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Singularities for the generalized Korteweg-de Vries cquation

1. INTRODUCTION

In this note a simple criterion is derived that relates to whether or not
solutions of the initial-value problem for the Generalized Korteweg-de Vries
equation

u, + f(u), +u =0,
t X XXX (1)

u(x,0) = u (x),

form singularities in finite time. Here, f is a smooth, real-valued function of
a real variable which, without loss of generality, may be assumed to have the
property that f(0) =f'(0) =0, and u= u(x,t) is a real-valued function of the two
independent variables x and t. The family of equations depicted in (1) arises in
problems connected with model1ing uni-directional wave propagation in nonlinear,
dispersive media, and in such situations x is often proportional to distance
in the direction of propagation of the wave motion and t is proportional to
elapsed time (see [5]1, [14] and the references contained therein). The pure ini
tial-value problem (1) comes about in presuming that the waveform u is  known
cempletely at some fixed instant of time, and then inquiring as to its subse-
quent development according to the model. It transpires that if u is the solu-
tion of (1) corresponding to smooth initial data u, that decays to zero at in-
finity appropriately, then u(-,t) loses regularity as a function of x at a fi-
nite value t=1t,>0 if and only if u becomes unbounded as t approaches t,.

While the result obtained here is not definitive as regards the existence
of singularities, it does show what to look for analytically, and it is espe-
cially useful information to keep in mind whilst searching numerically for evi-
dence of the formation of singularities (cf. [61).

The difference between the Generalized Korteweg-de Vries equations  (GKdV
equations henceforth) and the simple conservation laws

f(u), = 0
Ut+ ux (2)

U(X,O) = uo(x)s

deserves remark. If, for example, f(z) = zp+1, with p a positive integer, then
it is well understood that solutions of (2) corresponding to positive, smooth
initial data defined on all of the real Tine R, and which tend to zero at
infinity, remain bounded, but the derivative becomes unbounded in finite time.

If the nonlinearity f is not too strong, by which we mean that p is not too 1ar

ge in the special case f(z) = zp+1, then the dispersive term Uyyy Overcomes the
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effect of nonlinear steepening observed in (2), essentially by converting the
large gradients into a train of solitary waves. However, if the nonlinearity
is too strong, then apparently the dispersive term does not necessarily over-
come the nonlinear steepening, and the result may be the formation of singula-
rities in the solution (see again, [6]).

The particular result described above concerning formationof singularities
is new, insofar as we are aware, but the technical apparatus used to establish
it already exists in the literature. We shall rely especially on the theory
for quasi-linear evolution equations due to Kato [8,9] which, when applied to
the GKdV equations yields telling results which form the backbone of the
observation reported here. The earlier work of Schechter .[12] also deserves
mention, for the crucial differential inequalities are already set forth as
examples in the exposition of his theory for nonlinear evolution equations.

The theoretical development is given in Section 2, where the relevant
aspects of Kato's results are.reviewed. Section 3 contains a few comments con-
cerning the foregoing resylts and-a censiderable 1ist of open questions in the
general domain to which the paper is devoted.

2. A CRITERION FOR BLOW-UP

The main mathematical result announced in the introduction is now stated,
as Theorem 2, and proved.

The terminology and notation used throughout is that of the modern theory
of partial differential equations (see, for example, Lions' text [10]). In
general, the norm of a function g in a Banach space X will be denoted || ally-
However, if g lies in X = HS(R), the Sobolev class of functions in L,(R) whose
derivatives up to order s also lie in Lp(R), then the norm of g in HS(R) is
denoted by || g”s. Similarly, if g lies in X = Lp(R), the norm of g is denoted
lal,- '

Here is Kato's result cencerning the local well-posedness of the .initial-
value problem (1),

Theorem 1. Let s°>-%. For any Aé 0 there exists T = T(A) >0 depending only on
A such that if.u e H(R) with s2s, and || u,||, <A, then there is a unique
solution u of (1) in the space C(0,T;H°(R)). The function u has the property
a:u 6 ¢(0,T;H3K(R)) 50 Tong as s -3k z -2. Moreover, for any szs , the cor-
respondence u, + u defines a continuous map from HS(R) to

no c*o,1; #K(R)).
s-3k2-2
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In addition, if u corresponds to u, ¢ HS(R) with sz s,, as above, then
for a1l t ¢ [0,T1,

Ié u?(x,t)dx = fw uz(x)dx (3)

and

I:o[u;(k,t) -2f1(u(x,t)))dx - J: [Uix(x) -2f1(uo(x)))dx, (4)
where f}=f and f,(0) = 0. If 522, then for all t e [0,T],

[ [ihacet -3 ot ) ox -

j:[u:xx(X) -g- f'(uo(X))uzx(X))dx + (5)

J:J:Hz " (u(x, )Jug (x,5) + % f'(u(x,S))f"(u(x,s))u;(x,S))dxds.

Remarks. The invariants (3) and (4) are standard aspects of equations of the
form (1), or indeed of the more general equations (11) (cf. [11, [4], [5] and
[111). The relation (5).was first derived by Schechter [12] for the case
f(u) = up+1,'and later by Kato in the form reported here. Both authors used
it in combination with a result of local existence to establish sufficient con-
ditions for the existence of globally defined, smooth solutions of (1).

Theorem 2. Suppose s2 2 and let u, € H%(R). Let T* be the maximum value such
that, for all T & (0,T*), the solution u of (1) with initial data u, lies 1in
C(0,T;H(R)). Then either T*=+w and the solution u is global, or else

sup  fu(e,t)| = 4w (6)
Ost<T*

Proof. Suppose there exists a finite constant B such that
Ju(+,t)|, < B for 0st<TH,

This assumption and the relations (3) and (4) yield a uniform bound  on
luC-.0)])y as follows. First, by (3),

Jﬁmuz(x,t)dx = Imwuz(x)dx.
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Hence, from (4), we derive that

r_wu;(x,t)dx 52 r_mlfl(u(x,t))ldx + Kmuzx(x)dx +2 J:Lfl(uo(x))]dx

< 2K U:uz(x,t)dx + rwuzo(x)dx] + r uzx(x)dx,

- -0

where

|f1(z)|
<

2
4

o,

K = sup
|z|sB

It follows that
2 2 G
luto) ) = acla I+ lull, )

for all t e [0,T*).

The relationship (7) may be combined with the equation (5) to obtain
bounds on the H2(R) -seminorm of the solution u that is in question. For,

by (5),

Il uXx(.,t)lli s % JTJf'(u(x,t))Iui(x.t)dx + | uoxx||20
+ g— Ew|f'(uo(x))|uzox(x)dx+ (8)

t
+ J Em[%zlf""(u(x,s))l |u)5((x,s)| + [ £ (ulx,s))F" (u(x,s)) | lu;(x,s)l]dxds.

0

But since |g|:o s |l g||0 | g'|10 for any g 6 H'(R), then

) r+2 r-2
J:olux(x,S)l'"dxs ]ux(-,S)I:'ZH u (o)l <l ux(-,S)II_:z_ [ gy (50l O‘Z‘

Using this relation with r = 3 and r = 5 in (8) yields
I uxx(.,t)llzo s M[l[ ux(.,t)“i Il “nxllzn . “uoxx“i)
t | 2
+M[0[|| uyless) I 07/2H ux><("“")” :/2 +| ux(-,s)ll:/2|l Uyy (=58) Il 01/ }ds.

where M depends only on the quantity
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sup (' (2)| + |F"(2)] + [f'(2)F"(2) 3.
|z|sB
An H2(R)-bound on u may now be adduced from (9) and (7). From these ine-
qualities, one obtains the relation

2 t 2
e R N IOl S

with the positive constants 8 and Y dependent only upon M, K, and Il uoll2 . Thus
8 and y are independent of t so Tong as the original, boundedness assumption
holds. A standard Gronwall-type argument gives

Tug 01 s g, (10)

0

for all t ¢ [0,7*),

It follows that T* = 4w . For if not, (10) would imply the existence of a
finite constant A such that lluC+,t) ]|, 5 A on [0,T*). Applying Theorem 1 with
s=2 and u, replaced by u(«,T* —%I), where T=T(A), would yield a solution of
(1), in C(0,T;H5(R)) and T could be taken to be at least T*-+% T. This con-
tradicts the maximality of T* and establishes the assertion of Theorem 2,

Remarks. The boundedness assumption was only used in conjunction with the in-
variants (3) and (4) to show that ”ux(-,t)”0 was bounded on [0,T*).  Conse-
Quently, it would also suffice in deriving our conclusions to assume that

sup Jm [f, (Ul ,t)) |dx
0<t<T* J o

is finite. In case f(u) = uP*!, this amounts to assuming that the Lp+2(R) - norm
of u is bounded on [0,T*). However, as a practical criterion, particularly as
related to numerical simulations, the boundedness of the L_(R)-norm appears
preferable even though it is a weaker condition,

Exactly the same considerations as presented above apply to the periodic
initial-value problen where u, is taken to be a periodic function and the
solution u of (1) maintains the same spatial periodicity. As numerical calcu-
lations have been performed on the periodic initial-value problem, it is perhaps
worth formalizing this Jast remark .

Theorem 3. Let u, be a periodic function of period P which 1ies in HS([O,P])
where s> 2. Then there exists a T> 0 depending only upon ]luo”s such that (1)
possesses a unique, P-periodic solution u ¢ C(O,T;Hs([O,P])). This solution
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s-3k

also has atu e C(0,T:H ([0,P])) so long as s -3k2-2, and the correspondence

u,+u is continuous from HS([0,P]) to C(0,T;HS([0,P])).

If T* is the maximal time for the existence of the solution u, in the sen-
se that u e C(0,T;HS([0,P])) for all O<T<T*, then either T*=+= or else

oo [ oy =+

3. DISCUSSION

The principal issue to which this investigation was directed remains open,
namely to decide whether or not solutions u of (1) actually form singularities.
This point is important to clarify, and its resolution would aid our understand
ing of the interaction between nonlinearity and dispersion. The numerically
obtained evidence reported in [6] and the instability result in [7] indicate
that singularity formation may indeed occur in the context of (1) provided that
f is sufficiently strong. In case f(u) = up+1, "sufficiently strong" means
simply that p2z4, a critical exponent. (It should be pointed out that for
f(u) = up+1, where p> 4, the results of Strauss [13] imply that if the initial
data u is sufficiently smail, then the solution of (1) guaranteed by Theorem
1 corresponding to u, does in fact exist for all time. In fact, |u(-,t)|m tends
to zero as t approaches infinity. Similar results have been obtained by Albert
[2,3] for model equations of the form (13), mentioned presently, in case
L= -a;). Whilst the case f(u) -uP* with pz4 in (1) does not arise naturally
in models of real phenomena, similar issues crop up for more general equations
to be discussed below where the critical exponent for the possibility of sin-
gularity formation in a pure power nonlinearity is one that occurs naturally.

The more general class of equations of GKdV type to which reference was
made above has the form

Uy + f(u)x - L(u)X = 0. (11)
Here, f and u are as before and L is a Fourier-multiplier operator

/\ A

L(v)(g) = alg)v(z), (12)

which reflects more general dispersion relations than that characterized by -a;
in (1). The circumflexes above connote Fourier transforms. A discussion of Tli-
nearized dispersion relations and the class of model equations (11) may be
found in [1], [4], [5]1, and [11]. A Tocal existence theory for this class of
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equations along the Tines of that presented in Theorem 1 has been formulated
recently in [1], building upon the earlier work of Saut [11]. A criterion for
the existence of global solutions of (11), similar to that enunciated in
Theorem 2 would be of considerable interest, but has thus far proved elusive,

It deserves remark in the context of more general dispersion relations
that the phenomenon of singularity formation does not occur, no matter how
strong the nonlinearity may be, for models with reasonable dispersion relations
as in (12) which are written in the alternative form

Uy + f(u)X + L(u)t = 0. (13)
The. model equations (13) were advocated in [5] as having certain advantages
over the models (11) as far as the treatment of short-wave component was
concerned,

Finally, even in the context of (1), it seems Tikely that in place of (6),
it would suffice to assume only that there is a sequence {tn}nz1 which conver-
ges to T* from below for which |u(-,tn)|oo is uniformly bounded in order that
the conclusion that T*=+w hold. This result, if valid, also seems to be
somewhat difficult.
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