)
>0 so that |38(y)—1]| <e for |y| < 8. Then for
arbitrary H > 0, one has

wup 1B 1]

LA T i 412
wi<s 1+HYB(y) ) (412)

Choose H, so small that

3p+1

— < forall > 8.
1+ Ho 9280y e forall |y| =6

Then, for 0 < H < Hy(e),

sup B =1
wi=s LHH YB(y)

Combined with (4.12), this shows that the quanti-
ties in (4.11) are less than ¢ when H < H,(¢), thus
establishing the validity of (4.10).
Finally, using proposition 3, the following
estimate is obtained:
§( Ly, TS T,)
=8(Ly+ My, L+ M,)
<C(1+ ”MHHZ,Z)
X8(Ly, L, + (M, - My))
< C(L+(1Myl5,,)
X[8(Ly, L,)+8(L,, L,+ (M, — My))]
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< C(1+ | Mylly.2)
X [48(Ly+1, L, +1) +||M,— Mp|,,]

= C(1+[1Myllo.2) [48((Lsr+ 1) 7 (L, + 1))
1M, ~ Myl 5]

Combined with (4.9) and (4.10), this completes the
proof of (d), and lemma 7 is now established. &

As was seen in the proof of theorem 4, the
operators %, and %, satisfy properties (P,),
(P,), and (P;). Denote the negative eigenvalue of
%y (tesp. £, ) by a, (resp. a,), and let the real
number defined in (P;) for %, (tesp. &, ) be
denoted by B, (resp. B,). Also, choose K < oo
such that

K> max (|, |a),

K> sup (ogl.+ C(H))

0<H<oo

(the right-hand side of the last inequality is al-
ready known to be finite from the proof of lemma
7). As was seen in the proof of proposition 1 of
the preceding section, it is a consequence of this
choice of K that

(spec(Ly)) N (— o0, ~K] =8, forall H>O0.
(4.13)

For any e such that 0 <e <8, /2, define I, to
be the circle in the complex plane which is centered
on the real axis and which intersects the real axis
at z=f,—eand z= - K. If [, is the open disc
bounded by Ii,, then (spec(Z,)) N Ug =
{@,,0}. Also choose circular contours I'; and I,
contained in U, such that if U, and U, are the
open discs bounded by I} and T,, then
(spec(ZL)) N U ={a,)}, and (spec(Z ) N T,
= {0}.

From lemma 7 and proposition 4, it follows that
there exists H,>0 such that if H> H,, then
(spec (%)) N U, and (spec (&) N U, each con-

sist of a single, simple eigenvalue. Since 0 is an
eigenvalue of %, (with eigenfunction ¢f}), we
must then have (spec(Zy)) N U, = {0}, which
shows that 0 is a simple eigenvalue of %, and
hence (P,) is satisfied. Similarly, an application of
lemma 7 and proposition 4 to I\, shows that
there exists H,>0 such that if H> H_, then
(spec (L)) N 17(8) consists of a finite set of eigen-
values of total multiplicity 2. Therefore, if H >
max (H,, H,) it may be concluded that

(spec (L)) N U, = { ay,0},

where ay is the simple eigenvalue in (spec(.Zy))
N U,. Taken together with (4.13), this shows that
(P,) is satisfied for large H.

Next, it follows from proposition 4 that
limy ,  ag=a,. Also, since e may be taken arbi-
trarily small in the argument of the preceding
paragraph, it has actually been shown that if

By =inf { A € spec(L;): A+ ay and A # 0},

then lim, , By = B,. Finally, from the
dominated convergence theorem and lemma 7 it
follows that, as H — oo,

S lou() ax = [ e (0] e,
for any r > 1.

Therefore, it appears that the inequality

S lon(0) x> 2jagl - £)

><f_+:[<r>y(x)]3dx

is true in the limit as H — co. Since the inequality
is strict, it must also hold for values of H which
are sufficiently near to co. Thus (Py) is established
for large values of H.

The verification that (P,), (P,), and (P;) hold for
small values of H is similar. Since spec(7;'%,T,)
= spec (%) for all y > 0, proposition 4 and lemma
7 may be used to show that when H is sufficiently
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small, %, has simple eigenvalues y = a;; < 0 and
A =0, and that if 8, is as defined above, then

Il{l_n.loa” a;, and hmBH Bo-

Then from lemma 7(c) it follows that

f [T‘PH(x)] dx>2(jay| — By)

X f_w [T0x(x)]" dx (4.14)

for sufficiently small H. However, for any r>1,
one has

/_;oo[Ty(PH(x)] Tdx = %/_Jr:[wﬂ(x)] "dx,

and so (P{) follows immediately from (4.14). This
completes the proof of the theorem. W

Remarks. The three equations studied in this sec-
tion all happen to fall into the category of equa-
tions to which proposition 2 of the preceding
section may be applied. In the case of KdV, where
a(k) = k2, one has

1 + o0 eikx e ‘/—|x|
KD =5 [ o YA

for all x € R. In the case of BO, where a(k) = ||,
one has

For x > 0, a change of the contour of integration
(justified by Jordan’s lemma) then shows that

K(x)-———Rf M;;-

=l/°° & 5 dr>0.
T Jo ,u+'r

(For x <0, the evenness of a(k) implies K(x) =
K(—x)>0) Finally for ILW, K, (x) may be

computed (in the case pH >1) by means of a
residue calculation as follows:

thx

IR AG(o0 ¢
Ku(x)= ﬁ/_w p—(1/H) + k coth kH

dk

1 too oikx/H
- E.f_w pH—1+kcothk

dk

2sin* @

— —Ox/H _
2 © 20— sin (20)

6>0
fcotf+Hu—1=0

>0,

where it is assumed that x > 0. Again, for x <0
one has K,(x)=K,(-x)>0.

This section concludes with a result on the
stability of solitary-wave solutions of eq. (4.1).
(This result may also be found in ref. [22].)

Theorem 6. Suppose p =1, 2, or 3. Then for all
C>0, 7€ is a stable solution of (4.1). That is,
given any &> 0, there exists >0 such that if
Y€ H? and ||y —¢” €|, <8, then the solution
u(x,t) of (4.1) with initial data u(x,0)=1(x)
satisfies d;(u, p?¢) <e for all 1> 0.

Proof. Given a solitary wave ¢ (p>1,C>0),
define the operator £”°¢ by

(92:)")f.

It is enough to show that #PC satisfies the
conditions (P), (P,), and (P;) for all C>0, if
p=1,2 or3.

As in (4.7) and (4.8), there exists an identity
relating the various #7-<, namely (for p fixed),

2P f=Lof+(C-

2P Co=g(Tpe? OTH),

where 8 = C,/C,. Hence, it suffices to prove that
(Py), (P,), and (P{) hold for a particular choice of
C. If we fix C= Cy=4/p?, then

PP eof= —f1(x)

+ iz— 2(p+1)2(p+2) sech? (x )| f(x).
p 4
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The spectral properties of this operator are
well-known for all values of p >0 (see, e.g., ref.
[33], p. 768). The case p=1 has already been
considered in the proof of theorem 4. For p > 2,
spec(ZP?:€0) consists of the continuous part
[4/p?, o) together with simple eigenvalues at A =
—(p+4)/p and A=0. Hence, for all p=>2,
&P-Co satisfies (P,) and (P,).

To verify (P{), make use of the identity
I'(1/2)I'(r/2)

T

f_w(sechx’)dx= T +1),2)

to reduce (P{) to the form

o+ LA/2)T((p+2)/p)
T({(p+2)/p+1/2)

S Etlfdtp. i] s LU/ 2T/p)
p AP P r(2/p+1/2)
(4.15)

where w=2(p+1)(p+2)/p> By further sim-
plifying (4.15), using the identity I'(s + 1) = sI'(s),
one arrives at the inequality

pP—-4p—-16<0,

which is satisfied for p =2 and p = 3. This com-
pletes the proof of the theorem. &

5. Conclusion

It is apparent from the results exposed in the
last section that the abstract criteria formulated in
section 3 are effective in establishing the stability
of travelling-wave solutions of equations apper-
taining to real physical situations. Moreover, the
calculations leading to the presented conclusions
of stability are relatively straightforward, thanks
especially to the secondary criterion (P}).

One should remark, however, that our criteria
are probably not .sharp in general. Indeed, con-

sider the equation
u,+u,(1+ |u?)+u,,,=0, (5.1)

where p is any positive real number. While this
equation may have no particular significance as a
model of physical phenomena, it is certainly use-
ful as an example. As in (4.2), the solitary-wave
solutions of (5.1) are given by the formula

u(x,t)=¢?(x—-(1+C)),

where

o7 (y)=[3(p+1)(p+2)C
X sechz(%pCl/zy)]l/p. (5.2)

Under these circumstances, the results developed
in the proof of theorem 6 apply for arbitrary
p = 2, though certain of the calculations require a
little more care. It transpires that both (Py) and
(Py) fail for values of p strictly less than four.
However, several different clues point in the same
direction, and lead one to confidently expect sta-
bility of the solutions (5.2) of eq. (5.1) for all p
less than four. Thus a sharper criterion for stabil-
ity than that developed herein should be available.

Another issue of considerable interest that has
been left open in the present analysis is the issue
of stability or not of the entire class of inter-
mediate depth equation solitary waves, and not
just those bordering upon the Korteweg—de Vries
equation or the Benjamin—Ono equation. Accord-
ing to our methods, proving stability of this class
of waves will require a more direct spectral analy-
sis of the associated linear operator %, than is
provided by perturbation theory.

Perhaps more interesting still is the possibility
of bringing the general scheme presented herein to
bear upon the issue of stability of solitary-wave
solutions of the two-dimensional Euler equations.
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