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Considered herein are the stability and instability properties of solitary-
wave solutions of a general class of equations that arise as mathematical
models for the unidirectional propagation of weakly nonlinear, dispersive
long waves. Special cases for which our analysis is decisive include
equations of the Korteweg—de Vries and Benjamin-Ono type. Necessary
and sufficient conditions are formulated in terms of the linearized
dispersion relation and the nonlinearity for the solitary waves to be
stable.

1. INTRODUCTION

This paper is concerned with the stability and instability properties of solitary-
wave solutions u = ¢(x—ct) of a general class of evolution equations of the form

U+ u,— Mu,+f(u), =0, (1.1)

where subscripts denote partial differentiation, u = u(x,¢) is a real-valued function
of the two real variables x and ¢, M is a constant coefficient pseudodifferential
operator of order 4 > 1, and f is a general function. Such equations are mathe-
matical models for the unidirectional propagation of weakly nonlinear, dispersive,
long waves. In this application, « is an amplitude or & velocity, z is proportional
to distance in the direction of propagation and ¢ is proportional to elapsed time.
The question raised here concerns specifying sharp conditions on M and f for which
the solitary wave is stable.
A prototypical example of (1.1) is the generalized K.d.V. equation

ut+uz+uzzx+(up)x =0, (1.2)

wherein u = 2. If p = 2, this is the equation for surface water waves in a canal,
derived by Korteweg & de Vries (1895). For p =2 or 3, (1.2) is amenable to
solution by the famous inverse-scattering theory of Gardner ef al. (1967), and
it may thereby be inferred that the solitary-wave solutions called solitons are
stable (cf. Scharf & Wreszenski (1981) or Eckhaus & Schuur (1983) for recent
accounts in this direction). For p > 3, the work of McLeod & Olver (1983) shows
that (1.1) is not exactly solvable by an inverse-scattering transform, and numerical
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evidence (see Fornberg & Whitham 1978; Bona et al. 1986) confirms that the
solitary waves are no longer solitons either. It is known, however, that the
solitary-wave solution of (1.2) is stable if 1 < » <5 (see Benjamin 1972; Bona
1975; Weinstein 1987 and Albert et al. 1987). On the other hand, numerical
simulations of solutions of (1.2) indicate that its solitary-wave solutions are
unstable if p > 5, and in fact, that neighbouring solutions emanating from smooth
initial data appear to form singularities in finite time. Although the blowing up
of solutions is not demonstrated here, the first proof of instability is provided.

Another important model in the theory of long waves oceurs when # =1, which
leads to the so-called Benjamin—Ono equation

U+ u, + Hu, o+ (u?), = 0, (1.3)

where H is the Hilbert transform. The solitary-wave solutions of (1.3) are proved
to be stable if 1 < p < 3 and unstable if p > 3. (The stability for 1 < p < 3 was
already established in Bennett et al. (1983) and Albert et al. (198%).)

In general, certain natural conditions on M, f, and ¢ are imposed, and under
these conditions the solitary-wave solutions of (1.1) are proved to be stable or
unstable depending upon the speed ¢ of the wave. The principal result of the
forthcoming analysis may be roughly understood as follows. For smooth functions
g that vanish suitably at + co, define

0 A
Bo)= [ tobtg—y~Fopas,
V(g) =%in 9*dz, ) (1.4)
I(g) =f:o gdz, J

where F' = f and F(0) = 0. If u = u(x,t) is an appropriately smooth solution of
(1.1) then E(u), V(u), and I(u) are independent of the temporal variable ¢; that
is, B, V, and I are invariants of the motion generated by equation (1.1). Denote
the solitary-wave solution ¢ of speed ¢ by ¢, to emphasize its dependence on the
parameter c. The main result then states that ¢, is stable if and only if

d(c) = E(@.)+cV(g,)

is a convex function of ¢. This condition is equivalent to the sufficient condition
given by Shatah (1983) and by Weinstein (1987) in their analyses of the stability
of ground states for certain nonlinear evolution equations. In case f(u) = ? is a
pure power nonlinearity, d(c) is convex if and only if p < 2u4+1.

The methods of analysis used herein derive mainly from those pioneered by
Shatah & Strauss (1985) and Grillakis ef al. (1987) in their study of bound-state
solutions of nonlinear evolution equations. The abstract result of Grillakis et al.
(1987) does not apply directly, however, because the range of the operator 3/0z
which appears prominently in (1.1) does not include all smooth functions v, but
only those for which I(v) = 0, i.e. functions that may be interpreted to have zero
total mass if the dependent variable in the problem is proportional to the
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amplitude of a physical disturbance. One of the main new ideas in the approach
taken here is to make serious use of the ‘mass’ invariant I() defined in (1.4). The
invariance of I(x) insures the convergence of a certain improper integral which is
used as a Lyapunov functional in our proof. Another related step is an estimation
of integrals of the form [* udx.

The paper is organized ag follows. A discussion of the evolution equation (1.1)
and its three invariant functionals (1.4) is given in §2, along with a proof of the
mass-related results to which reference was just made. Section 3 is devoted to
explication of the solitary-wave solutions of (1.1). In particular, they are regarded
as critical points of E subject to the constraint that V be constant. In the unstable
case these critical points are not local minima, but rather saddle points, whereas
in the stable case they comprise true local minima, as is remarked in §5. The
analysis is especially simple when the nonlinearity is a pure power, but the general
case is handled conclusively as well. In §4 the aforementioned Lyapunov functional
is constructed and instability is proved following the main lines laid out by Shatah
& Strauss (1985) and Grillakis et al. (1987). Finally, in §5 stability is established
in the convex case. This result is essentially similar to several to which reference
has already been made, but the form of nonlinearity encompassed by our theory
is more general than was considered previously.

2. THE EVOLUTION EQUATION (1.1)

Because the stability or instability in view here refers to perturbations of the
solitary-wave profile itself, a study of the initial-value problem for (1.1) is
indicated. That is, we ask for a solution u of (1.1) defined for all  and ¢ > 0 such
that lim, ,u(x,t) = uy(x) where u, is a specified function. This corresponds to
specifying the entire wave profile at some given instant of time and then inquiring
as to the further evolution of the disturbance by application of the equation of
motion.

Let Mu(£) = |£|* 4(£) with fixed u > 1 where the circumflexes denote Fourier
transforms. (More general pseudodifferential operators could also be treated.) Let
£ be an odd, continuously differentiable, real valued function with f(0) = f'(0) = 0.
In case 4 = 1, it is assumed that |f(s)| = O(|s|?) as s oo for some p < 0, but for
u > 1 this specification is not needed. The following theorem states that the
initial-value problem for (1.1) is well posed in Hadamard’s classical sense (see
Abdelouhab et al. 1987).

Turorem 2.1. Let s>2 and feC**'. For each u,€H*(R), there exists
te = to(l|%gllge) >0 and a wunique solution ueC([0,t,); H®) of (1.1) with
u(+,0) = uy(+). In addition, either t, = 00 or |[u(-,t)l| yist 00 as t1t,.

By a ‘solution’ of (1.1) we mean a solution in the weak sense. H* (R) is the Hilbert
space of functions which together with their derivatives up to order s are square
integrable. If s > u+3; then this weak solution is classical in the sense that each
term in the equation is a continuous function and (1.1) is satisfied pointwise
everywhere in the domain of the solution.

The next proposition establishes the temporal invariance of the functionals
defined in (1.4).

e
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ProrosITION 2.1. Let s, f, and u, be as above. The unique solution of (1.1) with
initial data u, satisfies V(u(t)) = const. and E(u(t)) = const. Moreover, if s > 1+pu
and [® ., uy(x) dx converges, then I(u(t)) converges for each t and is constant.

Proof. The fact that V and E are constant follows from the construction in the
existence theorem. Formally, they follow from multiplication of (1.1) by » and
Mu—f(u)—u, respectively. If s=u+1 then Mue(([0,t,);H'). Hence
Mu—f(u)—wu is a continuous function of z and ¢ and tends to zero as [x| - 00. Also,
O, u = 0, (Mu—f(u)—u)eC([0,¢,); L*). Integrating (1.1) over the domain
{(z,t):a <2< b,0<t < T) yields

T (b T (b
f f a,udxdt=J. J O (Mu—u—f(u))dedt.
0 a 0 a

As a—>—00,b— 0, the right-hand side tends to zero. Hence the improper integral
|2 u(z, T) dz exists and equals [© , u,(x) dz for each T' < t,. (]

Having established that I(u) is independent of ¢, interest is turned to estimating
about how fast its tail near infinity grows with ¢. Such information will turn out
to be essential in our proof of instability.

TurorEM 2.2. Let uye H**1 and 6 = [® (1+1x]) luy(x)| de < co. Assume that
f(s) = O(s?) as s—>0. If u s the solution of (1.1) corresponding to u,, then

Jw u(x, t) dx

z

sup < (M 0P g g/ AR (2.1)

—0<Z<

for 0 <t < ¢, where ¢ depends only on supy ¢ <., |w(t)| gl + 0, and ¢, is any time for
which this expression is finite.

Proof. If y = [® u,(x) dz, then y = [® o u(z, t) dx for te[0,t,) and therefore

fw u(z, t)dx = 'y—fz u(x, t)ydz = y—U(z, t), (2.2)

= -
where U is a solution of the initial-value problem
U,~MU,+U,+f(u)=0,
. x (2.3)
Uz,0) = f uo(y) dy.

-
Let K be the fundamental solution of Z,— MZ, = 0; that is, K is the solution of
K,~MK, = 0,}
K(z,0) = d(x),

where d(z) is the Dirac delta function centred at 0. The scaling properties of (2.4)
imply that K has the special form

K(z,t) = 1/ Q) fp(gt~1/O*4)  for ¢> 0, (2.5)
where & is defined by

(2.4)

e ¢]

ko) = (2m)~} f olsE—EEP) g (2.6)
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The solution U of (2.3) may be expressed in the form

Uta, t) = f ® K@—y—t,1) Uly, 0)dy— f ‘ f * K@—y—(—1)t—7)
-0 0 — Q0
xf(uly, 1) dydr. (2.7)

To continue we need to comprehend certain detailed properties of K and k. These
are stated in the following lemma, and proved after the theorem is established.

LEMMA 2.1. The function k defined by (2.6) is bounded and [© . k(s) ds exists as an
improper integral.

Let 5 be the Heaviside function. The assumption on wu, implies that
[© ol U(x,0) —ya# (x)| dz < 00. Moreover, lemma 2.1, combined with (2.5) gives
that

[K(z,t) < Ct7Y0*  forall zeR and ¢>0, (2.8)

where C is a constant, and that .
e 0]
J K(z,t)dz (2.9)
—o
exists as an improper integral and is independent of ¢, for all ¢ > 0. Combining the
above remarks leads to the estimate

” Kx—y—t,¢) Uly,0)dy| = U: Kxz—y—t,t) [y (y)+ Uy, 0)—yH# (y)]dy

-~ 0

P
<h | f k(s) ds
< O(1 +V/a+u)y,

+COIU(C,0) =y ()l | K(-, )l Lo

for some constant C' > 0, where p = (x—1)t~/A*»),

To estimate the second term on the right-hand side of (2.7), the case where g > 1
is considered separately from the case g =1. Let ¢, >0 be such that
¢ = 8UP;epq, g1 @)l grir < 00. If > 1, there exists a constant C, which depends on
¢ such that sup,c (g, ¢ lu(t)ll . < C. Because f(s) = g(s) s* with g(s) bounded for s
bounded, it is implied that |f(u)| < ¢’|u|* at least for 0 < ¢ < ¢,. Putting these
considerations together yields

t foo
fo f_w K@—(t—7)—y,t—7)f(uly,7))dydr

13
<C f UK =)l )l dr

t
<C||u(-,1-)||i.J. (r—7)~Va+mdr
(1}
< Ctrla+p),

If x = 1, it is assumed that | f(s)] = O(|s|?) as |s| > oo for some p with 1 < p < 0.
Additionally, recall that H}(R) = L9(R) for every g €[2, ). Combining these gives
[® o 1f(u) (y, )| dy < C where C = C(c). Then

< Ot

t (oo
f K(z—y—(t—1),t—7)f(u(y, 7)) dydr

0J —o0

The theorem is thus established in all cases.
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Proof of lemma 2.1. The method of stationary phase is used. In showing that
k is bounded or improperly integrable, the hardest range of the dependent variable
to handle is s large and positive, and it is to this case that attention focuses. Observe
that after a change of variables, ¥ may be expressed as

(s) = (2m)—} ol f ”

elzh() dg,
[o 0]

where x =g and k() = £—ElEl

The function A has two critical points, namely a = + (x+1)~V~. Let [a,b] be an
interval (with either a or b possibly infinite) that does not contain any of the critical
points of A. Integrating by parts twice gives the formula

b izh(€) L (E) hﬂg b 1i b L ¢
12n() gg — © e @ [_1 f 120(E) (__)
f L= ret e werl, =)0 \ww)

Each of these terms separately tends to zero as s—+ 00 and the improper integral
with respect to s obviously exists.

Next observe that near a critical point & one may write h(£) = k(a)+(E—a)2 f(£)
where f is analytic and f(a) # 0. Consider the interval [, a4+ €] where ¢ is a fixed
small number. After the change of variables £ = a+ (¢/x), there appears the
relation

x+e€
ky(s) = s+ f elzh ) ¢ = 1s1/k g1 e1¥h(@) g(x;),

where @) = | explifia+ ¢/amrar

An integration by parts shows that g(x) is bounded as x—+ 0. Hence
ky(s) = O(sr @) = O(sn—4-1/18),

as §— 00. This is bounded because x4 > 1. As for the integral of k, with respect to s,

J ky(s)ds = ¢ f el7h (@) g(2) o E dar.

— o0

From repeated integrations by parts, it is easily seen that this integral
converges. "

3. THE SOLITARY-WAVE SOLUTION OF (1.1)

Consider a smooth solution of the evolution equation (1.1) of the form
U(x,t) = ¢,(x—ct) with ¢ > 1. So long as ¢ is fixed we write ¢ for ¢,. The function
¢ satisfies the equation

—¢0,¢—0, M¢p+0,¢+9,f(p) =0. (3.1)
Assume that ¢(x) and M¢(x) decay to zero as |z|+ 00, so that (3.1) implies

Mé+cp—¢—f(¢) = 0. (3.2)
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It is important for the arguments put forth in §§4 and 5 to characterize ¢ in
terms of the functionals

Viu) = % fo_o utde, (3.3)

o]
and Eu) = f fuMu—tu?— F(u)} dz, (3.4)
introduced earlier. For this task, a natural functional-analytical framework is now
introduced. Let X = H#*(R), denote by ¢ -, - the L*-inner product, and let (-, - >
denote the usual pairing between X and its dual space X*, where X* is identified
with H3(R). (Of course if € X and ve L2, then (%, v>* = {u,v).) The immediate
goal is to consider ¥ and E as mappings of X into R. Indeed, it is immediate that
V is a C°-mapping of X into R, that V'(u) = u, and that V”(u) = identity. (More
precisely, V'(u)v = {u, v)>* = {(u,v) and V" (u) (v, w) = {v,w), for all v, we X.) As
for E, if 4 > 1, then X < L*(R). Because F(0) = F’'(0) = 0, we have F(8) = O(s?)
as §—>0. Thus || F(z)dz| < oo for every ue€ X. If 4 = 1, then X = L¢*(R) for every
¢ with 1 < ¢ < 0. The growth condition imposed on f in this case implies that
|F(u)| < e(jul?+|u|?*?) for some ge[1,00). Thus |[F(u)da| < clllull}+ Jul%™].
Finally, [©,uMudz = [1EF |42 dE < co. It is therefore easy to check that
E'(u)e X*, that E"(u) exists, and that

Ew) = Mu—u—f(u) and E'(u)=M—1—f'(u). (3.5)
In view of the above, (3.2) may be written as
E(p)+cV'(¢)=0. (3.6)
Moreover, the linearized operator &£, = % of E'+cV’ around ¢, is
L,=%=M+c—1—f(p) = E"(¢)+cV"(¢). (3.7)

It is immediate that % : X - X* and {(Lu,v) = {u, £v) for all 4,ve X. One may
also define Z=(1+M) 1 L(1+M)t with D(Z)=H*R). Then Z is an
unbounded, self-adjoint operator on L*(R). Finally, note that (3.1) implies

L0, ¢)=0. (3.8)
We continue by stating our assumptions on ¢ and Z. These are the following.

There is an interval (c,,c,) with 1 <¢, <¢, < o0 such that for every
ce(c,,¢,) there exists a solution ¢, of (3.2). The curve ¢ ¢, is C* with
values in H'™#(R). Moreover, ¢, x)>0, ¢, eH*#(R) and
(1+|x))tdg,/dx e L(R).

Also,

(3.9)

the operator ., has a unique, negative, simple eigenvalue, with eigen-

function y,, the zero eigenvalue (with eigenfunction 9, ¢) is simple, and

all the rest of the spectrum of & is positive and bounded away from zero. } (3.10)
Moreover, the mapping ¢+ ), is a continuous curve with values in
HH4R), x.(x) > 0 and (1 +|«f}) x, € L}(R).
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Before we continue, we remark that the solitary wave ¢ = ¢, and d¢,/dc are
in H®, as soon as they are in H#. This follows immediately from the equation and
a simple ab initio argument. Next observe that (3.6) characterizes ¢ as a critical
point of E subject to the constraint V(u) = V(¢). It transpires that ¢ is either a
local minimum or a saddle point, and that the stability or not of ¢ is determined
by which possibility occurs. Define d(c) = E($,)+cV(¢,). Then a simple aspect of
the function d determines the type of the critical point ¢, as is demonstrated in
the next theorem and lemma 5.2.

THEOREM 3.1. Let ¢ be fixed. If d”(c) < 0, then there exists a curve w >y, which
passes through ¢, lies on the surface V(u) = V(@,), and on which E(u) has a strict
local maximum at u = ¢,.

Two proofs of theorem 3.1 will be given. The first is direct and is based on
dilations, but requires an additional hypothesis if # > 1. (This hypothesis is always
satisfied if f(u) = u?.) The second, which is more general and abstract, is taken from
Grillakis et al. (1987).

First proof. In case u>1, we make the additional assumption that
(d#/w+10y (¢) > 0. (This is satisfied in the key examples, as will be shown at
the end of this section.) Define the dilated curve ¥ (x) = ¢,(x/0(w)), where

o(w) = V($)/V(¢.). Then ¢ ,(x) = $.(x) and

x

v =5 [8:(55) 2 = 22 [ 4101y = oto) Vg = Vig.

However,

B +ovw) = [ [t —wi- v vt as

(3.11)

ol=#

=2 [patg o [[isi-Fo0+ot)an

Differentiating (3.11) with respect to w and evaluating at @ = cleads to the relation

0=(w@a+ereaSle| )
= @ {0-ich 1p>+ [ [i91-Figo+5 | s}

+<M¢c—¢c—f(¢c>+c¢c’% =>

Because of (3.2), the last formula simplifies to

o () {— 3P Mpo) +d(e)} = 0. (3.12)
Differentiating d(w) = E($,) +wV(¢,) with respect to w gives,
&'(0) = (E'($,)+0V'($,), dd,/dw) + V(P,) = V(Po)- (3.13)

The definition of o(w) yields
o' (@) = —[V(g)/(d'(®))*]d" ().
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Therefore, by assumption,

o’ (c) = —d"(c)/d'(c) > 0. (3.14)
So (3.12) implies the ‘dilation identity’
d(e) = kb M- (3.16)

Returning to (3.11), we find B(y,) +oV(Y,) expressed in the simple form

B, +oV ) = (@ *—0) Kéu Mb.> + od(),
= [(o*~#—0)/p+0]d(®).
The derivatives with respect to © of the last identity lead to the formulae
(d/dw) E(,)+ V(g = [—1)/n] [L—o#lo'd+(1/p) [o*H+w—1) old’
and
4/dut B(y,) = (p— 1) (@' P d+d" = =1 dd"/ @) +1]
= [ 1)/ o=V (@)@ ey
except when y = 1 where
(d/dw) E(y,)+ V(¥.) = d and (d?/de®) E(¥,) = d’.
In any case, if these formulae are evaluated at w = ¢, it is found that
(d/dw) B lyoe =0 ond (d?/d0?) E(y,) <0,

because d(c) > 0 by (3.16), and by the assumption that d"(c) < 0. (If > 1, the
additional assurption mentioned at the outset comes into play.) [ |

Second proof. Let x, be the unique, negative eigenfunction of Z; whose existence
was postulated in (3.10). For w near ¢, define ¥, = @, + 8(w) ¥, with s(w) determined
by the requirements s(¢c) = 0, ¥, = ¢, and V(¥,) = V(¢,). That such a funection
s(w) exists for @ near ¢ follows from the implicit function theorem, once it is
remarked that

% V(¢w+ 8Xc)|:,-:, = j ¢c(x) xc(x) dz,

and the latter integral is strictly positive because both ¢, and x, are. A straight-
forward calculation gives

a a g
az)_z E(ww) = aﬁ [E(l/fw) +w V(ww)] . <E, (ww) +o v ('pw)’ _Eg':i

dy, d
(B +oV 0] i 3o,
At w = ¢ this simplifies to
(d2/dw?) E@ome = <Le¥ 97>

d d
where y= d'/,ww\ = —f—c"+ 8'(¢) Xe- (3.16)
w=C
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The constancy of V along ¥, means that

d
0= GV Wlume = [vtode= (%2 Be) +5(0) <o

and therefore
fygbc dz=0 and d"(c)= —8'(¢) er - (3.17)

Also Loy = Zdg,/dc+5'(c) LeXe=—+5() L, x.,
so by (3.16) and (3.17)
Loy 9D = 8L, X ¥ = 5(6) {xor Lo yd
= =8'(0) X B + [ ()P s Lo ¥
=d"(c)+ [s/(c)]2 <X¢:’ . X
and the latter expression is negative because d”(c) < 0 by assumption and
Xe» Ze x> < 0 from (3.10).
This completes the proof of theorem 3.1.
We continue by calculating d(c) explicitly in the case where f(u) = «®. This will
facilitate the determination of the exact range of p for which d“(¢c) < 0. Moreover,
it will appear that the extra assumption made for the first proof of theorem 3.1

is always valid for such a pure power nonlinearity.
For every ¢ > 1 the solution #, of (3.2) can be written as

$e(®) = (o= 1)VPD p((c— 1)tlngs),
where v is the solution of
My+(c—1)v—v? =0,
Because of this, (3.15) allows us to infer that
d(c) = Ju(c—1)2P-VH1~1k (4 pyy (3.18)

from which we immediately deduce the following corollary.

CoroLLARY. For every ¢ > 1, the solitary-wave solution of (1.1) with pure power
nonlinearity has the property that
() @"(c) < 0 ¢f and only if p < 2u+1, and
(ii) (@#/==1y" (c) > 0.

4. INSTABILITY
The theory relating to instability of solitary-wave solutions of equation (1.1) is
developed in this section. We begin by specifying the precise way in which stability,
and its negation, instability, is to be interpreted. For any real number ¢ let 7,
denote translation by s acting on functions of one real variable. That is,
(1of) (%) = f(x+35) for all zeR. For ¢ > 0, consider the ‘tube’

U ,={ueX:inf lu—7,¢.llx < €. (4.1)
8

The set U, is a neighbourhood of the collection of all translates of ¢,.
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Definition 4.1. The solitary wave ¢, is stable if and only if for every ¢ > 0 there
exists 8 > 0 such that if u,€ Uy, then u(-,¢)e U, for all te R. The solitary wave ¢,
is unstable if ¢, is not stable.

Because the set of all translates of ¢, comprises its orbit under the action of the
evolution equation (1.1), the stability specified here corresponds to what is often
called orbital stability. It states that if a solution of (1.1) is globally defined and
if it resembles sufficiently closely a solitary wave at one instant of time, then it
always was and always will be nearly a solitary wave, at least so far as its shape
measured in the norm on X is concerned.

Here is the principal result of the paper.

TuroreM 4.1. The solitary wave ¢, is stable if and only if d"(c) > 0.

Throughout this section we assume a speed ¢ larger than one is fixed and ¢, is
abbreviated to just ¢. Neighbourhoods U, that appear will refer to the fixed
solitary-wave solution ¢. The following technical lemma will be needed in the proof
of theorem 4.1.

LEMMA 4.1. There exist ¢ > 0 and a unique C* map a:U,~ R such that for every
ue U, and reR,

(ii) a(u(-+r)) = a(u)—r,
0, P —a(u))

u(a) 0% p(x—a(u)) dx .

(i) o' () = r,

Proof. Consider the functional

(u, @) > f u(z+a)d, $(z) dz,

defined on pairs u€ L}R) and a € R. Its derivative with respect to a at a = 0 and
u = ¢ is [ (3, $) dz, which is non-zero. By the implicit function theorem, there is
a unique C! functional a(u) satisfying (i) in a neighbourhood of ¢. By translation
invariance, a(u) can be uniquely extended to a tube of the form U, for ¢ > 0 small
enough. By (i), u(* +a(u)) = u(* +r+ (a(u)—r)) is orthogonal to 3, ¢. Therefore by
the uniqueness of a(u), guaranteed by the conclusion of the implicit function
theorem, a(u)—r = a(u(: +r)) so that (ii) holds. Finally, we calculate o’(x). A
change of variables converts (i) to the relation

Iw w(z) 0, p(x—a(w))dx = 0.

Differentiating with respect to ue X gives

Al —a(u))—f

This leads to (iii) because ue H¥ and 82 ¢e H**#. The proof is thus complete.
Notice that at u = ¢,

(u, &)§;¢) = <¢, ai¢> = —<az ¢’ax¢> <0.
Also (9,0’ (u),u) = 1 at u = @, and « is a C* functional on X because 3 gc X. W

[e0]

u(x) 02 p(x —a(u))dwa’(u) = 0.
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The development is continued by defining an auxiliary operator B which will
play a critical role in the proof of instability. Let

y= d'ﬁw/dwlm=c’

where y,, is either one of the curves defined in §3. It follows from the calculations
given in the proof of theorem 3.1 that

(Z,y,y> <0 and <(y,¢>=0.
Definition 4.1. For ue U,, define B(u) by the formula
B(u) = y(- —a(u))— {u, y(* —o(u))) 05 (u).
By lemma 3.1, B may also be expressed as

{u, y(r —a(w)) o,
a( ))“(u o2 ¢( ac(u)))a ¢( a’(u))

The next proposition summarizes some important properties of B.

B(u) = y(-

4.2)

ProPoSITION 4.1. B is a C* function from U, into X. Moreover, B commules with
translations, B(¢) = y and {B(u),u) = 0,Vue U,.

Proof. It is clear that B(u)e X because ye X and 3% ¢ € H'*#. Also Blu)we X
for every ue U, and we X because 32 ¢ X and 3,ye X. The latter follows from
the fact that 9,(d@,/dc) and 8, x both lie in X because, by assumption, d¢/dc and
y are members of H'*#. The fact that B is a (' function follows from a
strmghtforward explicit calculation, which is left for the reader’s amusement. The
next task is to calculate B(¢). Because a(@) =0 and {¢,y> =0, it is easily
determined that

) .y o

B(¢) = y+za—m $=y.

Also, (4.2) obviously implies that
! {B(u),up = 0.
Finally,
Cu(* +1), y(- —a(u)+r)>

Bu(- +1)) = y(- _a(u)+r)—<u(, +1), 2 ¢(* —afu)+r)

>a§¢(-—a(u)+r)

= 4l —a(w +r) S g —atw) 1)

= (Bu) (- +1),
where in the above calculation we have repeatedly used (ii) of lemma 4.1. |
COROLLARY 4.1. The solution u, = R(A,v) of the initial-value problem
du,/dA = B(u,), uy = v,

has the following properties:
(i) R is a C* function for |A| < Aq(v) for any ve U,
(ii) R commutes with translations for each A,
(iii) V(R(A,v)) is independent of A, and
(iv) R/OA(0,9) = y.
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Proof. Conclusions (i), (ii) and (iv) are obvious from the properties of B given
in the lemma. For (iii), simply note that

dV(u,)/dA = (u,,du,/dA) = (u,, B(w,)) = 0. [ |

The next three lemmas follow very closely the abstract results of (Grillakis et al.
(1987%)) and consequently their proofs are somewhat abbreviated.

Lemma 4.2. There is a C? functional A:{ve U,:V(v) = V(¢)} > R such that
E(R(A(v),v)) > E(¢)
Jor all ve U, which are not translates of ¢ and are such that V(v) = V(gp).
Proof. Let G(u) = u(* —a(u)) and solve the equation
CG(R(A,v)—¢, x> =0, (4.3)

locally near A = 0 and v = ¢ by the implicit function theorem. Then G(u,)—¢ is
perpendicular to both y and 9, ¢, and so it belongs to the positive subspace of £.
By Taylor’s theorem,

E(uy) = E(¢)+3L(Hwy) — ), Gluy) — 7> + O G(wy) — B11%),

and so for A small enough, E(u,) > E(¢),

unless G(u,) = @. The result follows. (For more details see lemma 4.3 of (Grillakis
et al. (1987).) ||

LemMA 4.3. For ve U, with V(u) = V(@) and v not a translate of ¢, we have
E($) < E(v)+ A(v) {E'(v), B(v)).
Proof. This follows from lemma 4.1 and Taylor’s theorem. B

LeMMA 4.4. The curve y, constructed in §3 satisfies E(Y,) < E(¢) for w #c,
V() = V(@) and (E'(¥,), B(¥,)) changes sign as w passes through c.

Proof. Apply lemma 4.3 with v = , to derive that

CE (W), BW,)Y A(p) > O, (4.4)

for w #c. So it suffices to show that A(y,) changes sign. Indeed, setting
u, = R(A(y,), ¥,) in (4.3) and differentiating with respect to & gives

o ([3RAAW,) BRAY,] \ _
<G (“A)[ﬁ dw +% dw ]’X> =0

Letting w = ¢ leads to the formula

(F'($) lydA(y,)/dol,_.+y], x> = 0.

But G(Py, x> =<y, x> #0.
and therefore d4(y,)/dwl,..=—1#0.
This concludes the proof of the lemma. [

With these preliminary results in hand, we can mount a direct attack on the
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instability portion of theorem 4.1. A particular and somewhat unusual difficulty
encountered is that the Lyapunov functional arising naturally in our proof is not
obviously finite, and even if it is, its value on a solution path grows with time.
An appropriate limitation on its rate of growth is a crucial aspect of the argument
presented below.

Proof of instability. Let ¢ > 0 be given and let U, be the neighbourhood of the
orbit of ¢ defined earlier. Without loss of generality, ¢ is supposed to be small
enough that lemma 4.1 and its consequences apply within U,. To demonstrate the
instability of @, it suffices to show that there are elements u, € X that are arbitrarily
close to ¢, but for which the solution u of (1.1) with initial data %, exits from U,
in finite time. For a fixed u,, let [0,¢,) denote the maximal interval over which
u(+, t) lies continuously in U,, which is a bounded subset H*(R). By theorem 2.1,
either ¢, < t, or {, = c0. Our purpose now is to show there are u, arbitrarily close
to ¢ for which ¢, < 00.

By lemma 4.4 there are elements u,€X arbitrarily close to ¢ that are
not translates of ¢, and are such that V(y,) = V(¢), E(u,) < E(¢) and
(B’ (ug), B(ug)) > 0. In view of (3.9), (3.10), and the construction of the curve ¥,
given earlier, we may assume that u,€ H**#(R) and [® o (14 ]2])2 |uy(x)| dz < 0.
In view of the results expounded in §2, the solution « from u, enjoys the following
properties:

ueC([0,¢,); HHY), 1
E(u(-,t)) and V(u(-,t)) areconstant,for 0<?¢<t,

I(u(-,t)) converges and is constant for 0 <t <{,, 4.5)

Z.
sup f " u(z, ) dz| < o(1 +4#/0+m),
2y, 23eR 2y
sup Ju(", )l <, J
ogt<ty

where C depends only on ¢ and ¢ and ¢ depends only on C and
[ 20 (1 +12]) lug(@)] d.
Let B(t) = a(u(t)), Y(x) = [® y(2) dz, and define

At) = fw Y(xz—B(t)) u(z,t) de. (4.6)

The function 4 serves as a Lyapunov function in our argument. The integral in
(4.6) converges. Indeed, if # is the Heaviside function and y = [® o y(x) dzr, then

Ag) = f " (Ve p) -y = pON]ute, d+y f

[+ ¢}
u(x, t)dz.
B

It follows therefore that
[A@)] < | Y =y |l p2ry 19O | L2y + €' (1 + 24/ 4 1),

and consequently
[A®)] < C"(1 4+ +/0+1) (4.7)
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for some constant C”, because V(u(!)) is constant and Y —y3# € LAR). The latter
assertion is a consequence of the following argument. In the light of (3.9), (3.10)
and (3.16), it is observed that (1 +a)) ye LM(R). Tt follows from Minkowski’'s
inequality that

([ e—vrer af ={[" re af ={["( [* v asf

<[ ([ive aefag= [ vewerae <o

— 00

Similarly, for > 0,

+
Y(x)—yH (x) = L y(£) dE,

and an analogous inequality holds. Thus ¥ —y# € L*(R).

Having established that A(t) is well defined and satisfies (4.7), its derivative with
respect to time becomes an object of study. The previous formulae obtained in this
section make the calculation and estimation of dA/dt relatively gtraightforward.
First of all,

d4

4 __p [ve-porumnss | V(o= BN e 1) da.
Note that B (t) = de(u(t))/dt = (o' (u), Oufoty,

so that dd4/dt = {(—<y( —B),u) o (wy+ Y (- —pB),0ujot).
Because dufot = o, (Mu—u—f(u)) = 0, E'(u),

it follows that dA/dt = {y(- =, w 9, (w)—y(- —p) E'(u)),

after an integration by parts. The definition of B thus leads to the compact formula
dd/dt = (B(u), E'())- (4.8)

Because 0 < E(¢)— E(u,) = E($) — E(u(t)),

lemma 4.3 implies that

_ 0 < A(u(t)) CE' (ult)), Bu(®)))-
Because u(t)e U, and A(¢) = 0, it may be assumed that A(u(t)) <1 by choosing
¢ smaller if necessary. Therefore for all ¢ in [0, ¢,),

CE (uit)), Bu(t)> > E(@)— E(uo) > 0-
Hence (4.8) yields the lower bound.
dA/dt = B(¢)—E(ue) >0 for all tef0,¢t;). (4.9)

Comparing (4.7) and (4.9), it is concluded that ¢, < co, which means that u(:,t)
eventually leaves the tube U,. This implies instability, and completes one half of
the proof of the theorem. |
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5. STABILITY

Complementing the theory of instability presented in §4 is the stability theory
presented in the present section. The stability of solitary-wave solutions of (1.1)
is an immediate consequence of the fact that d”(c) > 0 implies that b, is a local
minimum of £ subject to the constancy of V. This is a general fact, not special
to the equations under consideration in this paper. The proofis, in essence, 8 special
case of the theory given by Grillakis ef ai. (1987).

Lemma 5.1. Let d”(c) > 0. If yeX is orthogonal to both ¢ and 0,¢, then
{Zy.y> > 0.

Proof. Formula (3.13) insures that d’(c) = V(¢,), and hence that 0 < d’(¢c) =
(p,d¢p/dc) = —(& dg/de, dgp/de). Write dg/de = ay y+b, O, ¢ +p,, where D, is
in the positive subspace of 2. Recall that ZLx =—A% with A > 0 and L0, ) = 0.
It follows that

<$po’po> < ag Al

Now suppose that (y, $> =<y,0,¢>=0and decompose y into the sum ax+p with
2 in the positive subspace of .. Because

0= —<¢’ :’/> = <$ d¢/dc’ 3/) . —aoa/\2+<$}70,1’>,
it is inferred that
(LY 9> =—a 2+ Lp,p) > —a2r®+ $ZD, P>/ L Py, Py
> —a*A’+ (a,aA%)? /a2 A2 = 0,
as required. [ |
LeEMMA 5.2. Let d”(c) > 0. There exist constants C > 0 and € > 0 such that
E(u)—B(g) > cllu(- +a(u) — |2,
Jor all we U, which satisfy Viu) = V(g).

Proof. Write u in the form u(* +a(u)) = (1+a)d+y where ¥,¢>=0and a is
a scalar. Then, by the translation invariance of V and Taylor’s theorem,

Vig) = V(u) = V(u(- +a(w))
= Vi) + <, u(- +a(u)— > +O(llu( +a(u))—g|?).

Here, and throughout this section the norm is that of X = H¥(R). The middle term
is precisely al|¢||2, so that

@ = O([lu(- +a(u))— |2
Writing L = E+¢V, another Taylor expansion gives
Liw) = L(u(* +a(u))) = L(g) +3 Lo, v>+o([[0]?),
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where v = u(* +ou)—¢ =ap+y. This can be written as
B(u)— E(¢) = KLv,») +o(llvl|*)
=KLy P +0(a?) +OGalloll) +o(lvl)
= K&y, y> +ollvl)-
But y is orthogonal to both ¢ and 0, 9. Therefore by lemma 5.1
E(u)—E(¢) 2 20y 2 +o(lvl*)

for some constant C. Because

Iyl = lv—apll = vl =0l

for |v|| small, it follows that
E(u)—E($) = Clivll* |

The proof of theorem 4.1 is now completed by showing that d”(¢) > 0 implies the
associated solitary wave to be stable in the sense of definition 4.1.
Proof of stability. Assume d”(¢) > 0. Let ud, € X be any sequence such that

inf\lu%—¢('+s)||—>0 as m—>00.
8

If u,, is the unique solution of (1) with initial data ul, let {t,} be an arbitrary
sequence of times guch that, for each 7, ("> tn) €U Because E and V are
continuous on X and translation invariant,

Elug(*»ta) = Bh)~>E(@) and  V(ug(:,t,) = V)= V(@)
Next choose w, € U, so that V(w,) = V($) and [w, —%a("» t,)||>0. By lemma 5.2,
and therefore
N+ > ) — Pk —(@a )l 0:
This means that w,(*, t,) tends to the orbit of ¢. This contradiction proves that the
orbit of ¢ is stable. d
Putting together the result of the previous gection, the fact that the set

{c>1: ¢ i8 stable} is open, and the present developments, theorem 4.1 is
established. |
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