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This paper is concerned with generic properties of the set of price equilibria of overlapping-
generations economies that include money. It is shown (in a C' topology) that il generations live
for m periods and if there are n goods available in each period, then most economies will feature
equilibrium price sets of dimension at most (m— 1)n. It is likewise shown that for every k that
ranges between 0 and (m—1)n there are open sets of economies which possess locally k-
dimensional, €' manifolds of equilibria. In the process of establishing these facts, a transversality
theorem is proved which applies to maps, not necessarily Fredholm, between open subsets of
non-separable, infinite-dimensional spaces.

1. Introduction

The study of equilibria of exchange economies with a finite number of
agents and commodities has a substantial history, as is amply documented in
the monographs of Arrow and Hahn (1971, ch. 9), Dierker (1982) and Mas-
Colell (1985). One of the principal conclusions to emerge from this line of
inquiry appears to be the basic proposition that equilibria of finite economies
are, in general, locally unique. This fact is usually derived as a straight-
forward consequence of the inverse function theorem whenever the matrix of
partial derivatives of the excess-demand function is surjective at a given
equilibrium point. That the matrix of partial derivatives of the excess-
demand function is typically surjective follows via arguments from transvers-
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ality theory whose application is now standard. Local uniqueness is a
qualitative fact with considerable economic import, especially as regards
comparative statics predictions.

Overlapping-generations models for economic activity were introduced by
Samuelson (1958), and have been the object of considerable study recently.
Their structure embodies an infinite number of agents and commodities, and
consequently it is not obvious that the relatively simple analysis just
enunciated continues to bear fruit. Indeed, the two mathematical assertions
that are fundamental to the argument are not generally valid in infinite-
dimensional settings. Firstly, if a linear mapping of an infinite-dimensional
space is onto, it does not necessarily mean that it is one to one; indeed, the
kernel may itself be of infinite dimension. In an economic frame this sort of
situation has recently been observed by Kehoe et al. (1986b) in some
examples of infinite-dimensional economies where at given equilibrium points
the derivative of the excess-demand function is surjective with kernel of
arbitrarily large dimension. Secondly, infinite-dimensional transversality
theory is based upon Smale’s extension of the Sard theorem [cf Smale
(1965)]. Smale’s theorem assumes the maps to be Fredholm (see section 5)
and the manifolds to be second countable (separable). These hypotheses
appear to be somewhat restrictive with regard to several, natural economic
frameworks.

Our purpose here is to explore properties of the set of equilibrium
sequences of prices for a generic member of a general class composed of
overlapping-gencrations economies which are not necessarily stationary and
which feature general forms of the agents’ utility functions. In the special case
wherein each generation survives two periods, our main result states roughly
that a typical model economy has an equilibrium price set of dimension no
greater than n, where n is the number of commodities available in each
period (assumed to be constant in time). For models with identical gene-
rations that live exactly two periods, Kehoe and Levine (1985) have shown
that the equilibrium price set near certain steady states in particular
subclasses of economies may have any dimension up to and including n.
Thus in this special case, our results imply those of Kehoe and Levine to be
sharp.

It appears that the first study of the structure of equilibria of overlapping-
generations economies for models with many goods available in each period
was undertaken by Balasko and Shell (1981). They focused on an economy
where each generation contains a single Cobb-Douglas agent, and find that
if the model features money, then there is a one-dimensional branch of
equilibria, whereas the equilibrium is unique in the non-monetary case.
Geanakoplos and Polemarchakis (1984) have emphasized that the crucial
features leading to this carly result are gross substitutability of excess
demands and intertemporal separability of utilities. The implications of the
gross-substitutability assumption have been explored further by Kehoe et al.
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(1986a), who generalize considerably the previous results. All three studies
are concerned with global properties of the equilibrium set. As mentioned
already, the local behavior of equilibria lying near to a particular steady-state
solution has been examined by Kehoe and Levine (1984, 1985). In a nice
paper written at about the same time as the present script, Geanakoplos and
Brown (to appear, and see also an earlier, as yet unpublished script) extend
the results of Kehoe and Levine to general, non-stationary economies,
obtaining results whose conclusions overlap with those of the present paper.
Their theory is based on the multiplicative ergodic theorem and its appli-
cation to dynamical systems. Central to their analysis is a notion of
regularity and non-degeneracy of an equilibrium based upon existence and
type of Lyapunov exponents for the economy in question. Whilst these
properties can be shown to be robust in a sense, the topology used is rather
strong and the probability measure that appears does not seem to arise
naturally from economic considerations. Moreover, they impose a somewhat
stringent rank condition on the partial derivatives of the excess-demand
function which is crucial to their analysis, and higher order differentiability
requirements, which are not needed using our approach. In any case, there
seem to be insights gained from considering both approaches.

A natural mathematical setting for the analysis of overlapping-generations
models is the space R® of all real-valued sequences. While this space is
suitable for questions of existence, its topology appears to be too coarse for a
detailed study of the structure of the set of price equilibria. Consequently,
our analysis will be conducted in a'Banach-space setting to be introduced in
section 2, along with a description of the model, the underlying economic
assumptions, and a few other preliminary considerations.

In section 3, the elements of our analysis are used to study the important
special case of stationary economies wherein all generations are the same.
This is useful in motivating the later analysis, and is of interest in its own
right. The assumption of homogeneity has the drawback that the derivative
map of the aggregate excess-demand function displays a certain singularity at
every stationary equilibrium. This technical inconvenience is overcome by a
redefinition of the price space within each generation’s lifetime. At a steady
state, the local structure of equilibria will then be that of a C' manifold
whose dimension ranges between 0 and n. This is in accordance with the
findings of Kehoe and Levine, although we further demonstrate that this
property is robust to general, non-stationary perturbations of the economy.
Indeed, it is shown in section 4 as the main contribution of this paper that
typical, overlapping-generations economies do not contain equilibrium price
sets of higher dimension than their special, stationary counterparts. The
upper bound on the dimensionality of the sets of equilibria is obtained first
for the linearization of the excess-demand function of a truncated version of
the economy in question. The result for the linearization of the entire,
infinite-horizon economy then follows from the results pertaining to trun-



212 M.S. Santos and J.L Bona, Price equilibria of overlapping-generations economies

cated economies after application of standard arguments from transversality
theory.

As indicated above, the available infinite-dimensional transversality theory
is based upon Smale’s extension of the Sard theorem. Section § is devoted to
a generalization of these ideas, which can be applied to the mathematical
framework for overlapping-generations economies considered herein. Our
main theorem in this regard places weaker requirements on the maps and
dispenses with the second countability of the price domain. Although these
facts represent a considerable relaxation of standard assumptions, the result
may still appear restrictive in the context of overlapping-generations models.
Obtaining similar conclusions without the restrictions implied by the use of
standard transversality is an interesting open issue which warrants further
study. Finally, section 6 presents an example of a simple economy whose
analysis illustrates some of the methodological issues discussed in the earlier
sections.

2. Notation and preliminary considerations

We begin with a standard formulation of a pure exchange, overlapping-
generations economy. All economic transactions are assumed to take place at
discrete times t=0,1,2,.... In each temporal period there are n different
types of perishable goods available for consumption, the prices of which, in
period ¢, are collected together in the price vector p,=(py,,...,p,,). In the first
instance consumers are presumed to survive exactly two periods, though this
restriction will be relaxed subsequently. For ¢>0 the tth generation is made
up of a finite number of agents with perfect foresight that consume in periods
t and t+1. Their optimal consumption strategies are aggregated and
represented by excess-demand functions y* and z* corresponding to their first
and second period of life, respectively, and these are taken to be determined
solely by the prevailing prices p, and p,.,. The following further assumptions
about the excess-demand functions will be in effect throughout.

S (smoothness). For ¢>0 the functions y'(p,.p,.,) and 2(p,, p+1) are C?
mappings of RY", into R". Moreover, while these functions are allowed to
depend on ¢, it is assumed that their partial derivatives are uniformly
bounded on compact subsets of R%", , independently of t.

H (homogeneity). For all t>0, both y* and z* are homogeneous of degree
zZero.

WL (Walras’ law). If t>0, then for every p,p,., in R% ., the relation
PV (PesPe+ 1)+ Pi+12' (P P+ 1) =0 holds good. (The products are vector-space
inner products.)
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BD (boundedness). For each ¢ the functions y' and z' are both bounded
below on R%",.

Here, and subsequently, the usual notation R% . has been employed to
indicate the interior of the non-negative orthant in Euclidean k-space, R*.

The foregoing assumptions are standard. Each has an economic basis that
is well understood, and which will not be elaborated here. The article of
Kehoe and Levine (1984) provides a good guide to the literature. The degree
of freedom entailed in the restriction H allows for the possibility of
normalizing prices and so considering )* and z' to be defined on a slightly
simpler domain. For reasons of expositional convenience, we shall defer to
the next section the reformulation of the price space which seems most
appropriate for our analytical framework.

There is also postulated a Oth generation that lives only in the first period,
and which is endowed with an aggregate of M units of fiat money. (One may
also consider the situation where M <0, corresponding to an economy that
initially has external debt. We generally restrict to the case M >0, though
this is relaxed briefly in section 3.) The associated excess-demand function z°
will be assumed to depend on both p, and M, and so to define a mapping of
R} into R". This function is supposed to satisfy S,BD, and H, where the
homogeneity encompasses all n+ 1 variables. In lieu of the budget constraint
WL we assume

WL’ (modified Walras’ law). For every p, in R%, and M>0, we have
p:12°%(p1, M)=M.

This situation corresponds to supposing that only the initial generation is
endowed with money, the unit price of which has been incorporated into the
specification of M. The constant M will therefore represent the total money
supply of the economy in all subsequent generations.

A (monetary) equilibrium is a sequence p={p,},-,, .. of price vectors
p,t=1,2,..., for which the market clears at each positive period. That is, the
sequence p has the properties that

2°(py, M) +y' (p1,p2) =0,
and, for t>1, (2.1)

27 Hp,- 1, P) + V' (Do P+ 1) =0.

In our study it will be convenient to work with the aggregate excess-
demand function F for the entire, infinite-horizon economy. The function F
is a mapping of II?R", , to IIY R" whose tth component is simply the tth
expression on the left-hand side of eq. (2.1). In this notation, the economy is
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represented by F and an equilibrium is a sequence p of price vectors such
that F(p)=0. The set of all equilibrium price sequences corresponding to F
will be denoted by W(F).

The domain (and range) of F will be restricted to the Banach space ¢7,
the space of all sequences p={p,},-,,... with finite norm ||p||=sup,s,{|p|},
where |p,| denotes the maximum norm on R", for example. More precisely, F
will be considered as a mapping of. the interior E of the set ITPR". , N ¢,
The tools of standard infinite-dimensional calculus [cf. Lang (1972)] are
available in a setting such as that considered here wherein F is defined on an
open subset of a Banach space.

A few remarks are in order regarding our choice of state space and its
topology. As indicated in the introduction, I R" has a topology that is too
weak for a detailed analysis of the structure of the set of price equilibria
W(F): indeed, two price sequences are close in the usual product topology on
117 R" if a large enough number of the leading components are close, even if
the remaining (infinite number of) components are unrelated to each other.
The example in section 6 shows that in the product topology, steady states
and equilibrium price sequences that are unbounded may all belong to the
same topological component. Although the restriction of F to E precludes
consideration of equilibrium price sequences that grow unboundedly, a
change of the independent variables may extend the range to which our
theory applies. For instance, in the case with one good in each period where
every consumer lives for two periods, one might set x,=p,, and for ¢t>1,
X, =p,/p,-1. An analysis based on bounded sequences {x,},», would then
include all the equilibrium price sequences which correspond to uniformly
bounded rates of growth (inflation), a collection with a broad range of
economic interest. Because of the homogeneity assumption H, the above
change of variables leads to an easily comprehended modification of the
existing problem." Likewise, no restriction to generality is implied in
considering the range of F as contained in /7, since the analysis will only
focus on the zeroes of F.?

' An important technical result that is needed in the further development is
contained in the following lemma.

Lemma 2.1. The function F is a C* mapping on E.

Proof. Let F;, denote the aggregate excess-demand function of good i at
time ¢. Thus F;, is simply component number n(t—1)+i of the function F.

'Although the above transformation of variables is not a diffeomorphism, it does map R%,
homeomorphically onto itself.

21t can be shown using the mean-value theorem that under Assumption S the image of F is
uniformly bounded for any closed ball in £7, containing equilibrium points and lying in E.
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The domain of F;, consists of triples of price vectors (p,_1,p;,P+1) i R,
which we temporarily write as x,. Let p=(...,p;, P;+1,...) be an element of E
and denote by DF, ,(p) the 3n-vector of partial derivatives of F;,, evaluated
at x,. Then there is an r>0 such that {q:||q—p||§2r} lies entirely in E. For
any t=1 and 1Zi<n, the mean-value theorem ensures that for p in
{g:|lg—p|| <7}, there is an s in [0, 1] such that

Fip) = F@)|S sup {IDF, (sp+(1—9p)} b~ %,
0=<s=<

where X, corresponds to p in the same way that x, does to p. For any s in
[0, 1], the tth component of sp+(1—s)p lies in the set

{v:r§vi§|lp||+r, 1<i<n} in R"
It follows that

1)~ F@)| <3 mn [lp 5]

where m is a bound whose existence is guaranteed by assumption S on the
first partial derivatives of the excess-demand functions. Hence, F is contin-
uous at p, and p was an arbitrary point of E. Applying the definition of the
norm of an operator in £ [cf. Taylor (1958, p. 220)], and making use of the
assumption on the second partial derivatives of the excess-demand functions,
a similar argument shows that DF=(...,DF, ,,...,DF, ,...) is continuous,
and so F is confirmed to be C! on E. The lemma is thus established.

The collection of all economies F satisfying the assumptions put forth
above will be denoted by e Since our aim here is to investigate local
properties of W(F), it suffices to fix attention on a bounded, open ball B
centered about a point in E. As already remarked in the proof of Lemma 2.1,
B may be chosen in such a way that there is an >0 with the property that
p.2r for any t=0 and 1<i<n. A metric dp is introduced on ¢ as follows.
Let F and G designate two elements of ¢ and let {)',z‘}, {§',#'} stand for the
component functions of F and G, respectively. Define dy(F, G) by

dg(F,G)=min{I', 1},
where

I'=sup{y(t,p):0=t,pe B},
and

y(t,p)= |yr(Pt, Pi+1) =7 (P D 1)| + |Dyt(Pn Pr+1) —DV'(P i+ 1)|
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+ 'Z‘(pn Per 1) —Z(PisPi+ 1)| + |th(Pv Piv1)—DZ(p, py+ 1)|

In this definition Dy'(p,, p,+,) is the matrix of partial derivatives of ' at
Do Pev 1), |Dy‘(p,, Di+ 1)| is the norm of Dy‘(p,,p,+,), and similarly for the
remaining variables. The function dy provides a complete, metric topology on
e. Note that because the partial derivatives of each generation’s excess-
demand functions are homogeneous of degree minus one and obey WL, the
metric d; would yield the discrete topology on & Hence the sort of
localization proposed above is necessary in order to obtain our principal
results using the present functional-analytic setting.

The following lemma is a straightforward consequence of a generalized
version of the implicit function theorem [see Schwartz (1967, p. 278)]. Recall
that a linear map T:X—Y is termed a splitting surjection if T is onto and
ker(T) has a closed complement in X.

Lemma 2.2. Let F be an element of ¢, and p in W(F). Assume that DF(p) is a
splitting surjection, let K =ker DF(p), and let L be a closed complement of K in
£%. Suppose that p=py+p; where pyeK and p e L.

Then there exist open neighborhoods U, <K of px,U,<L of p;, and Vce
of F, and a continuous function g:U,xV—-U, such that for every

(P, P, G)e U x Uy x V,G(px+p) =0 if and only if py=g(Px, G).

The standard formulation of the implicit function theorem implies that if
DF(p) is surjective, then the equilibrium set is formed locally of C! manifolds,
although at this stage they may be modeled on infinite-dimensional spaces.

3. Stationary economies

The elements of our analysis will first be applied to the important, special
case wherein the economic aspects of the various generations do not change
over time. Such an economy is called stationary and evidently possesses the
property that there is a pair (y,z) of excess-demand functions for which
(y',2)=(y,2) for every t=1 and such that hypotheses S, H, WL and BD
hold. A stationary economy is thus fully specified by the triple (2% y,z) of
excess-demand functions.

An equilibrium (p,,p,,...) of a stationary economy given by the excess-
demand functions (z°y,z) is called a steady state if p,=p for every t>0,
where p is a fixed element of R", .. Thus p=(p,p,...) is a steady state if

2°(p, M)+ y(p,p) =0, (3.1)

and

z(p, p) + y(p, p)=0. (3.2)
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The existence of steady states in this general context has been studied by
Kehoe and Levine (1984). Their results ensure that for every pair of excess-
demand functions (y,z), which satisfy S, H, WL, BD and a standard
boundary condition, there is peR" . such that y(p,p)+z(p,p)=0. Let us
assume that for such a p there is an excess-demand function z° and an M
such that z°(p, M)+ y(p,p)=0. In our analysis concern will be particularly
with situations where M #0. In the case where M <0, it is assumed that WL'
holds locally around the stationary point.

The following lemma is an extension of Lemma 4.4 in Araujo and
Scheinkman (1977). Let p=(p,p,...) be a steady state of a stationary
economy, let F be the aggregate excess-demand function defined earlier for
this economy, and let DF(p) denote the derivative map of F evaluated at p.
Denote by D,y (respectively, D,y) the nx n matrix of partial derivatives of y
with respect to the first (respectively, last) n coordinates of R?", and similarly
for D,z and D,z.

Lemma 3.1. Let p=(p,p,...) be a steady state of a stationary economy given
by the triple of excess-demand functions (2°,y,z). Suppose that the characteris-
tic equation

det{42D,y(p,p)+ A[D, y(p. p)+ D2z(p, p)1 + D1 z(p, p)} =0

has no roots equal to one in absolute value, and let r be the number of roots
less than one in absolute value. Suppose D,y(p,p) to be an isomorphism. If
r2n, then DF(p) is surjective and dimker[DF(p)l=r—n, and if r<n, then
DF(p) is not surjective.

Remark. Araujo and Scheinkman assume that r=n in their discussion,
however, their proof is straightforwardly extended to substantiate the
broader statement given in Lemma 3.1. It is required in the proof (see their
footnote 11) that at the steady state the tangent space of the initial
conditions manifold [the kernel of the linearization of (3.1)] be transversal to
the tangent space of the stable manifold of the system (3.2).

Kehoe and Levine (1984) demonstrate that at any given steady state,
2n—1 roots of the characteristic equation associated with the linearization of
(3.2) are a priori unrestricted, but that assumption H entails that one of the
roots must be equal to one. The following result is a consequence.

Theorem 3.1.  Assume that p is a steady state of (z°,y,z). Then DF(p) is not a
splitting surjection.

Proof. Let r be the number of roots of the characteristic equation asso-
ciated with the linearization of (3.2) evaluated at the steady state which are
less than 1 in absolute value. Suppose that DF(p) is surjective, so that r=n.
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Since, by assumption H, 1 itself is certainly a root, we find from Lemma 3.1
that one can construct operators arbitrarily close in the norm topology to F
whose derivatives at p are surjective with kernels of dimension r—n.
Similarly, one can construct operators arbitrarily close to F whose deriva-
tives at p are surjective with kernels of dimension r—n+ 1. Since in the norm
topology the set of splitting surjections whose kernels have a given dimen-
sion is open [see Abraham and Robbin (1967, p. 42)], DF(p) cannot be
surjective. This contradiction leaves only the stated conclusion as a valid
possibility.

We proceed to make a redefinition of the price space and use this
renormalized domain in showing that for every k between 0 and n, there are
stationary economies where the derivative map of the aggregate excess-
demand function, evaluated at a particular steady state, is surjective with a k-
dimensional kernel. - )

Let x,=p,, and x,=p,/p;,_,, for all ¢, where p,=(py,,p,,....). Then by the
homogeneity assumption H, (3.1) and (3.2) can be rewritten as

z°(x1,M)+y<<1,;c—i>,x2>=0, (3.3)

11

and, for t>1,

1 1
z<(1, X >,x,>+y<<1,"—'>,x,+1>=o, (3.4)
Xyp—1 X1t

where for each t>0, x,=(x,,,x,,,...) and (1,x}/x,,) is a vector in R" the first
coordinate of which equals one and the last n—1 components, denoted
x}/x,,, are the last n—1 coordinates of the n-vector o en

Suppose that p=(p,p,...) is a steady state of (z° y,z). If D,y(p,p) is an
isomorphism, then by the implicit function theorem there exists a C* function
g defined on a neighborhood of (p, p) such that

g(p,-1,p)=(pip:+1) if and only if z(p,_,,p,)+ y(p,, p,+1) =0.

Let (x,x)=(p,p)/p,; where py; is as above. Then if D,y(p,p) is an isomor-
phism, there is a C' function ¢ defined on a neighborhood of (x, x) such that

8(x,_,x)=(x,x,4,) if and only if
z((laxtl—l/xlt—1)5xt)+y((laxrl/x1!):xt+1)=0'

Denote by G the matrix of partial derivatives of g at (p,p), and by G the
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matrix of partial derivatives of g at (x,x). Then G has a unit eigenvalue
whose eigenvector is (p,p), and G has a zero eigenvalue whose eigenvector is
(x,0). Our purpose now is to demonstrate that the remaining 2n—1
eigenvalues of G are also eigenvalues of G.

In what follows it will be assumed that none of the eigenvalues of G equals
zero, and that G has only one zero eigenvalue. Both properties hold
generically. The main result of the present section is based upon the
following simple facts.

Fact 1. Let Q, <R?*" be the set of (p,p,+,) such that py(p,p,+;)=—-M
where M is non-zero. Then

(i) Qy defines a (2n—1)-dimensional, C* manifold,

(i) G maps the tangent space of Q, at (p, p) onto itself, and

(iii) the tangent space of Q,, at (p,p) coincides with the generalized eigen-
space of G that excludes the eigenvector (p, p).

Proof. See Kehoe and Levine (1984, p. 85).

Fact 2. For some neighborhood U = R?" of (x,x), g(U) is a C' manifold of
dimension 2n—1.

Proof. Let {0} xR*~! be the subspace of vectors in R?" whose first
coordinate equals zefo, and {1} x R*"~! the set of all vectors in R*" whose
first coordinate equals 1. Then G is one-to-one on {0} x R*"~1, so it follows
from a standard argument [cf. Lang (1972, p. 16)] that there is a neighbor-
hood V=R?* of (x,x) such that g(Vn {1} xR* ') is a C! manifold of
dimension 2n—1. But g¢(V n {1} x R*"~1)=g(U) for some neighborhood U in
R,

Let U and V be as defined in the discussion above relating to Fact 2.
Define h:Q,—{1} x R*"~* by h(p,, p,+1)=(Ps, P1+1)/P1.- Then h is generically
a difftomorphism on a neighborhood of (p, p). Denote by g, the restriction of
gto Vn {1} xR*~1, and by g, the restriction of g to g(U).

Fact 3. The following diagram commutes, and therefore g, is a local
diffeomorphism at (x, x).

/ —’QM\

Vn{l} XR* VA{l}xR*»!

NS

&(U)——2(U)
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Proof. Obvious from the definitions.

From Facts 1, 2, and 3, the following result obtains.

Lemma3.2. Let h:Qu~{1} x R** be defined by h(pi,pis1)=(pirPrs1)/P1o
and assume that h is a diffeomorphism on a neighborhood of (p, p). Suppose that
none of the eigenvalues of G equals zero and that G has only one zero
eigenvalue. Then G has a unit eigenvalue with eigenvector (p,p), and the
remaining 2n—1 eigenvalues of G are also eigenvalues of G.

Let DF(x) be the derivative map at x=(x,x,...) of the left-hand side of the
system of equations in (3.3) and (3.4), and let x be as defined above. Then
from Lemmas 3.1 and 3.2 the following result is readily deduced.

Theorem 3.2. Let the conditions of Lemma 3.2 be satisfied. Let r be the
number of eigenvalues of G less than one in absolute value, and assume that G
has only one eigenvalue equal to one in absolute value. If r=n—1 then DF(x)
is surjective with kernel of dimension r—n+ 1.

Remarks. 1 (comparative statics). Since r ranges between 0 and 2n—1, it
follows from Theorem 3.2 and the implicit function theorem that if one
considers the metric topology on the space of aggregate excess-demand
functions on the price domain given in terms of the x-variables, then for
every k between O and n, there are open sets of economies in ¢ which possess
locally k-dimensional, C' manifolds of equilibria. Observe that the mathe-
matical setting allows for the possibility of introducing perturbations which
result in every generation to be varied, whereas in earlier comparative statics
analyses [cf. Kehoe and Levine (1985) and Geanakoplos and Brown (1985)]
the perturbations allowed only resulted in changing a finite number of
generations.

2 (more general life spans and non-monetary economies). After minor
modifications in notation, the analysis can be shown to include modeling
situations wherein generations live an arbitrary number of periods and where
the economy does not feature money. An interesting result obtains if time is
considered to extend from —oo to oo. At a steady state x of the form
(...x,x,x,...), DF(x) is generally invertible. Hence, in the doubly open-
ended version of the model, stationary equilibria are usually isolated.

4. The main result

In this section it is shown that most economies can only display
equilibrium price sets of dimension no greater than n. The method of proof is
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and p, which belongs to B, is an equilibrium point of F. Thus for any =,
DF*(p*) can be viewed as a linear map from R"“*1 onto R™ and therefore its
kernel has to be of dimension n. But for every 1, the vectors
atttl . .., a"" "1 belong to ker[DF*(p*)], and, as just ascertained, there is a
1 for which they are linearly independent, a clear contradiction.

Remarks. 1 (redefinition of the price space). The price variables in
Theorem 4.1 are spot prices, and the analysis thus applies to equilibrium
sequences of spot-price vectors that belong to ¢7,. The same conclusions
would obtain if the metric topology on the space of economies were related
to the renormalized prices that were introduced in the preceding section.?
Indeed, under this latter specification of the price space, there is a strengthen-
ing of our results since, as mentioned earlier, it has been demonstrated that
there are open sets of economies containing C' manifolds of equilibria
having any dimension up to n.

Throughout our study we have restricted the price domain to a fixed, but

arbitrary ball B in the price domain E. This local approach has been taken
because consideration of the entire set E gives rise to the discrete topology
on the space ¢ of economies considered here, because of the hypotheses H
and WL. This is an area where the present theory could be considerably
improved.
2 (regular economies). In attempting to extend the theory of finite-
dimensional regular economies to our setting, one might say that an
economy F is regular if DF(x) is surjective for every equilibrium x.* The
results of section 3 indicate that this concept may not be generic in the
present type of modeling configurations. Another limitation of this concept of
regularity owes to the fact that surjectivity places uniform restrictions on the
derivatives of the excess-demand functions. An illustrative example may be
obtained by considering the operator A whose matrix in the standard basis is
given as

12
1/4 .
1/8

L !

where every off-diagonal term is equal to zero and for t=1,2,..., the

3The proofl of this assertion parallels the one given in the text. Observe that the proofs of
Theorem 4.1 and Proposition 4.1 do not depend intrinsically upon the domain considered, and
the corresponding proof of Lemma 4.1 is facilitated by the fact that the formulated change in the
x-variables defines a diffeomorphism between both truncated domains.

“The class of examples presented in section 6 illustrates that this concept is not vacuous if one
uses an appropriate specification of the price domain.
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diagonal term of the tth row is equal to 2! ~*. For any 7, the composite map
proj. o A is certainly surjective. However, 4 is a compact operator on ¢, and
the range of A4 is plainly infinite dimensional. Hence the range of A cannot
be closed [see Rudin (1973, Theorem 4.18)] and so A is certainly not
surjective. As A is linear, DA(x)=A, and so A4 is seen to lack the defining
property of a regular economy. This observation also indicates that the
specification of easily verified, sufficient conditions for the regularity of an
economy may be difficult. In section 5 a related, but somewhat easier issue is
treated, namely to specify conditions on a class of economies so that almost
all members of the class are regular.

3 (more general lifespans and non-monetary economies). To infer an upper
bound on the dimension of the kernel of the derivative map in Proposition
4.1, it is sufficient to assume that the dimensionality of each generation’s
commodity space is uniformly bounded. In particular, consider the special
situation where each generation lives exactly m periods, and where there are
n goods available in each period. For such economies, it is true that most
will not possess equilibrium price sets of dimension greater than (m— 1)n.
Our results can also be stated to encompass any M e R. Observe, however,
that if M =0 the upper bound (m—1)n may be reduced by one dimension, as
the price level is now indeterminate.

5, An infinite-dimensional transversality theorem

Some of the results obtained in the preceding section indicate that without
additional restrictions, regular economies as defined here are not generic,
even if the price domain is suitably respecified. Because the equilibria of
regular economies are C' manifolds of bounded dimension, which is exactly
the situation to which Theorem 4.1 applies, it is of special interest to set
forth further restrictions on the set ¢ which will imply that almost every
economy in this restricted subset is regular. The provision of such conditions
will be the thrust of the present section, where an appropriate transversality
theorem is proved which applies to the class of economies under study. This
transversality result appears to prevail under somewhat weaker assumptions
than those of the standard transversality theory in infinite-dimensional
spaces, but of course the context is very special. We begin with a few
preliminary definitions and remarks.

Let M and N be two Banach spaces, and let B(M,N) be the space of
bounded linear operators that map M into N. An operator He B(M,N) is
said to be Fredholm if it has closed range, finite-dimensional kernel, and
finite-dimensional cokernel, If H is Fredholm, then its index is defined as
dim ker(H)—dim coker(H). The set F(M, N) of Fredholm operators from M
to N is an open subset of the space B(M, N) if the latter space is equipped
with its norm topology, and, in addition, the index is constant on compo-
nents of F(M,N) [see Schechter (1971)]. It is well known that if H=J+K



M.S. Santos and J.L Bona, Price equilibria of overlapping-generations economies 225

where J is an isomorphism of M onto N and KeB(M,N) is a compact
operator, then H is a Fredholm operator of index zero.

A not necessarily linear C* function f: M—N is called a Fredholm map if
its derivative Df (m): M— N is a Fredholm operator for all me M. Since f is a
C! mapping, Df (m) depends continuously on m and so the index of Df (m) is
therefore independent of m and, by definition, this number is the index of the
mapping f. A point me M is regular if the derivative Df(m): M—N is a
splitting surjection, otherwise it is singular. The images of the singular points
under f are called the singular values or critical values and their complement
in N the regular values.

Theorem 5.1 [Smale (1965)]. Let M and N be C%-Banach manifolds with M
separable and f: M—N a Fredholm map which is C% If q is greater than the
index of f, then the regular values form a residual set in N.

Theorem 5.2. Let ¢: Nx M—D be a C map where M, N and D are Banach
spaces with M and N separable. If O is a regular value of ¢ and if for every
neN,¢,=¢n,-) is a Fredholm map whose index is less than q, then the set
{neN:0 is a regular value of ¢,} is residual in N.

Remark. This sort of infinite-dimensional transversality theorem has been a
useful tool for demonstrating generic properties of classes of functions, in
particular classes of solutions of various partial differential equations [cf.
Foias and Temam (1977) and Uhlenbeck (1976)].

Proof. The proof follows a standard line [see e.g. Quinn (1970)]. Since O is
a regular value of ¢, P=¢ 1(0) is a separable, C?-Banach manifold. Let 7 be
the C? mapping which is the restriction to P of the projection of N x M onto
N. If a point (n,m)e N x M lies in P, then

dim ker[Dn(n,m)] =dim{(n’,m') € T, ,,(P):n' =0} =dim ker[ D¢, (m)]
and
dim coker [Dn(n, m)] =codimension(T,,, ,,(P) + {0} x M)

= codimension(ker[ Dp(n, m)]+ {0} x M)
=dim coker[ D¢, (m)],

where T, ,,(P) is the tangent space to P at the point (n,m). The assumption
on ¢, thus guarantees that = is a Fredholm map of index less than g. By
Theorem 5.1, the set {ne N:n is a regular value of n} is residual. However, if
n is a regular value for =, it follows from an examination of the definitions
that 0 is a regular value for ¢, [cf. Abraham and Robbin (1967, Theorem
19.1)]. Thus the result is established.
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Let ¢, B and F be as in section 4 and let
¢={Fee:for every x € B, range [DF(x)] is closed}, (5.1
equipped with the relative topology induced by &. The extra demand placed
on ¢ in (5.1) suffices to establish a genericity theorem of the sort contem-
plated above. Notice that & certainly may have a non-empty interior if the
underlying domain B is small enough. For example, if Fee is such that at
some point p, DF(p) is a splitting surjection, then it follows that if ¢ is near

enough to p in E and G is near enough to F in ¢ then DG(q) is also
surjective, so that DG certainly has closed range on some ball B.

Theorem 5.3. There exists a residual set & in & such that every Feg, is
regular on B.

The proof of this theorem is based upon the proof of Theorem 4.1 and the
following two lemmas.

Lemma 5.1. Let Fee, and x in E. Suppose that DF(x) is represented by the

matrix
A B
C D[

where A is a tn x tn matrix of scalars. If range [DF(x)] is closed, then for any
tn x th matrix A', if DF'(x) is represented by the matrix

A B
c D
then the range of DF'(x) will also be closed.
Proof. See Dunford and Schwartz (1958, p. 513, Exercise 17).

Lemma 5.2. Let Feté and let xeE. Suppose that for every 121 DF*(x) is
surjective. Then DF(x) is surjective.

Proof. Since DF*(x) is surjective for every t, it follows from Proposition 4.1
that dim K =dim ker[DF(x)] £n. Therefore K has a closed complement L (i.e.,
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£% =K +L) such that DF(x) is one-to-one on L. Let T be the restriction of
DF(x) to L. As T has closed range, it follows from the closed graph theorem
that T has a continuous inverse, which is to say that
T~ 'e B(range[DF(x)], L).

To prove that DF(x) is surjective, consider a vector y=(y,,¥,,¥s,...) €L,
and search for another vector ze/”, such that DF(x)z=y. Since DF*(x) is
surjective for every 1, the elements

e1=(y1,0,0,0,0,...)
e, =(y1,¥2,0,0,0,...)
‘33:()’1,)’2,,"3,0,0,...)

all belong to the range of DF(x). As T ! is continuous, the set
{T~'(e,)}n=1,... is bounded. By a Cantor diagonalization process, there exists
a subsequence of {T~'(e,)},=,, ... that converges in each coordinate to some
zef’,. Since each row of DF(x) contains only a finite number of non-zero
scalars, it follows that DF(x)z=y.

Proof of Theorem 5.3. For any 7 let & be the set {F:Feé}. Let & be
endowed with the topology induced by & As Lemma 5.1 holds, we may
argue exactly as in the proof of Lemma 4.1 that there is an open dense set &j
in & such that every F*e?j is transversal to 0 on B*. Hence, there exists an
open dense set . such that for every Fed,, F® is transversal to 0 on B".
Therefore, the set of all Feé such that F* is transversal to 0 on B* for every
7, is residual in & Theorem 5.3 is thus a consequence of Lemma 5.2

6. Examples of regular economies

An example is presented of a class of regular economies where, after a
redefinition of commodity prices, the set of price equilibria belongs to 7.
While this class of examples is somewhat special, it does capture the essence
of certain, more general, stationary economies. Indeed, it can be demon-
strated that if every agent has an upward-sloping offer curve, the properties
possessed by the class defined below extend to the models examined by Gale
(1973).

Consider the simple situation in which each generation consists of a single
agent and assume that there exists but one consumption good available in
each time period. For t=0,1,2,..., let ¢!, respectively ci,,, denote the
consumption of agent t in period t, respectively t+1. For all ¢t>0, let
u'(cl, ¢ty )=log(c)+aci,, be the utility function of the tth agent, where « is
a constant greater than 1, and let (wi,w!,,)=(1,0) be his endowment of



228 M.S. Santos and J.L Bona, Price equilibria of overlapping-generations economies

goods in periods ¢ and ¢+ 1, respectively. Agent O is endowed with a positive
quantity of M units of money. Given a price sequence p=(p;,ps,...), We
presume as usual that agent 0 maximizes ¢ subject to WL', whereas, for
every t>0, agent ¢ maximizes u‘ subject to WL.

Consider any price sequence p and any ¢>0. Then the pair (c}, ¢} ) solves
the constrained utility-maximization problem of agent ¢ if

il (6.1)
D€ Dr+1
ptc: +D:+ 1c:+ 1= Dp (6.2)

Since w!,; =0, then for the price sequence p to be in equilibrium, it must be
the case that

Pir1Cii =M for alltz0. (6.3)

Supposing the trivial optimization problem of trader 0 to be solved, it
follows from (6.1), (6.2), and (6.3) that a price sequence p is an equilibrium if,
and only if, for all t>0

Di+1= a(pt = M) >0. (6'4)

But for every py=M(1—1/x)~", there exists a price sequence with p} as its
first coordinate which satisfies (6.4). Moreover, if
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¢ =K+ L) such that DF(x) is one-to-one on L. Let T be the restriction of
DF(x) to L. As T has closed range, it follows from the closed graph theorem
that T has a confinuous inverse, which is to say that
T~ 'eB(range[DF(x)], L).

To prove that DF(x) is surjective, consider a vector Y=W1,Y2,V3,...) €L
and search for another vector ze#" such that DF(x)z=y. Since DF*(x) is
surjective for every 1, the elements

e1=(y150’0,050,---)

e2=(y1’y2,0,0’05--')
e3=(y1’y2’y3,0709'--)

all belong to the range of DF(x). As T ! is continuous, the set
{T"%(e,)},=1,... is bounded. By a Cantor diagonalization process, there exists
a subsequence of {7~ '(e,)},~;, . that converges in each coordinate to some
ze/",. Since each row of DF(x) contains only a finite number of non-zero
scalars, it follows that DF(x)z=y.

Proof of Theorem 5.3. For any t let & be the set {F':Feé}. Let & be
endowed with the topology induced by & As Lemma 5.1 holds, we may
argue exactly as in the proof of Lemma 4.1 that there is an open dense set &}
in & such that every F*e#] is transversal to 0 on B, Hence, there exists an
open dense set ¢, <& such that for every Fed,, F* is transversal to 0 on B,
Therefore, the set of all Feé such that F* is transversal to 0 on B for every
t, is residual in & Theorem 5.3 is thus a consequence of Lemma 5.2

6. Examples of regular economies

An example is presented of a class of regular economies where, after a
redefinition of commodity prices, the set of price equilibria belongs to 7.
While this class of examples is somewhat special, it does capture the essence
of certain, more general, stationary economies. Indeed, it can be demon-
strated that if every agent has an upward-sloping offer curve, the properties
possessed by the class defined below extend to the models examined by Gale
(1973).

Consider the simple situation in which each generation consists of a single
agent and assume that there exists but one consumption good available in
each time period. For 1=0,1,2,..., let ¢!, respectively cj+1, denote the
consumption of agent ¢ in period ¢, respectively t+1. For all t>0, let
u'(c, i+ 1) =log(ci) +act,, be the utility function of the tth agent, where o is
a constant greater than 1, and let (wi,w!,,)=(1,0) be his endowment of
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goods in periods t and t+ 1, respectively. Agent 0 is endowed with a positive
quantity of M units of money. Given a price sequence p=(p;,Pa,...)s We
presume as usual that agent 0 maximizes ¢ subject to WL', whereas, for
every ¢ >0, agent t maximizes u' subject to WL.

Consider any price sequence p and any ¢>0. Then the pair (¢}, cj4) solves
the constrained utility-maximization problem of agent ¢ if

P (6.1)
DiC: Pr+1
ptC:+P1+1C:+1=pr (6.2)

Since w!, =0, then for the price sequence p to be in equilibrium, it must be
the case that

psicly =M for allt=0. (6.3)

Supposing the trivial optimization problem of trader 0 to be solved, it
follows from (6.1), (6.2), and (6.3) that a price sequence p is an equilibrium if,
and only if, for all t>0

Pev1=o(p;— M)>0. (6.4)

But for every pi =M (1—1/x)~*, there exists a price sequence with p} as its
first coordinate which satisfies (6.4). Moreover, if

,_ M
D1 1_1/a’

it follows from (6.4) that for t>1,
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and if

/

>
2 1—1/a

then by (6.4), p;—~ o0 as t—o0. Therefore, the set of equilibrium prices of this
economy is not contained in ¢ .

Let x,=p, and, for t>1, x,=p,/p,—,. Then for every price sequence
p=(p1,DP2,...) Which satisfies (6.4), its associated vector x=(x;,x,...) has the
property that either x,=1 for all t>1, or x,—a as t—o0; in either case, x is
an element of 7. Furthermore, after linearization of the aggregate excess-
demand function at equilibrium points, the methods laid down in section 3
for stationary economies readily confirm that such an economy is regular
when considered as a function on its redefined price space. Its equilibrium set
consists of two components.’> One component is the single vector

1
=[——LL1,... )
X (1—1/(1,,’, )

where the derivative map of the aggregate excess-demand function is an
isomorphism. The other component is a one-dimensional, C* manifold.

SUnder quite general conditions, Dierker (1972) has shown that regular finite economies have
an odd number of equilibria. Note, however, that the number of components depends on the
topology chosen. For instance, in the product topology, the equilibrium set of this class of
economies comprises a unique component.
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