Reprinted from JOURNAL OF DIFFERENTIAL EQUATIONS : Vol. 103, No. 1, May 1993
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Dispersive Blowup of Solutions of
Generalized Korteweg—de Vries Equations*

J. L. Bona

Department of Mathematics and The Applied Research Laboratory,
Pennsylvania State University, University Park, Pennsylvania 16802

AND

J.-C. Saut

Laboratoire d' Analyse Numérique, CNRS, Université de Paris-Sud,
Bétiment 425, 91405 Orsay Cedex, France

Received August" 29, 1990; revised April 30, 1991

The strong effect of dispersion on short-wavelength disturbances featured by the
Korteweg—de Vries equation and some of its generalizations is exploited to provide
solutions of these equations that correspond to infinitely smooth initial data, which
exhibit a specified loss of spatial smoothness at particular times. The points in
space-time at which smoothness is lost may even comprise an arbitrary discrete
subset of the upper half-plane {(x, ?): x€ R, 1=0}. Our results are related to recent
work on smoothing of solutions of such equations, some of which are sharpened
here, and they show that in certain aspects these earlier results are not far from
being optimal. The theory makes use of new results concerning well-posedness of
such equations in weighted Sobolov spaces and some detailed analysis of the linear
Korteweg—de Vries equation,  © 1993 Academic Press, Inc.

1. INTRODUCTION

The purpose of this paper is to explore the singularities of solutions of
certain one-dimensional wave equations that are caused by a focusing effect
related to the dispersive properties of the equation. Whilst the phenomenon
to be explained presently appears to be a property of quite a number of
wave equations that feature an unbounded, linearized dispersion relation,
it is examined here in the relatively narrow context of generalized Korteweg-
de Vries equations of the form

u,+u”u_,+uxxx='0,f (1.1)
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where.-p is a non-negative integer and u=u(x, 1) is a real-valued function
of the two.real vyariables x and ¢ which in applications are usually propor-
tional to distance measured in the direction of the waves propagation and
elapsed time, respectively. The case p= 1 is the classical Korteweg—de Vries
equation written in scaled variables and 2 travelling frame of reference,
whilst p =0 recovers the linearized Korteweg—de Vries equation. Though
the equations are non-linear for positive p, it is noteworthy that the loss of
smoothness suffered by some solutions 18 associated only with the
linearized dispersion relation possessed in common by all the equations
(1.1), and hence the term “dispersive blowup” as a descriptive label.

As far as we know, the gist of the idea that comes to the fore here first
appeared in an extended remark in the paper of Benjamin et al. [4] in their
discussion of the Korteweg—de Vries equation’s potential as a model for
small-amplitude, 1ong-wavelength, surface water waves. The crux of their
remark centers on 2 particular property of the linearized group and phase
velocity for the Korteweg-de Vries equation (KdV equation henceforth).
One aspect of this will become clear in Section 4 where the fundamental
solution of the linearized, initial-value problem, a function related to the
Airy function, is studied in some detail. Another way to see what 1s
involved is to take p= 0in (1.1) and consider a simple harmonic wavetrain
of the form cos(kx — ot) where the wavenumber Kk is viewed as fixed but
arbitrary. Demanding this wavetrain be a solution of (1.1) with p=0 leads
to the dispersion relation for the frequency @ as a function of wavenumber
k, namely

o = o(k)=k(1—k). ‘ (12)

Especially important is the fact that the group velocity ¢.(k)= w'(k) and
the phase velocity c(k)= w(k)/k are both unbounded, assigning arbitrarily
Jarge negative values to short-wave components, Because of this property,
it is possible using Fourier’s principle to specify initial data arranged in
such a way that infinitely many, widely spaced, short-wave components
will coalesce at a single point at some given time and thereby result in loss
of spatial smoothness of the solution at that time. Thus it was shown in the
last cited paper that for (1.1) with p= 0, an infinitely differentiable, L, (R)-
solution can become unbounded at a single point in space-time. Benjamin
et al. [4] suggested that similar effects would be found for the KdV
equation itself, and went on to view this purported state of affairs as
evidence in favour of a heuristic argument for a different model equation,
the so-called regularized long-wave equation which has a linearized disper-
sion relation more closely allied to that of the full, two-dimensional Euler
equations for surface wave motion, and which does not possess the
property of dispersive blowup- The supposition of Benjamin et al. [41
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concerning solutions of the KdV equation follows as a corollary to the
main results about dispersive blowup derived here.

Our work relates in general ways to papers of Cohen [10], Ginibre and
Tsutsumi [12], Ginibre et al. [13], Kato [15], Kenig et al. 116, 171,
Ponce [24-26], and Sachs [27] wherein it was shown that in certain func-
tion classes, the KdV equation is smoothing. That is, some solutions u(x, )
of the KdV equation are, for almost every ¢> 0, smoother in various ways
than they were at =0 From a smoothing result, it is adduced at once by
running time backward that certain solutions form singularities in finite
time. The methods employed here are quite different from those such as the
inverse-scattering transform, energy-type estimates, and harmonic analysis
techniques used in the above-mentioned papers, and they lead to more
specific conclusions in some cases.

The manner in which our results are obtained is quite simple, and was
outlined in our earlier note (Bona and Saut [5]). As explained in
Section 4, the evolution equation in question is viewed as a linear equation
forced by its non-linearity. Looked at this way, the equation may be solved
by linear techniques, SO resulting in an equivalent integral equation in
which the solution of the linearized initial-value problem appears explicitly.
Initial data is then specified along the lines suggested by Benjamin et al.
[4] that features loss of regularity for the solution of the linearized
equation. It is then shown that the non-linear term in the integral equation
remains smooth, and so the full solution of the equation is inferred to form
the same singularity that was present for the linear equation.

The main ingredient that is used to establish control of the non-linear
term in the integral equation is an existence theory for the evolution equa-
tion in certain weighted Sobolev spaces. This topic has been the subject of
considerable effort, as witnessed by the works of Kato [15] and Kruzhkov
and Faminskii [19]. Unfortunately, the particular results needed here seem
not to have been established elsewhere, and consequently they are derived
in Section 3 of the present paper.

Section 2 contains some preliminary results that will be used in the later
sections, whilst Section 5 records commentary on likely extensions of the
present theory. Some of the results in Section 2 are new, whilst others are
just restatements of theorems in the literature. The Appendices contain the
proofs of a couple of the most technical facts described in the body of the

paper.
2. PRELIMINARY RESULTS

The generalized KdV equations (GKdV equations henceforth)

(GKdV) u,+u”ux+uxxx£0 (2.1a)
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introduced earlier will be posed for x€ R, the real line, and t >0, subject
to the auxilliary initial condition that

u(x, 0)=Y(x) (2.1b)

for xR, where  is some given function. The initial-value problem (2.1)
is locally well posed in reasonable function classes, and if p <4 it is globally
well posed as the following results on smooth solutions attest.

TuroreM 2.1. Let k=2 be an integer and let Y e HE(R). Then the
following holds true regarding the initial-value problem (2.1).

(i) Ifp<4 there exists a unique solution u of GKAV corresponding
to the initial value W which, for any T>0 and R>0, belongs to
C(0, T; HX(R)) 0 L2 (0, T: H**'(—R, R)). Moreover, for any T>0 and
R>0, the correspondence Yru IS continuous from H*(R) into
(0, T; H*(R)) N La(0; T; H**'(— R, R)).

(i) If p=4, the same conclusions as those in (i) hold provided 'that
o is not too large.

(i) If p>4 and if W, is not too large, then the same conclusions
enunciated in (i) continue 10 be valid.

(v) Ifpz4 but \ is unrestricted in size, then there exists a positive
T*=T*(|y|,) such that the conclusions in (i) hold for all T in the interval
(0, T*).

(v) For all T>0 such that for all R>0 the solution u of the
GKdV equation lies in C(0, T; HX(R)) N L4(0, T; HX*Y(—R, R)), it is
also true that for gl R>0, &Ju lies in c(0, T; H*"7(R)) N
L,(0, T; F*+1-Y¥(=R, R)) for any ] such that k—3j> —3. Moreover, the
correspondence Yru s continuous from HY(R) into k-3>-3 cX(0, T,
H*=3(R))n H’(0, T} H*+1-¥(—R, R)), for all R>0.

Notation. In the above theorem, and throughout, the notation is that
which is currently standard in the theory of partial differential equations.
If X is any Banach space of functions, its usual norm will be denoted | |l x
except for a few abbreviations to be explained now. If X = L,(R) for some
pell, ©l, then the norm of feX will be written as |f1,- If k is any
non-negative integer and X = H(R), the Sobolev space of L,(R)-functions
whose first k derivatives lie also in L,(R), the norm of a function f wil be
abbreviated to 11/« Similar abbreviation will apply to the dual spaces
H~5(R) of the H*(R), and indeed to the spaces H*(R) for any real s
(cf. Lions and Magenes [21] for a discussion of these spaces). Thus the
norm in L,(R) is denoted both by | |, and by | lo. All the spaces H*(R)
are Hilbert spaces, but the only inner product that will intervene in our
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analysis is that of L,(R), which is written simply as (, ). In a couple of
places in our development, appeal will also be made to the spaces W} (R)
of LP(R}functions whose first k derivatives also lie in L,(R) and their dual
spaces W, “(R) where p~'+4¢ '=1. The norm in these spaces wil not be
abbreviated. It is well known that fe W;*(R) if and only if f can be
represented as a finite sum of distributional derivatives of order at most k
of functions belonging to L,(R).

If X is any Banach space, C (0, T; X) is the space of continuous functions
from [0, T] into X with the maximum norm

lull co, 1 3y = MaxX (N x-
o<t<T

Similarly, L,(0, T} X) is the collection of Borel measurable, X-valued
functions u defined on [0, T] for which ()]l x lies in L,(0,T).

Remarks. The results (i) and (iv) may be found in Kato [15], except
for the continuous dependence in the space L,(0, T; H**'(=R, R)). This
latter result follows from the approximation technique of Bona and Smith
[7] coupled with Kato’s proof of the local smoothing effect (Kato [15,
formula 317). A sketch of the proof appears in Appendix A to this paper.
Conclusions (ii) and (iil) derive from (iv) and the a priori bounds that
obtain if [|¥l, is not too big for p=4 and if |, is not too big for p>4
(cf. Schechter [30] and Strauss [32]). Part (v) follows from parts (i)-(iv)
upon differentiating the equation j times with respect to ! and arguing
inductively on j for j=1,..,m where m is the largest integer less than
1+ik.

It is worth comment that recent numerical simulations of the initial-
value problem (2.1) indicate that solutions u corresponding to initial data
ye HYR), k=1, need not remain in the class H*(R) for all time if p=z4
(see Bona et al. [8,9]). Indeed, it was shown in Albert et al. [2] that
llu( -, )], becomes infinite in finite time if and only if |u(-, t)|, becomes
infinite in finite time, and the numerical simulations indicate convincingly
that the L (R)-norm of certain solutions becomes unbounded at a finite
value of t. However, it appear that this sort of singularity formation
subsists essentially on the non-linearity and is not directly related to the
results obtained here. Consequently we term it “non-linear blowup” to
distinguish it from the dispersive blowup that is the focus for the present.
The only result here that bears upon non-linear blowup is Corollary 3.2
which strengthens slightly the just mentioned theory of Albert et al. [2).
Note also that the argument of Saut and Temam [29], when applied in the
present context, shows that if ¥ e H*(R), s>2, but ¥ ¢ H(R) for some
r> s, then the solution u of (2.1) emanating from y does not lie in H'(R)
for any t in its interval of existence as an H*(R)-valued solution of (2.1).
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If Y € H*(R) where s> 2 is not necessarily an integer, most of the above
results are still valid (cf. Abdelouhab et al. [1], Bona and Scott [6], Kato,
[14, 157, Saut [287], and Saut and Temam [29]).

In addition to the theory for (2.1) pertaining to data ¢ in H (R) where
k>2, there is also a theory of weak solutions that applies when k=0 or
k = 1. Stated now are results in this direction which will be used in Section 4
(see also the recent papers of Ginibre and Tsutsumi [127, Ginibre et al.
[13], and Kenig et al. [16, 177, for other, very nice results concerning
solutions corresponding to fairly rough initial data).

TueoREM 2.2. Let ¥ e H*(R) be initial data for the problem (2.1). Then
the following conclusions obtain.

(i) If k=0 and p <4, then there exists a solution u of (2.1) which,
for any T>0 and R>0, lies in LW(R";LZ(R))r\L;(O, T: H'(— R, R)).
A bound for the norm of u in this space can be given that depends only on
T, R, and |¥|..

i) If k=1 and p <4, then there exists a solution u of (2.1) which,
for any T>0 and R>0, lies in Lm(R““;H‘[R))nL;(O, T: H*(—R, R)).
A bound for the norm of u in this space can be given that depends only on
T, R, and ¥\ If p=4 and Wy is sufficiently small, then the same result
holds.

Remarks. For p=1, the result (i) is in Kato [15]. By paying a little
more attention to the details of Kato’s argument, the improved range of p
may be obtained as is shown in the sketch presented below. Part (ii)
appears to be new, and consequently a complete proof is offered here.
A partial result in this direction has recently been obtained by Ponce [24].
A similar result may also be deduced from the work of Kenig et al. [181].

Proof. (i) Suppose that k=0 but 1< p<4. We follow closely the
argument of Kato [15], especially his Theorem 6.2 and Theorem 7.1. Let
{y,;};2, denote 2 sequence Of H*(R)-functions such that ;¥ in L,(R)
and, say, |l‘l’;“o<\|l//\|o for all j, and for each j let u; be the associated
smooth solution of the GKdV equation with initial data ; as guaranteed
by Theorem 2.1. By virtue of Kato’s formula (33) in the proof of his
Theorem 6.2,

T #R
j j 18, (x, D)2 dx dt <K,
0 —R

where K depends only on T, R, and ||Y;llos and so if R and T are fixed, is
independent of J. Moreover, for all =0,

g, (- Dllo= M lo < ¥ llo-
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The idea now is to pass to the limit as j — o, for which process Aubin’s
compactness theorem (Aubin [3], Lions and Peetre [22], Lions [20,
Chap. 1, Sect. 5]) presents itself as a potentially useful tool. However, some
sort of bound on &,u, is needed to apply this theorem. Since {u;}2, is
uniformly bounded in L (0, T; Ly(R)) " L(0, T: H'(—R, R)) for each
fixed T and R, it transpires that {d u;};=, is uniformly bounded in

L (0, T; H3(R)) n L,(0, T; H;2(R)) for each fixed 7. Thus a j-inde-
pendent bound on the non-linear term d,(u7 +1) will yield a j-independent
bound on d,u; by virtue of the differential equation. Abbreviating u; by u,
we argue as follows. Let ¢ € Ho(—R, R) with [|§lly—r m S 1. Then for
each te [0, T],

IR wPu, ¢ dx = ——I—JR uP ¢, dx
—R B B p+1lJ_r =

and so by Hélder’s inequality, a Sobolev imbedding theorem, and a
classical interpolation inequality, we have
1

<
p+1

fRR uPu,d dx

s N2 L py 1Bl L= 2 0

< c ”u(" t)” Z-I"-/(%P'*Z)(_,R' R)
< llu(, ONZE2 0 uC, DI EE - - &)
< C |lu(-, D13 _z »)»

because of the #- and j-independent bound on llu(-, t)llo. Since this
inequality holds for all such ¢, there is implied the relation

NPl g-1(—r, R_)< C |lu(-, t)“’;f/lz(—R,R)-

Integrating the (%)—th power of this relation over [0, T'] leads to

T T
[ 04y de < C [ Ol

< CK,

which holds independently of j. It follows that {0,u;}2, is bounded in
L4, (0, T; H™*(—R, R)), independently of j. Thus in case 4/p > 1, we are in
a position to pass to the limit as j — co in the way that is by now classical
(see Kato [15], Lions [20], Strauss [32], Temam [34]), obtaining a

global solution u of the GKdV equation that, for each T>0, lies in

Lo(0, T; Ly(R) A L;(0, T; HL, (R) 0 CO, T Hi(R))

such that u(-, t) - ¥ as t >0 at least locally in H~2
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(ii) Letr:R—>Rbea strictly increasing, bounded, smooth function,
all of whose derivatives are bounded. We proceed as in Section 6 of Kato
[15]. Let {y,};=, be a sequence of H*(R)-functions such that Y~ ¥ in
HY(R). Let v =wu; denote the smooth solution of (2.1) corresponding to the
initial datum y;, for j=1, 2, ... As is well known, if p<4, lv(-, Dl is
bounded, independently of ¢ with a bound that depends only on lls-
Hence |v(-, 1)ll; is bounded, independently of j and t. If p>4, then the
theory worked out by Strauss [32] or Schechter [30] contains the same
conclusions in case ||y, l; is small enough, and the latter is true for large
enough j provided (¥l is small enough.

A j-independent bound on v in the space L,(0, T} H? (R)) is now
derived. Differentiate a solution v of the GKdV equation with respect to X,
multiply by rv,, and integrate the resulting expression over R. After several
integrations by parts, there appears the relation

1d (= 2 3 p> ) 1 ¢ ,
EE j_w rvs dx +§ j_w r.v2. dx 3 J_w YU
1 « 0

T ) xn’vp+2d -2 x A zd

(P+1)(p+2)J_mr" X J_wrvvx b

_ ,
- —— p+1 }
p+1 j T Ol (22)

Using the GKdV equation satisfied by v, the right-hand side of (2.2) may
be expressed as -

1 d e

—— e~ p+2d

(p+1)[p+2)dtj_oorv B
1
2p+1)

—p—ﬁ '[ roP o dx =

jw rotd. (23)

Substituting (2.3) into (2.2) and rearranging terms leads to
d r® 1 5 1 p+7> 3 ™
- — — 2 d - 2 d
dtj—w’<2”-* D +2) w3 ] ke
© 1 5 1 p+2>
= =y, — =y d
.j_wr.vx.¥(2vx (p+1)(p+2)1) X

o 1
P 2 __ p+2
+ f_oo T (2vx -————2(p 17 v > dx. (2.4)

Using the aformentioned properties of r and the fact that the H'(R)-norm
of v is bounded independently of j and ¢, it follows readily that the right-
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hand side of (2.4) is bounded, independently of j and ¢, say by a constant

=c(¥l) which depends only on lyly forJj sufficiently large. Integrating
(2.4) over the temporal interval [0, 1], where 0<t<T,and estimating the
right side by ¢T, we obtain that

3 t poO : © 12 1
- < = =5 e p+2
zjoj_w“"“d" T LJ(z”" P+ )d"

Since r and |vll, are bounded, independently of t and of j, it may thus be
concluded that

f

0

j: [7 rotdr<e (2.5)

— @

where the constant in (2.5) depends only upon T, r, and on I, at least

for j sufficiently large. By choosing the increasing function r appropriately,
it follows that

j: j:vix dx<c, (2.6)

.where ¢ depends only on T, R, and |ly|l,. This is the desired a priori
information.

~ Once it has been inferred that the sequence {uj}j=, 15 bounded in
L, (R*; H'(R)) and, for each 7>0 and R>0, in Ly(0, T; H*(—R, R)),
standard arguments show that the sequence {u;};2, converges to a
‘function u which is a global distributional solution of (2.1) and which lies
in Lw(R“‘;H‘(R))nLZ(O, T: H2, (R)), for all T 0. It also follows that
ue C(R*; H'A(R)), ue C,(R*; H'(R)), and that u,€ C,,(R™; HYR)n
L,(0, T; Hige (R)), for all T>0. Here C,(f; X) denotes the functions
w: I — X which are continuous when X is given the weak topology.

This concludes the proof of the theorem. |1l

While the GKdV equation does not necessarily possess global solutions
for arbitrary smooth data when p is larger than 3, it is interesting to note
that if p = 2q is even, and the sign of the non-linearity is changed, then no
matter how large ¢ is, global solutions obtain for any smooth data. Thus
consider the initial-value problem

U— quux T Upxx = 0’ (273)
u(x, 0) = Y(x) (2.7b)
Regarding (2.7), the following result applies for any g€ N.

THEOREM 2.3. Suppose that k is a non-negative integer and ¥ € HY(R).
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Then if k = 0 and g4 < 2, or k=1and qis unrestricted, there exists a
solution u of (2.7) with initial data  such that, for any T>0 and
R>0, ue L*(0, T: H*(R)) n L*(0, T: H**' (=R, R)). If k=2 and q Is
arbitrary, the solution is unique. For any g=0, if k=2, then ue C(0, T}
H*R))n L*(0, T; H**'(—R, R)), and d/ueC(0, T; H*=3%(R))n Ly(0, T;
He+1-%(—R, R)) for all j such that k—?3j>—3. Moreover, the corre-
spondence 1 u is continuous from H*(R) 10 (Vk—3> -3 c’o, T, H* ¥(R))n
H/(0, T, H*+1=%(—R, R)) for all T>0 and R>0.

Remarks. Despite the more agreeable situation regarding the global
well-posedness of the initial-value problem (2.7), it has exactly the same
behaviour as does (2.1) regarding dispersive blowup, again emphasizing the
scant tole played by non-linearity in our theory. In particular, it is
suggested that what we earlier called non-linear blowup is independent of
dispersive blowup-

The proof of Theorem 2.3 follows by applying Kato's general theory
(cf. Kato [15, Sects. 4,5,6,7]). The central difference between the GKdV
equation and (2.7a) is that the third invariant integral is positive definite
for (2.7a), whilst this property is lacking for (2.1a). More exactly, if u is a
sufficiently regular solution of GKdV, then

™ wnde | weendx
I J

jw Lul(x, t)— c,uf 2 (x, 1)] dx

are all time invariant. Here ¢, = 1/(p+1)(p+2). For (2.7a), the corre-
sponding invariants are

N u(x, 1) dx, - u?(x, t) dx,
I, .

rc [1ul(x, 1)+ czquz"”(x, t)] dx.

It follows that the H (R)-norm of solutions of (2.7a) is always bounded,
whereas this conclusion seems to apply to GKdV for initial data
unrestricted in size only if p<4.

3. EXISTENCE THEOREMS IN WEIGHTED SPACES

In this section some technical theorems that are central to our main line
of argument will be established, namely an existence theory for the initial-
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value problem (2.1) set in weighted, L,-based Sobolev spaces. The results
established here are similar to those proved by Kato [15] and Kruzhkov
and Faminski [19], although the precise theorems obtained appear to be
new in case p> L.

The weights w of interest for the blow-up results in Section 4 have
the following properties. The function w=w,(x) is a non-decreasing, C%
function depending on a positive parameter ¢ for which

1 for x<0, and

A
(1+x%)° for x>1 (31)

W) =i =1

The class L,(R, w) is the class of measurable functions which are square
integrable with respect to the measure w?(x) dx. The class H*(R, w) is the
subspace of L (R, w) consisting of all those elements whose first k distribu-
tional derivatives also lie in Ly(R, w). The space H*(R, w) is given the
obvious Hilbert space structure.

TusoreM 3.1. Let p and k be non-negative integers and let the parameter
o associated with the weight w be non-negative, but otherwise arbitrary.
Suppose the initial data \ in (2.1) to lie in HX(R, w).

(a) If k=0 or 1 and p <4, then there exists a solution u of (2.1)
corresponding to the initial data W such that, for any T>0, u belongs to
Lo (0, T; HX(R, w)) 0 Ly(0, T; Hige ' (R)). |

(b) If k=2 and p <4, then there exists a unique solution u of (2.1)
corresponding to the initial data W such that, for any T>0, u belongs
to C(0, T; H(R, w)) 0 L2(0, T} HE+Y(R)). Moreover, the mapping that

associates u to \ is CONLINUOUS from H R, w) into C(0, T; HY5R, w)) 0
L,(0, T; HEEH(R)).

loc
(c) If k=1 and p=4, then corresponding to each W there is a
T*=T*(|y|,) and a solution u of (2.1) corresponding 10 y such that for
any Te (0, T*), u lies in L (0, T; HX(R, w)) Ly (0, T HEY(R)). k=2,

u lies in C(0, T; HX(R, w)) 0 Ly(0, T} HEYY(R)) and is unique within its

function class. Moreover, the mapping that associates u 10  is continuous.
If |, is small enough, then T* = + 0.

Remark. In fact, the value T* appearing in part (c) of the theorem
is exactly the same as the value T* that intervenes in part (iv) of
Theorem 2.1. That is, if the initial data  lies in H*(R; w,), then as long as
the solution u(-, t) remains in H k(R), it follows that it lies in H*(R; w,)
also.

Proof. We follow the standard pattern of deriving bounds on solutions
of (2.1) corresponding to smooth initial data and then passing to the limit



14 BONA AND SAUT

as the smooth data converges to the given data Y. To this end, let {¥;};2
be a sequence of C?(R)—funotions that converges to Y in H*(R, w).
Without loss of generality, it may be assumed that [Vl gk, w) < W) axem, w)
for all j. Let u=u, denote the unique solution of (2.1) corresponding to U5
This solution will be local or global, depending on the value of p (see
Theorem 2.1), but while it exists it will be a C®-function of x and ! all of
whose partial derivatives lie in L,(R). Let v=wu 8O that v satisfies the
equation

3 2
W W wiow W w
V4 Vax T 0 (6 "wz’“ —6—5— ———“""‘) + 0, (6 ——w; -3 ———""‘)

w w

Wy | Wy
—3—V;vxx+—ﬁvpv_,—wp+1v”+1=0. (3.2)

By assumption, v(x,0) lies in H*(R) and, in addition, Jlv(-, 0k is
bounded independently of j. Since

w
& > 0
w -
and
W W wliow wi oW
6 X XX 6 —_7_(' xxXx 6 _ﬁ 3 XX
2 3 ’ 27 ’
w W w w w
— _——-—w .V
w?’ wP*?

are all smooth, bounded functions of x, Kato’s general theory [14, 151
assures that at least locally in time, there is a unique C=-function v(x, 1)
solving (3.2) with the given initial value which has its partial derivatives in
L,(R). By uniqueness for H*=-solutions of (2.1), it follows that v/w =1u.
Consider first the case k=0, because it is particularly important in
Section 4 and because the proof in this case is illustrative of the argument
in the general case. Multiply (3.2) by v, integrate over R, and integrate by

parts appropriately to reach the relation

o =<} wr
f vzdx+3j S =
—c0 —oC w

1d
2dt

(3.3)
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where

W wl o wewe, 3w w2 3w\
0 - XXX _X e X XX . Rey _X s __X .

meveii-omii (%), < (). (%),
The deﬁnition of w entails that 6 is a bounded, smooth function. Thus
Gronwall’s lemma my be applied to (3.3) if we are able to estimate
appropriately the second term on the right-hand side of (3.3). To this end,
remember that v/w=u and that |ul, is bounded, independently of j and
of p.

Taking p=1 in (3.3), we begin by observing that

W, W,
—v —v

2w < W
" Bvrac=[ ZXw<lulololo

<clvlo

o0 = 4]

Furthermore, since w,/w and (w,/w), are both bounded functions, it
follows that

1/2 12

W, w W
w (-] 0 w x10
1/2 1/2
w W w
L2|= livll},/zH —x) v 4+ [— v, }
W lw W/ lo w 0

wx
-_— Ux

1/2
}
0

where here, and henceforth, ¢ denotes various constants that depend upon
the weight w and the norm of the initial data y, but which are independent
of ¢t and j. It also follows that
(wx>l/2
- 12
W

Hence an application of Young's inequality leads to the estimate

<cﬂﬂﬁWﬂ¥

Lc
0

e v,

w

0

O W, , ) 30 we ,
— v dx<cl|v +—J —Z v dx.
| v dx<elolz+z] ok

o]

Combining this estimate with (3.3) and the fact that 0 is bounded gives

EELOO vidx+2 f_w%vi dx§cj—Oo v? dx,
from which it is readily adduced that |o(-, t)llo is bounded, uniformly on
bounded time intervals. '
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Suppose now that 2<p< 4. The crucial term on the right-hand side of
(3.3) is then handled differently. First, for any p, we have

X

w0 wx +2 oo 2 wx
— X _pPtidx= u vPdx<c
N wp~1 wP~
— 0 oC

<c

P
1U

=X

w2 1

e <
wl}l

+c 5V

(f—v>/ v\ (34)

ontinue this bound as follows:

/
w\ M2
UX
w’

2 Wy 2
<clvl3+ — % dx.
Tl e

va_

If p=2, the properties of w allow us to ¢

* “J.Y +2 2
j = _ppr2ax < lvlz+clvla

1
—o WP 5

along with Gronwall’s lemma to conclude
ded in different

- Uy
w
5

One may then use this in (3.3)
the desired result. If p>2, the estimate in (3.4) is exten

ways. For p=3, write
Wy 12
uy — v
W
)

2 2

Wy 12
Zx) p,
W

1/2

<

+c
2

o\ 12 w12 12
W 5 w <2
U AW el | AT w2
Vs s}y ~22%)y
W w2/ |, W w?) |«

" W 1:2 3/2
+clp|}2P =] v
B W

<clvl,
2

]

" 12

" NN

— v .
W

+ ¢|v],
2
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Wae o Wa\ W,
W, w/w "

2

3/2
<clvl2+cvld?

1|/w\"?
oy

< 2, [ Wx 2
<clv|s+ Tv-v"dx'

— o0

2

2

This estimate applied to (3.3) gives, as before, the advertised bound on
|v(-, £)|,. Finally, consider the case p=4. Following the same lines of
argument that appear in the cases p= 1,2, 3, we are only able to derive the
upper bound

(Wx>1/2 2

22) o,

w 2

where ¢, =c,(]u|,) is an absolute constant times the fourth power of |ul,.
This latter bound is effective in conjunction with (3.3) only for |ul,
sufficiently small. In fact, without working hard, one determines that
|u, < 9"* suffices, so the restriction on |u|, for which (3.5) becomes useful
in (3.3) is not so stringent.

“If p>4 or if p=4 and the initial data has relatively large L,(R)-norm,
the line of argument given above breaks down. However, the situation may
be retrieved at the cost of extra hypotheses. First, assume that [[y;]l, is
bounded, independently of j, and that this bound is sufficiently small for
the theory in unweighted spaces to imply that the solutions u; corre-
sponding to the initial data Y, j=1,2,.., are globally defined and that
their H'(R)-norm is bounded, independently of ¢ and J.

Again consider the last term in (3.3), but now proceed in a simpler
manner to form the estimate

[e 0] wx
J FDGdX<Cl |U|§+CZ(IuIZ)

e w
'[ —p%—lv”“”zdx
_ww

o0
w
.[ = yPv? dx

<clul?, l3<clol?. (35)

Here ¢ depends upon sup; [y, and w, but is independent of ¢ and j. Thus
Gronwall's lemma applies immediately and for any T>0, a j-independent
bound on u; in L (0, T; L,(R, w)) thereby results. Notice that this bound
subsists only on |u;(+, )l having a j-independent bound on the interval
[0, T]. Thus if flu;(-, t)|l, is bounded on [0, T'], independently of j, it
follows that u; is bounded in L (0, T; L,(R, w)) with a finite bound not
dependent upon J.

Attention is now turned to the case k=1 but p arbitrary, where it is
remarked at the outset that, because of the first part of the proof, there is
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in hand a bound on u=u; for 0<t<T in L,(R,w), or, what is the
same, a bound on |v|, which depends only upon [[¥|l, and T, though if
p=4 the values of T may be restricted. Now multiply (3.2) by
_v,—(p+1)"tvP*!/w? and integrate the result over R to obtain the
equation

dx

1d > 1 d (= vPH?
A i — el et
2dt-[_°ov" x (p+1)(p+2)dzj

e WP

o v.p+]

—— 0, dX
41 7xx
—e WP

+3'[oo %vixdx+;——_[

0 1 o UP+2
_J_welvvxxdx—p——+lj_w91 — dx

p+1
> v, dx

[=¢] M" +1
+——j —= 0P o, dx +

T e yweig=0, (36
e WP * (p+1)zj-xw ’ x=0, (36)

2p+1

W w

Wixx Wy 2 W Wex
0,0x)= g (e) 46 ie

and

2
By(x) = —3 221 6 (W—> .
w w

The detailed properties of w imply that both 6, and 6, are bounded
functions, along with their derivatives to all orders. Since the initial data
Y =1, lies in H (R, w), it certainly lies in H'(R) and therefore the theory
in unweighted Sobolev spaces implies that u = v/w lies in L. (0, T; H(R))
with a bound in this space that depends only upon ||| (and in case p = 4,
either the bound entails a restriction on the size of ||yl or else the bound
depends on T and holds only for T<T*= T*(|w]l,))- It follows that lu|
is bounded on Rx [0, T'], since L. (0, T; H'(R))s L. (Rx [0, T]), and
again the bound only depends on I, for p<4, but may depend on T if
p=4 and the size of |||, is not suitably restricted. Using this information,
it follows immediately that :
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s vp+2

"%

\jio 0, Uy 0, dX

0, dx

o8]
2
scj vidx<e,

— o0

[ee]
scj v2 dx,

— o

sc{1+ji0 via‘x},
<6{1+K0 vidx}

On the other hand, partial integration shows

Uw o, 0, dx

o) p+1
H ”wp 0.0, dx

— 0

w Pt o S
e I i D [" wusds
so that
© vp-!-l +1 ')
J_w w“lvxxdx <P 2 {\u|§g|ux|§+lvxli}sc{1+§_wvidx}

is bounded on Rx [0, T] independently of j. The two terms o

r on the right-hand
Consider first the penultimate .

since |u|
not yet treated that appea
significantly more trouble, as we see now.

term in (3.6) and proceed by writing

uPtlo w,, dx

— 0

e WP —
°° W
=—(p+1 2yP —=d
(p )j_wvxu i
w2
+(p+l)j vv—ﬁu”vxdx—

[>]
— 0

© w
j oo, uP —= dx.
. w

are bounded, it follows that

<c {jw v? dx+jio v2 dx}.

Since W, /W, Wxx/W; and u

0‘0 Up+lvxxwx dx
wp+1
— 0

The final term in (3.6) is written simply as °

© ©
j v2p+2. Wy dx = j . u2p02 Yﬁ dx,
L= w2p+1 . = w

side of (3.7) do not give
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and consequently

* 2
Scj ve dx.

— o

© apr2 Wx d
v 2+ 1 0%
. w

Combining the last few inequalities with the relation (3.6), it is deduced
that

XX

%Jio vf¢dx+3fOc %vz

N =

— L

© 1 d reo pPt2
<c<l1 2 _— = J
c{ +f_w”*d"}+(p+1)(p+2)drf_w w9

Integrating this latter inequality over the interval [0, ¢] and estimating in
a straightforward way gives a relation to which Gronwall’s lemma applies,
namely

1 2 ] w'x 2
Elv"("t)|2+3joj Wv_\.xdxds

X
—oC

<oty 1l iz, wys W) {1 +[ ]

vidx ds}.
Thus it is concluded that v = (wu;), is bounded in L. (0, T; L,(R)),
independently of j. Because of the relationship

wx

Wi = (W), — W

and the fact that wy; is already known to be bounded in L, (0, T; L,(R)),
independently of j, it transpires that u; is bounded in L, (0, T; H'(R, w)),
independently of j.

Attention is now given to the cases wherein & > 2 and p is arbitrary. Here
the argument is relatively straightforward, and is made inductively, assuming
at stage k that u, is known to be bounded in L, (0, T; H*~ (R, w)),
independently of j. Abbreviate 6%/0x* by 0%, apply 8% to (3.2), and take the
L,(R)-inner product of the result with 8%v to obtain

1d =
2dt)_»

ko2 dx—3 [ ok (% v) dkvdx+ [ 9%(6,0)0%v dx

v, vPtlw

+J‘ B 0% (0,0, )% v dx+f_oc o* (—— w”*lx> v dx=0. (3.7)

_ va
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The properties of 6, and 85, the induction hypothesis, plus an integration
by parts allows the conclusion that - '

“w 0% (6,0)0%v dx

= Uw 0% (0,)0% 0 dx

<c{1 +r° |0k v|? dx}.

By using Leibniz’ rule, performing additional integrations by parts, and
recalling that w,/w and its derivatives are bounded, one finds that

AT Ak Vs ko g7 Wx ak+1,2
3j_wax(w v,,x> a,,uarx_3j_°° X (3 o) dx
+ lower order terms.

It is easily shown using the induction hypothesis that

lower order terms < ¢ {1 + _[ (6’;1))2}.
Consider now the last integral in (3.7) and notice that
oo P o)
j_w ok <%{> 9k v dx = j B 0k (uPv,)0%v dx,

so therefore

j: o (”;';) 8% dx
S

ki dtodx+p | uTlu(0ko) dx
R\ o |
+Y ( )j 87 (uP)- 7+ ' 8%v dx

j=2 .] —

=] k o]

=27 wtu @k de+ T <k>j 93 (uP)3% I+ ‘v 9% v dx.
2) j=2 J — o0

Our induction hypothesis includes the fact that [¢;]c is bounded,

independently of j, and so the theory in unweighted spaces implies dlu to

be bounded in L (0, T; H'(R)), and so in L. (Rx [0, T]), independently

of j, for 0<j<k—1. Therefore, since k =2, it is concluded that

=] P
[ (%‘j,—) 9% v dx

sc{1+j°° (8 v)? dx}-&'—

Iw Oﬁ(up)vxa’;v dx|.
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When 8%(u”) is developed into products of derivatives of u by Leibniz’
formula, the only term not known to be bounded is pu? ~* d%u. Thus

j 8% (uP)v, 0%v dx

<c {1 + ro (0% v)? dx} +p

o
p—1 Ak k
f uP=1 0 uv, 0v dx
o

<efue[” (@orde]ap i oo 15l 2501
<c {1 +j (0% v)* a'x} + ¢ |0, Y2 0.l 37 105015

Since k=2, |v,|, is known to be bounded on [0, T'], and consequently it
is adduced that

w0 P
[ e <”—w"7> ok dx

<e {1 +I (0% vy dx}.
The second part of the last integral in (3.7) also presents no difficulty if one
first writes
o0 vp + 1‘4) v x< wx
j_w ok ( 5T ) *vdx= J—x o (vu" 7}-) 0% v dx,

and then makes use of the property that w./w and all of its derivatives are
bounded, the induction hypothesis, and Leibniz’ rule to conclude that the
latter integral is bounded above by

c{1+j

Putting together the information just derived, one discovers that

N (0% v)? dx}.

%ditjw 6% 0]? dx < {1 NG dx},

from which it follows by Gronwall’s lemma again that |8%v|, is bounded
for 0 <t < T, independently of j. Thus d%v = d*(wu) is bounded in
L, (0, T; L,(R)), independently of j. But, it follows from Leibniz’ rule that
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k—r =
B () (e
1 r i—0 I w

k k=r (kN\N(k—r\ 0w (1 .
. k X il = k—r—i
—woter 55 ()7 5 s )

Both 8”w/w and w0’ (1/w) are bounded functions if r, i>0. Hence the
induction hypothesis implies all the terms in the double summation to be
bounded in L (0, T; L,(R)), independently of j. It thus follows that w 0%u;
is bounded in L (0, T; L,(R)), independently of j.

Summarizing the accomplishments thus far, the following two proposi-
tions have been demonstrated.

(i) Ifk=0and p=0,1, 2, or 3, then for any 7'>0, u; is bounded in
Lo (0, T; L,(R, w)) 0 Ly(0, T; Hj,,(R)) with a bound which is independent
of j. The same conclusion holds for p=4 provided that [}, is not too
~large. If k=1 and p is arbitrary, is bounded in L (0, T; L,(R, w)) N
L,(0, T; H) (R)) with a bound that is independent of j for any 7'>0 such
~ that [lu;(+, 1)l 18 bounded on [0, 7] with a j-independent bound. Thus, if
||, is small enough, it follows from Theorem 2.1 that T is unrestricted in

the last assertion.

(i) Ifk>1and p=0, 1,2, or 3, then for any T>0 u; is bounded in
L (0, T: HYR, w)) n L, (0, T; Hj,t '(R)) with a bound that is independent
of j. The same conclusion holds for p=4 provided T>0 is such that
ll4;(-, )Ny 18 bounded on [0, T'] independently of j. Thus if |yl is not too
large, T is unrestricted.

From the information summarized in (i) and (ii) above, one may pass to
the limit as j— co and obtain solutions as advertised in the statement of
the theorem. In case k=0 or k=1, the limiting procedure uses weak-star
compactness arguments as in Theorem 2.2, while if k> 2 the limit can be
inferred to be strong by use of Kato’s general semigroup theory [14, 15]
or the special regularization techniques of Bona and Smith [77], Saut and
Temam [29], or Temam [34] (see the Appendix for example). The details
are not brief, but they are straightforward in light of the a priori bounds
in hand, and so are omitted. '

This concludes the proof of Theorem 3.1. i \

An interesting corollary bearing upon the possibility of non-linear
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blowup emerges from the proof exhibited above. This result amounts to a
strengthening of the theorem recorded in Albert et al. [2]. As mentioned
before, their result states that, as regards the initial-value problem (2.1)
where p=>4 and k>2 and with initial data ¥ e H*(R), either the corre-
sponding solution u exists for all time as an H*(R)-soution of (2.1) or else
there is a finite value 7% >0 such that

Hm |u(-, )} e = + 0.
1T

COROLLARY 3.2. Let yeH*(R,w) where k=2 and suppose the
parameter associated with w to be non-negative. Let u be the solution of
(2.1) associated with Y, where p is any non-negative integer. Let T* be
the maximum time for which, for all T with 0<T<T* u lies in
C(0, T; H*(R, w)). Then either T*= +0o0 or

lim |u(-, t)] = + .
117

Proof. This theorem may be deduced by using the known results in
unweighted Sobolev spaces along with a careful examination of the steps
given in the proof of Theorem 3.1, Of course the theorem has additional
content only if p > 4. :

Suppose that u is uniformly bounded on any finite time interval. It will_.
be shown in consequence of this assumption that u is bounded in H*(R, w)_
uniformly on bounded time intervals. From this it is straightforward to
deduce the desired result by iterating the local existence theory for (2.1).

Notice first that the crucial ingredient in the proof of Theorem 3.1 for the
derivation of the a priori bound on the solution % in L,(R, w) for p=4 and
data which was not necessarily small was the knowledge that |u}, was
bounded (see (3.5)). Once a bound is inferred to exist in L, (R, w), the
further derivation of an a priori bound in H'(R,w) also only makes
essential use of bounds on |ul, in conjunction with the already derived
bound in L, (R, w) (see (3.4) ff.). For bounds on u in H*(R, w) where k=2,
proceed inductively using (3.7). The main point to observe is that in the
estimation of the last term on the right-hand side of (3.7), the bound in
(3.8) is still effective because lu|2~! is bounded and, because of the result
of Albert et al. [2], so is |9%5uls.

The corollary is thus established. 1l

Remark. Corollary 3.2 has an interesting interpretation as regards the
possibility of solutions of GKdV equations forming singularities in the
H*(R) norm in finite time. As is now apparent, a singularity will form in
H*(R) if and only if it forms in H*(R, w,) for any o >0 such that the initial

data W lies in H (R, w,). Thus one may expect that non-linear blowup, if
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it occurs, does not subsist upon the bad behaviour of the data at infinity,
but rather on the non-linear term locally overpowering dispersive effects.

The calculations leading to a priori bounds actually show more than was
claimed in Theorem 3.1. In fact, one may deduce from the relations (3.3),
(3.6), and (3.7) that on any time interval [0, T'] of existence of an
H¥(R; w,)-valued solution u of (2.1), the integral

T pco wx 5

[ 7 2@ty axar
0 “—o W

is finite. A simple argument based on the translation invariance of the

differential equation thus shows that

J.T '[w (x — xo)w(x)(0% T tu(x, 1)) dx dt < + ©
0

x0

for any finite value x,, a result reminiscent of some of those in [19].
It follows that for almost every te [0, T']

[ (e —xo) WA ()% u(x, 1) dx < +co.

x0

4, DISPERSIVE BLowUP

The results concerning dispersive blowup are now stated and proved.
The proofs involve relatively careful calculations of integrals of products of
the Airy function

Ai(¢)= % f: cos (% 6° + 95) o, (4.1)

along with the existence theory in weighted spaces established in Section 3.
The type of result that these considerations will yield is that for particular
choices of the parameters p and k associated with the strength of the
non-linearity and the smoothness of the initial data, respectively, there are
choices of infinitely smooth initial data for which the kth derivative of the
solution u corresponding to this data becomes unbounded in finite time.
In fact, we shall even be able to provide initial data in H*(R)~ C*(R) for
which
lim |6%u(x, t)] = + 0

x = xy
t—ty

for n=1,2,3, .., where {(x,, t,)}_, is a sequence of points in the upper
half plane Rx R* = {(x, t) : x€R, >0} without finite limit points.
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Before proceeding to the precise statement and proof of the sort of
theorem just outlined, some preliminary discussion and several preparatory
lemmas are needed.

We begin by recalling some detailed asymptotic properties of the Airy
function Ai(z) defined in (4.1) which will find use in our development.
These aspects of Ai are all well known, and may be found explained in
Olver’s text [23] or in the recent book of Fedoriouk [11]. First, the Airy
function of a real argument is a bounded, real-analytic function that tends
to zero at +co. On the positive real axis it decreases monotonicaly and
exponentially to zero, and in fact, the Airy function and its first derivative
satisfy the inequalities

) 1 _ ., x.'IM 3 7
0<A1(x)<we s 0<—A1(x)<ﬂme ¢<I+'77£> (4.2)

for x>0, where £ = 2x*2. On the other hand, as x tends to —co, Ai only
decreases algebraically, but it oscillates fiercely, having the form

itxy e (e-3)(1v0 (1)) and

v > & ol 1\ 1
Al (—X) = m sSin (é —"4- 71.')(1 +0 <E)>
as x — + oo, where ¢ = 2x%? as before. More generally, the nth derivative
Ai™ of the Airy function has the asymptotic form
N Ai("’(x)A; ex"2 Mgt

Ai(—x) ~ ex™2 =4 sin(E + ¢,,)

(4.3)

(4.4)

as x - + 00, where ¢ is as above, ¢ =1/2n'?, and ¢, = —3n for n even and

¢,= —in for n odd. The relative error committed in using any of these
asymptotic forms rather than the Airy function itself is of order x~*? just
as in (4.3). Even though the Airy function does not lie in L;(R) on account
of its slow decay to zero at — oo, it is nonetheless improperly integrable
over R because of its rapid oscillation, with

j Ai(z) dz=1.
Finally, the Airy function has a Fourier transform at least within the class

&'(R) of tempered distributions, and this transform is known explicitly to

be »
F(Ai)(y)=e", (4.5)

as follows more or less immediately from its definition in (4.1).
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The relationship between the Airy function and the GKdV equation that
is our primary focus of interest becomes apparent in formula (4.6) in the
next lemma.

LEMMA 4.1. Let T>0 be given and suppose that u is a weak solution of
the GKdV equation corresponding to initial data W € Ly(R), constructed in
Theorem 2.2 so that U€ L. (0, T; Ly(R)) and suppose in addition that
uWP+1e L (0, T; Ly(R)). Then u satisfies the integral equation

wo =] a5 )y

L Hw b A (ZE2 N weti(y,s)dpds (46)
0

+p+1 o (=5 SANTEN

for (x, 1) e Rx [0, T, where Ai is the Airy function discussed above.
This formula holds in the class of tempered distributions &'(R), in
L0, T, L,(R)), and pointwise almost everywhere.

Proof. Because ue L, (0, T; L,(R)), then U € Lo (0, T; H73(R)).
Moreover, #”u, € Lo (0, T W '(R)), and 50 the differential equation implies

that u,€ L (0, T; H3(R))+ wii(R))s L0, T; #'(R)). It follows that u - .=

lies in C(0, T; &'(R)) and thus the value of u at ¢t =0 is assumed at least

in &'(R). However, from our previous theory, we know that u(-, f)—=y as =

: 0 at least in Hj;o/*(R), and hence in &'(R). Consequently u(:, ) = Y as
t—0in £'(R). '
Applying the Fourier transform in the spatial variable x to the GKdV
equation, we obtain an &’(R)-valued ordinary differential equation satified
by the Fourier transform fie C(0, T; & (R)) of u, namely
d . ., K
7R

wrt1=0,  #(&0)=$()

Treating u?*' as a forcing term, this equation is easily and uniquely solved
by Duhamel’s principle since both e~ and e~ are multipliers in
%'(R). One obtains that

HE 1) = e~ PP(E) —— | FUTIeu T s (47)
p+ 1J0

which holds at least in &'(R), though in fact each term has a pointwise
almost-everywhere meaning. Applying the inverse Fourier transform and
using (4.5) leads to (4.6), where in the first instance the convolutions are
interpreted as convolutions in the class #'(R) of tempered distributions.
However, both the left-hand side and the first term on the right-hand side
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(see Lemma 4.3) lie in L(0, T; L,(R)), and hence so does the second
integral in (4.6).
This concludes the discussion of the proof of Lemma 4.1. [ |

Having derived the integral equation (4.6), it 1s now natural to
investigate properties of the two integrals on its right-hand side. The next
two results report on estimates for these integrals that lie at the heart of
our theory.

LEmMA 42. Let k>0 and W e H (R;w,) where c=1/16 and
the weight w, 1s as defined in (3.1). Let T>0 and suppose that
ue L (0, T; HX(R, w,)) 0 Ly(0, T; HEFY(R)) is the solution of the GKdV
equation corresponding to the initial data \ constructed in Theorem 3.1.

Ifk=0andp=1or if k=1 and p is arbitrary, then the integral

/\(x’ t)=/\p (x, t)

t pcO 1 o
- '[0 -(_ (r—s5)*? Al ((_f:;%ﬁ) uP*(y, s)dy ds (4.8)

is k times differentiable with respect to X for (x, t) in the strip Rx(0,T)an
8. A\ (x, t) is a continuous function of both variables for 0<j<k. = - ol

e Proof. Consider first the case k=0 and p=1. Break the integral into
parts as follows:

N (x: 1)

t p—m 1 . x—y :
s“oj. Al <({‘ u*(y, s)dy ds

e (1—5)2/3 5)1‘3

t pm » 1 ., x_y )
+\J~0 j—,,,(t_s)23Al ((r___s)l,r‘_’.)u (y, S) dy dS

I 1 . x_y 5
J‘0 J.m (I—S)Z3 i <(I—S)”3> u (y’ S) dy ds

From (4.2), one sees immediately that

1 ) x—y C
b A ) K7
= ((f—s)”) (1=

+ . (49)

for all s and x—y =0. Hence it transpires that

t pX 1 . = N
“o j_m (1=8)*" - ((fx— s;m> u*(y,s) dy ds\

I 1 X , ‘
£C L t—9)" .[_x u(y, s) dy ds < CT" W}, 0wy (410)
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and the latter combination is finite by assumption. For the second integral
on the right side of (4.9), use is made of (4.3) in the following way:

t pcO 1 ., _
'[0 J;: (t—s)z/3 Al <(Ix_ s;:.ﬂ) uz(}’, S) dy ds

! poo 1 e 2
SCLL m(y—x) u*(y,s)dyds

1/4

~¢f o [T S i 0) w0, ) dy

o (t—s)" ) wi(y)

(y—x)““) S
<Csu . Wz uZ ,S d d
y>€( Wi()") J;) (t—s)mf_w S(»)u(y,s)dyds
(,v—x)”“)
<CTYsu (—-—-—— 112 0 ooy 4.11)
y;i w2() Lao(0, T; La(wa)) (
Notice that if o > 1/16, then
(y=x)"" _{C, x>0, |
< 4.12
SR TWI) Slelwt x<o. (4.12)

Combining (4.11) and (4.10), we find that A, is indeed locally bounded if
k=0and p=1, as claimed in the statement of the lemma. The continuity
of A in this case follows since its defining integral has been shown above
to converge uniformly for (x, ¢) in bounded subsets of Rx R,

We turn now to the case k> 1 and arbitrary p > 1. Since the result for
general values of k£ follows from induction and the arguments that come to
the fore for k=1, we shall concentrate on this case.

Because ue L (0, T; H'(R)), it follows that u is uniformly bounded on
R x [0, T], say by a constant M. Hence it follows that

1

t poO . x_y
p—1 ’
<M fo j_w = | M ([t—s)”3>

and the argument used for bounding A, in the case k=0 shows the right-
hand side of this inequality to be locally bounded.

By standard results regarding convolution, the partial derivative of A,
with respect to x may be written in the form

u(y, s) dy ds,

A, 6

t poo 1 . ==
O, /\p (x,t)=(p+1) jo J_w mAl’ (Etx——s;)m) u?(y, s)u,(y, s)dy ds.
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Bounding the right-hand side now proceeds as in the case k=0, p= 1,
except that u”u, replaces u°. Breaking the spatial integral again at y =X, W€
see that the integral over the interval (—o0,x) gives no problem. The
remaining integral 1s treated as follows,

dy ds

t poo 1 ) —
jo -L o [N (m) uP(y, $)ux(¥:5)

t pC 1 . 1/4
Sj‘o L (,__S)afd%i(—xj%‘wi(y)lu”(y, s) u (y, $)l dy ds

(=20 aagr-1 (" w2
<sup U Tn | Wa() lu(y, ) 9| &
y=zx o —

and because of (4.12), this last expression is seen 1o be locally bounded,
uniformly for ¢ in [0, T). Again, continuity follows from the uniform
convergence of the integral in (4.8) with respect to (x, ) provided (x, 1)
runs over a bounded subset of Rx R™.

The case k>1 follows similar lines and so its detailed proof is not
presented. |

Next, attention is fixed upon the first integral on the right-hand side of
~ (4.6). We propose to give explicit initial data i so that its convolution with
the Airy-function kernel develops particular singularities at a given point in
space-time. Here is the result in view, the somewhat technical proof of

which is presented in Appendix B.

LemMA 4.3. Let k be a non-negative integer and let

Ai‘“(#}']

VielD) =115, 7y (4.13)

where m lies in the interval 1/8 + kj2 <m < 1/4 + k/2. Then Vi€
H5(R; w,) N C=(R) for any 0 <m—k/2—1/8, the function

L=, (X |
W (x0=73) A (%—31) Vi(y) dy (4.14)

lies in C(R¥; H*(R; w,)), its kth derivative with respect to X is continuous
everywhere except at the point (0, 1), and at this point

kim0 Wilx, )=+ (4.15)

(x, )= (0, 1)
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Moreover, ¥i(x £) = Yi(x) as t—0, in HY(R)N wk (R), and ok, is
uniformly bounded on any set of the form

{(x,1):0<t<T \x\+\t—1\>5}

where T < +© and 6> 0.

A simple change of variable gives the following corollary to Lemma 4.3.

COROLLARY 4.4. Let k be a non-negative integer and let x,€R and
t, >0 be given. Define the function Y(X; X t,, k) by

AI®(—B(x — X4))
; ,t ’k =_________————-—————"‘= = - y 416
ll/('x x* * ) [1+ﬁ2(x__x*)2]m ‘l’k(B(x x*)) ( )
where =137 If m satisfies the restriction 1/8+k/2<m<1/4+k/2 of
Lemma 4.3, then Y e H'(R; w, )N C=(R) for any c<m—kf2—1/8 and the
function

1 (» .(xX—Y
o st = [ 81 () Y3 00

= lpk(ﬂ(x—x*)’ t/t*) (417)

~Jies:-in C(R*;H"(R;wd)) and its kth derivative with respect to x is
continuous everywhere excepl at the point (X, t,) where

lim 0K P(x, b Xuo 1y, k)= + 0

(2, ')“’(X-n'*)
Moreover, (X, 1 Xy e, k)~ P Xy Lo k) as t—0 in HYR, wy) D
w* (R) and 0k W(x, 1 Xy s k) is uniformly bounded on any set of the form
{(x, 1) .0<t<Tt,,and |x — x| =6t or lt—t,0 =0t}

where T, 0 are positive.

The preceding corollary may be extended in the following fairly obvious
manner.

LemMa 4.5. Let k be a mon-negative integer and let {(xn, 1)}, bea
sequence of points in R x (0, 00) without finite accumulation points and such
that {t,}r., does not cluster at zero. Then there exists a function
e HY(R; w,) where o is as in Lemma 4.3 such that the integral

1 © . -
w(x, =5 A (xtmy ) W(y) dy (4.18)
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lies in C(R*; H*(R; w,)) and its kth derivative 0%¥ is continuous every-
where in Rx R* except at the points {(x,, t,)} ., where

lim 0 P(x, t)= + 0, n=12, ...

(x, t) = (xn, In)

Proof. For short, we write

l/’n(x) for lp(x; x"’ t'l’ k)’

for n=1, 2, .., and define y by the sum
W(x)= ), e.¥a(x), (4.19)

where the ¢, will be specified momentarily. Because of the last corollary,
each y, € H*(R; w,) for any ¢ <m —k/2—1/8 where m is as in Lemma 4.3.
Hence, if we specify that e, < 1/(2" Y.l gy for n=1,2, .., then the
series on the right-hand side of formula (4.19) converges in H(R; w,).
If ¥, is defined to be

1 e (x—y
v 0=z ai(SE) v a

then it follows that

xX

1 = x—
v 0=z [ ai(SE)vnds= T e ¥

1 n=1

where the convergence of the series is at least in C(0, T; H*(R; w,)) for
each ¢+>0.

Attention is now turned to 8% and its constituent parts 3% ¥,, which
are denoted P® and ¥, respectively, n = 1,2,... By the result of
Corollary 4.4, for any positive constants T and é, the function P s
uniformly bounded on the set

AST={(x, 1):0<I< T, |x—x,[ 177 + [t — 1, >61,}s
with 2 bound that depends on T and §, but not on n. Consider a point
(xo, to) # (X, t,) forall n=1,2, .. and a rectangle R= {(x, t): |x| <X and
0<t< T} such that (xo, t,) € R. Consider an index n such that (x,, ,) ¢ R
where R={(x;1):|x|<2X and 0<t<2T}. The quantities p=inf,,
and v =distance{(xq, 20)s {(Xx» 1) Z_,} are strictly positive on account
of the assumptions of the lemma. We claim that if T is chosen large
enough and & small enough, then there is an r>0 such that {(x,1):
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1(x, £) — (xo, to)l <r} lies in 47 for any such index n. Indeed, if T is taken
so that Tu>t,, then certainly 0<¢<7Tt, for all n and all ¢ with
(x, t) € B,(x,, to) for r small. Moreover, since (x,, t,)¢ R and (x,, t;) € R,
it follows that either

or else that

2/3 5 X

n /24{3T113t

| X0 — x| £

By insisting that § <4 min{3$, X/2%*T'}, the stated conclusion is ensured
for small enough values of r. Now let n be such that (x,,, ¢,) € R. Because
there can be only finitely many such indices, we may revise the choice of
o if necessary, based on the positive constant v, so that for small r,
B,(xo, to) = A>T for these values of n as well. Fixing positive values of T,
5, and r such that B,(x,, t;)= A>T for all n, we conclude that ¥ is
bounded and continuous on B,(x,, #,) with a bound that is independent
of n. If it is also required that ¢, <27", for n=1, 2, ..., then it follows that
%) is a bounded, continuous function on B,(x,, ).

> On_the-other hand, if we consider points (x, ¢} coming arbitrarily close
to. a particular point (x,,, t,,), then the same argument as presented above
allows the conclusion that

PO(x, t)y=PW(x, 1)+ PUN(x, 1),
where

PO (x, )= Y 6, ¥ (x, 1)

n#m

is a convergent sum of functions uniformly bounded in a neighborhood
of (X, t,). Consequently, ¥*)(x,t) has the same singularity as does
PE)(x, 1) as (x, 1) > (X, ,)-

The conclusions of the lemma are thus verified. ||

With these preliminary results in hand, the main results of the paper may
be established.

THEOREM 4.6. Let T>0 be given and let x,eR and t,e(0,T) be
chosen. Suppose k>0 and if k=0, suppose p=1, otherwise the positive
integer p is unrestricted. There exists Y € H*(R)n C*(R)n C{(R) and a
solution u of (1.1) corresponding to the initial value \ such that
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(i) ue L0, T; H*(R)) N L0, T; H’fo': HR)),
(i) O%uis continuous on R % [0, TN{(x4 t,)}, and
(ifi) limyex,.c-1 o u(x, 1) =+

Remark. The symbol Ck(R) connotes those C*-functions defined on R
which, along with their derivatives up to order k, are uniformly bounded.

Proof. Define the initial data Y by
Y(x) = (x5 X Lo k), (4.20)

where W(X; X4 Ly k) is defined in (4.15), pu>0, and

1 k 1 k

8+2<m<4+2. (4.21)
Because of the choice of m and the asymptotic properties of Ai in (44), it
follows that 1 e H¥(R) and clearly ¥ e C=(R). Referring to Theorem 2.1
and Theorem 22, if p>0 is chosen sufficiently small, it will follow that a
solution of (1.1) with initial value ¥ exists at least on the time interval
[0, T} and lies in

c(, T; HHR)) A Laf0, T Higt 'R

fk=>2 and in
L0, T; HAR)) N L0, T HH(R))

ifk=0or 1l

Our hypotheses on k and p are framed so that the representation (4.6)
is valid for the solution u. By an application of Corollary 44 it is deduced
that the linear term on the right-hand side of (4.6) bas exactly the
properties (i), (i), and (ii1).

On the other hand, if condition (4.21) on M is strengthened by th
requirement that 3/16 +k/2<m, then it follows again from Corollary 4.
that I,UEH’&(R‘,W‘,) where o>1/16. 1n this case, Theorem 3.1 combine
with Lemma 4.2 assures that the non-linear term A, (%, 1) on the righ
hand side of (4.6) is bounded and continuous in R % [0,7T7, along with i
spatial derivatives of order at most k.

Combining the outcome Oof the last two paragraphs yields the desir
state of affairs regarding and the proof of the theorem is complete. |

Corresponding 10 Corollary 4.5 of Lemma 4.4, Theorem 4.6 has
associated corollary which is now stated and proved..
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CoROLLARY 4.7. Let T>0 be given and let {(x,, t,)} | be a sequence
of points in Rx (0, T) without finite limit points and such that {t,}, is
bounded below by a positive constant. Let either k=0 and p=lork>=1 and
p=1 be an arbitrary integer. Then there exists W € H*(R) n C*(R) and a

solution u of (1.1) with initial value \J such that

(i) ulies in Lo(0, T; HXR)) A Ly(0, T; HE*Y(R)), or in C(0, T; HY(R))
r\‘L2(05 T; Hk+1(IR)): lflk? 2’

loc

(i) %u is continuous on R x [0, TNUZ, {(x,,2,)} and

n=1

(i) Hm ), (x,0 #(x, £)= +00, for n=1,2, ....

Proof. The proof follows the line put forth in the last theorem. First,
appeal to Theorem 2.1 or Theorem 2.2 for the existence of a solution u,
then to Lemma 4.1 for the validity of the representation (4.6) for u.
Provided y is chosen as in Corollary 4.5 with 316 +k2<m<1/4+k/2,
we may again rely on Theorem 3.1 and Lemma4.l to assure that the
non-linear term A ,(x, ¢) in (4.6) is bounded and continuous in the relevant
strip R x [0, T']. But, Corollary 4.5 shows that the linear term on the
right-hand side of (4.6) has the properties (i), (i), and (iii).

The corollary is thereby proved. |

_Remark. __1It is worth noting that if y is initial data in H* that leads to
-a-solution  of the linearized initial-value problem which exhibits dispersive
blowup in C*, then ay has the same property for any a #0. This obvious
point has-the consequence that the initial data in H* for which the
associated solutions form singularities in the C*-norm are dense. For
consider an initial datum g such that the solution u of the linearized initial-
value problem ((1.1) with p=0) lies in C* for all ¢ in the range [0, T]. Let
¢or=g+ (1/k)y and let u, be the associated solution of the linearized
initial-value problem. Then because the problem is linear, u,=u+ (1/k)v,
this function exhibits dispersive blowup, and u, — u in C(0, T H* )- A more
complicated argument yields a similar result in the non-linear case, but this
point will not be pursued here.

5. REMARKS AND EXTENSIONS

In this final section of the paper, we initiate some discussion based on
the preceding results. First, it will be shown how our theory bears upon the
well-known property that the KdV flow exchanges decay of the initial data
for smootheness of the solution at later times. Second, we indicate an area
of potential extension of the present results to more general dispersion
relations than that envinced by the GKdV equations, by working out
briefly the theory for the next order of approximation to the full dispersion



36 BONA AND SAUT

relation corresponding to the two-dimensional Euler equations for surface
waves in water at a critical value of the depth.

It has been known for some time (see, for example, Cohen [10],
Kato [15], Sachs [27]) that the KdV flow exchanges decay and smooth-
ness properties. For instance, if the initial data s belongs to L,(R) and
decays exponentially to zero at + oo, then the solution u(-, t) is C* in the
spatial variable (and hence in the temporal variable) for t>0. It is
therefore of interest to look for the minimal decay assumption on Y € L,(R)
which ensures that u is, say, a continuous function on R x R™*. A result in
this direction is given in the following theorem in which for the sake of
simplicity, we deal only with the case p=1 of the standard KdV equation.

THEOREM 5.1. Let w=w, be defined as in (3.1). Then the following
holds. '

(i) Ifo>1/8 and Y € Ly(R; w,), every solution u of (1.1) with p=1
corresponding to Y is continuous on R xR™.

(i) If 1/16 <o <1/8, then there exists W€ Ly(R, w,) and a corre-
sponding solution u of (3.1) which is continuous for (x, )eRx R™ except a
a given point (X, 1y), where 1, >0.

. Proof. By Lemma4.1 we may write

1 p s )
ue, =5 | AT )Y &y
B\

Lppe L o X2y N
+§-[oj_oo(!—s)m Al ((hs)‘”)” (7,8)dsdy.  (5.1)

To understand the validity of assertion (i) it suffices to notice that, in
consequence of the results in Section 3 and 4, the assumption iy € Ly(R, w,)
with ¢ > 1/8 ensures that both terms in (5.1) are continuous in R X R,

Part (ii) is a direct consequence of Theorem 4.1. In fact, if 1/16 <
g < 1/8, one can always choose m with 3/16 < m < 1/4 such that
(14 x*)° Ai(—x)/(1 +x%)"eLy(R). Hence ¥ defined by yY(x)=
Ai(—B(x—x,))/(1 +x?)™ where f=1; ', belongs to L,(R, w,) for 1/16 <
¢ < 1/8 and according to Lemma 4 one can control the nonlinear term in
(5.1) while the linear term blows up at (x, 1) = (x4, t,)- 1

Remarks. (i) It should be noted that for 0 <o < 1/16 the linear portion
of (5.1) may blow up in finite time (choosing y/(x) = Ai(—x)/(1 + x?)™ with
a suitable m), but in this regime we have not been able to control the
nonlinear term. Thus, although the C° norm of the solution u given by
(5.1) is likely to blow up, we have not thus far formed a proof that this is
SO.
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(i1)) Consider now Eq.(1.1) with p>4, the case where non-linear
blowup is likely to occur. Let € H'(R, w,) be the initial data. Then an
argument similar to that given above shows that, if ¢ > 1/8, any solution u
corresponding to i will be C'! in x at least in the entire temporal interval
wherein u lies in H'(R).

(iii) A proofsimilar to that of Theorem 5.1 shows that if y € H*(R, w,)
with ¢ > 1/8, then every solution u of the KdV equation corresponding to
Y is C* in space for every ¢> 0.

So far we have considered equations having a rather specific dispersion
relation, namely (1.2). It would be interesting to deal with the more general
dispersion relation

o =o(k) = kP(k) (5.2)

where P is some polynomial of even degree. For instance P(k)=1—k2+ k*
corresponds to the next order approximation of the linearized dispersion
relation for the full system of equations for surface water waves from which
the KdV equation is derived.

The very same phenomena we investigate in this paper hold true when
the dispersion is given by (5.2). We will exemplify this by considering the
initial-value problem for a fifth-order equation,

Uy U+ Uy =0, o (5.3)

where again p is a positive integer. When p = 1, this equation arises as the
approximation to small-amplitude, long waves on the surface of shallow
water having the critical depth 0.54 cm. (At this particular depth, the
quadratic term in the Taylor expansion k =0 of the dispersion relation has
a zero coefficient owing to the compensatory effects of surface tension.
Because of this, the first, non-trivial effect of dispersion is felt at a higher
order than appears in the KdV model.)

The initial-value problem for this equation is always locally well posed,
and it is globally well posed provided p<8, as the following theorem
asserts.

THEOREM 5.2. Let initial data y € H*(R) be specified for Eq. (5.3). Then
the following is true.

(1) If k=0 and p <8, there exists a solution u of (5.3) with initial
data y which, for any positive T and R, lies in L (R*;L,(R))n
L,(0, T; H*([ - R, R])).

(11) If k =2 then there exists a unique solution u of (5.3) corresponding
to Y and a positive, possibly infinite T* = T*(y) such that for all T with
0<T<T* and all R>0, ue C(0, T; H*(R))n L,(0, T; H***([ — R, R])).
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ive value of R and T<T*, the correspondence

Moreover, for each posit

Yrou s continuous  from gkr) into CO, T2 HE(R)) N La(0, T;
HE+2([ —R, R]))- If k=5> =5 the solution u also has the property that
for the same range of T and R>0, 8lueCO, T; HEI(R) N
L,(0, T} g2 ([ R, R])) and the continuity of the map Y u extends

to these function classes as well.

(@i@i)  In (i), if p<38, then
then T*= +®. If p>8 and
of these cases, lu(-s Oll2 B8 boun

T* = +00. Ifp=28 and o s sufficiently
I, is sufficiently small, then

small,
ded in terms of Wiz

T*= +ow. In each
independently of t.
except for the smoothing

ard lines
the a priori bound

roof follows stand

ourselves with 2 derivation of
he smoothing result for the case k=0 and p<8
function used in Section 2. We will need r to possess

Proof. The P
aspect. We content
needed for deducing t

Let r be the weight
the additional property

(54)

() < cr'(x)

where ¢ is some fixed con iently small &> G.;.jthe_
)= 1+ tanh(ex) has all the desired properties. We multiply
perform several integrations by parts t0 get the equation = .-

for all xeR, stant. For suffic
function r(x
(5.3) by ru and

xxx

r:cr u? dx=—12-%tgic ru’ dx-i-%r—c r"u’ dx

’lr ru? dx—p—\-ZS rxu””dx. (5.5)

Using (5:4) and the elementary inequality

© © o« 1/2 © 1/2
S rousdx<c j routdx+ (S rou? dx> 0 roUa dx) (5.6)
— 0 — —>c — o0
the second term Onl the right-hand side of (5.5) is majorized by
: X roul dx+C S r u? dx
for a sufficiently Jarge constant SN
can be handled as in the proof of Theorem 2.2

- The last term in (5.5)
part (1), using (5.6).
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Finally we integrate (5.5) in 7 and get, by making suitable choices of r
and using the identity Jlu(-, /)lo=ll¥|o, that for arbitrary R>0and T>0

T sR .
jo j Ruixdxdtsc(R; Ilo) 1

Remark. Tt should be acknowledged that the two invariants

1r(u)=j°° W2(x, 1) dx

and

“ 2 p+2
ﬂm=£m[@4&o+aﬁjiyzﬁu (&n]a

play an important role in the proof of Theorem 5.2. As is easily deduced,
if u is a smooth solution of (5.3) that decays to zero at infinity, along with
its first few derivatives, then the functionals I and J are independent of £.

Remark. We digress for a moment to show how the last theorem and
the following simple calculation serves to cast light on a problem con-
sidered by Yoshimura and Watanabe [35]. In their paper, attention was
given to Eq. (5.3) with p=1. A numerical scheme for the periodic initial-
value problem was proposed and used to investigate properties of solu-
tions-'A number of interesting things were observed, but one aspect to their
study gives credence to a conclusion which is demonstrably false.

Yoshimura and Watanabe claim to discover chaos in this initial-value
problem, and present the outcome of a number of numerical simulations as
evidence. One way they attempt to demonstrate the existence of chaos is by
showing that the distance between two trajectories started from slightly
different initial data grows exponentially. Indeed, they present graphs of the
L -distance between two trajectories started from data which is exactly the
same save for slightly different amplitudes, and this quantity appears to
grow exponentially.

As we will now show, this is impossible for the true solutions of the
differential equation, and leads us to the tentative conclusion that what one
is witnessing is an instability in the numerical scheme. Indeed, Eq. (5.3) is
notoriously difficult to integrate accurately with an explicit scheme such as
that outlined in [35], the reason being that one usually encounters a von
Neumann stability condition that demands At/(4x)*® be not too large. In
consequence, if 4x is small enough to resolve the spatial structure, then At
must be very small indeed to maintain stability.

Here is the reason exponential growth between the difference in two
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solutions is impossible. Let « and v be solutions of (5.3) with p=1 corre-
sponding to initial data g and A, respectively. Here, g, h, u, and v are all
periodic of period L, say, in the spatial variable x, though the same result
holds for the problem posed on the entire real line. By the periodic analog
of Theorem 5.2, we know that if g, he H2_(0, L) (for example, if g, h are C?

per

functions which are periodic of period L), then for all ¢,
lu(-s Ol m20,)< G, loC-s Ol a20.) < Gy

where the constant C depends only on the H*norm of the initial data g
and A. If w=u—v is the difference, then w satisfies the initial-value problem

wr+%[(u+v)w]x+wt\'r\:t=0’ W(x, 0)=g(X)—'h(X), (57)

and if W=u+v, then because of the just-mentioned H?-bounds and the
triangle inequality,

IW(-, Ol 20,2y < 2C, Iw(-s ) 20,2y < 2C

for all £>0. If (5.7) is multiplied by w and integrated over [0, L], then
after integrations by parts, there appears the relation

1d (koy o 1L ,
g ) Wi 1) dx= 4f0 W (x, t) wi(x, t) dx.

" The right-hand side of the last equation is bounded above by 2C°. Hence
-it follows that if C,=4C?, then

jL w(x, t) dx <jL (2(x) = h(x))? dx + Cyt,
0 0 :

thus demonstrating that the L,-norm of the difference grows at most
linearly in time. A similar energy estimate for higher L,-based norms leads
to the same conclusion for the seminorms

IL wi(x, t) dx < jL (g'(x)=h(x))dx+C,t
0 Yo

and

L L
[“ Wi nydx< [ (2700 = h'(x)? dx + Cat.
0 0

This ini turn implies by interpolation that

sup |u(x, t)—v(x, t)] <A+ Bt,

o<sx<lL
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where B is a constant that depends only on g and A, and 4 depends only
on g—h.

We now return to the main line of development and prove a blow-up
result similar to that contained in Theorem 4.1.

THEOREM 5.3. Let p=1 and x, and t, >0 be given. Then there exists
Y € L*(R) n Co(R) " C*(R) and a solution u of (5.3) in Lo (0, T; L,(R))n
L,(0, T; H: (R)), where T>t,, corresponding to the initial data \, such

that u is continuous on R x (0, T)\{(x,, t,)} and

lim |u(x, t)] = +c0.

(x, 1) = (x,,¢,

Proof. The first step is to show that one can construct initial data
which leads to the dispersive blowup of the C®norm of the solution of the
linearized initial-value problem

Uit Uexx =0, (X, 0)=Y(x). (5.8)

The fundamental solution of (5.8) is

1 [ x
Al(x, t)=?m3:<m>,_‘ ,

where B(z) is a smooth (analytic) function which decays exponentially
when z » 4 oo and which decays like (—z) %% as z—» —oo (see Sidi et al.
[31]).

Let Y be defined by

)=

—m, (59)

where 1/16 <m<1/8. Then Y € L,(R)n C*(R) and it is easy to show,
following the lines of Benjamin et al. [4] and Appendix B that the C®-norm
of the solution u corresponding to y blows up exactly at t=1 (u(-, 1) has
a singularity at x=0).

The rest of the proof of Theorem 5.3 is similar to that of Theorem 4.1,
part (a). We establish an existence theorem in a weighted L,-space similar
to Theorem 3.1. The result is stated in the following lemma whose proof
differs from that of the case k=0 in Theorem 3.1 only in technical details.

LEMMA 5.4. Let w be the weight defined in (3.1) and let p<8 be given.
Suppose the initial data  in (5.3) to lie in Ly(R, w). Then there exists a
solution u of (5.3) corresponding to the initial data \y such that, for any T>0
u belongs to L (0, T; L,(R, w))n L*(0, T; HZ (R)).
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We are now in position to conclude the proof of Theorem 5.3. Let y be
defined as in (5.8), where 1/16 <m <1/8. Then y € L,(R; w,) for any o such
that 2m—o > —1/8. Let u be the solution corresponding to ¥ given by
Lemma 5.2. We present u in the following way by using Duhamel’s
formula:

u(x, t) =Tl,; j: B (x—;,s—y> Y(y)dy

t

- Hf ———1—)—15 B <—’:y—> wu(y, s)dyds.  (5.10)
0

s (t—S (t=i5)"?

Because of the choice of m, the linear term in (5.9) blows up at x = 0,
t=1. On the other hand, an analysis similar to that used in proving
Lemma 4.2 shows that we can keep control of the C%norm of the
non-linear term on the right-hand side of (5.9). In this, use is made of the
behavior of B’ at — oo, namely

|B'(—x)|=0(x""*) as x— +oo.
and of B" at — o0,
|B"(—x)| = O(x"®) as x> +00.

In fact the C%norm of the non-linear term is controlled assuming only
ue L (R*; Ly(R)). The C! norm of the non-linear term is controlled
provided m is restricted more severly so that 3/32<m< 1/8.

Remark. We expect similar results regarding dispersive blowup to hold
even if the dispersion relation P in (5.2) is not a polynomial. Indeed,
such non-polynomial dispersion relations arise frequently in practice
(cf. [4,28]). In case the symbol P is homogeneous, there is a strong indica-
tion that the above analysis can be carried through more or less intact.
However, if P is not homogeneous, extra difficulties arise. In any case, the
existence theory in weighted spaces along the lines spelled out in Section 3
is considerably more challenging. These issues will be the subject of a
subsequent paper where, in addition, the results of the present paper will
be related to the fact that strongly dispersive equations like the GKdV
equation are ill-posed in L,-spaces.

APPENDIX A
The continuity with respect to variations of the initial data in H* of

solutions of the GKdV equation in Ls(0, T; Hit') is established here. We
will need the approximation scheme for solutions of the Korteweg—de Vries



DISPERSIVE BLOWUP 43

equation used by Bona and Smith [7]. Recall briefly that for any positive
value of ¢, they define a special H ©([R)-approximation ¥, associated to
initial data ¥ € H*(R) such that

W=, =o("), as &0 for r<k (A1)
W, =0(*""), as e-0 if r>k (A.2)

Moreover the convergence of (A.l) is uniform on compact subsets of
H*(R) while that in (A.2) is uniform on bounded subsets of H*(R). Using
these special approximations, it has been shown in [7] that if 4, connotes
the smooth solution of (1.1) corresponding to V., then for any 7>0

(-, 1) = o> Ol o, 7my = 0(6“ ™) (A3)
as ¢ — 0, uniformly on compact subsets of H¥(R), if r <k, and
N> Ol co, 7517 = O(B(k_r)/G) (A4)

for any r, as ¢ — 0. (Actually these results have been established in [7] oniy
for the KdV equation, but the proof given there can be easily extended to
the generalized equation (1.1) for any T < T* where (0, T*) is the maximal
interval of existence of the particular solution u.)

We can now prove the continuity result advertised in Theorem 2.1.

TﬁEbREM A.l. For a fixed value of k=2, the mapping that associates to ..

fe H¥R) the solution u of (1.1) with initial data f is, for arbitrary T<T¥,
continuous from H*(R) to Ly(0, T; HEFH(R)).

loc

Proof. For the sake of simplicity the proof will be given only for the
case p=1. The proof in the general case is very similar.

Let {f,}®., be a sequence from H*(R) and suppose that f,— f in
H*(R). Let u, and u be the solution of (1.1) with initial data f, and f,
respectively, n=1,2, ... Let T and R be fixed and positive. It will be
demonstrated that u, —u in Ly(0, T; H**+'(—R, R)), a result that implies
the desired conclusion since T and R are arbitrary.

Let p(x) be a smooth, increasing, bounded, real-valued function of a real
variable such that the derivatives of p are all bounded and such that
p'(x)=1for —R<x<R, say.

We will use the aforementioned approximation scheme for solutions of
the Korteweg—de Vries equation.

It is first established that if v is an H k(R)-solution of (1.1) corresponding
to the initial data y and v, is the solution corresponding to ¥/, then

IT .[R |a’;+1[v(x’ t)—ve(x, t)]|2 dx dt
0 Y—-R
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tends to zero as ¢ — 0, uniformly on compact subsets of H*(R). To this
end, let W=v—uv,, so that W satisfies the initial-value problem

Wit WWot (0 W)t Wee =0, W(x,0)=y(x)—y,(x). (AS)

Differentiating Eq. (A.5) k times with respect to x, multiplying the result
by p 0% W, integrating over R x [0, T], and integrating by parts several
times, there appears the relation

1, . 1 %
S| Pl ax—2 " ploty —y) ax

+%f07f: D105 W2 dx dt_%LTf:o Pee 0% W12 dix dt

1 T rco 1 pT peo
+(k—§>ff pla{zW;Zdexdz—Ejf P WO W dx dit
0 Y— 0 Y-~
k—1 k T pco )
OXW 0K+ I dx dr

+j§1 <.]> '[0 ‘['—OC PO B *

I pc0 T rx
+[ ] pW Ot o O Waxdi+ [ [T pu, 0%+ 1o, 8% W dx at

0 Y—eoo 0 Y—o :

kK (k\ (T (o S , .
+ > < ) _[ J‘ pOYWIO*T Iy, 0L W+ 870, 05+ ~T W] dx dt
o NJ/ e
=0. (A.6)
Rearranging terms and estimating in a straightforward way, we come to
the inequality
T sR
[ 1081w dx ar
0 Y—R

T k+1
< 0TI dx dt
J I patesrim
ST —dellic+ AT Wi cormm) IWN2 o, 7oy + 0(1), (A7)
where the first constant depends only on p while the second constant
depends on T and W in the way indicated. The o(1) term in (A.7) appears

from estimating the terms in (A.6) using (A.3) and (A.4). Thus one
concludes that

T »R
f f 05+ L)% dx di = o(1) (A.8)
R Y—R
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as £¢—0, and that this relation holds uniformly on compact subsets of
HY(R).

With this latter result in hand, the proof of Theorem A.1 is now
straightforward if we argue in the following manner. First, note that

TR k+1 2 [ R k+1 2
jo j 105+ =) dxa’t<2f0 f_R;ax (4, — u,,)|? dx dt
T sR
+2jf 105+ (u,,, — u,)|2 dix dt
0 Y—R
T R
+2j f 10+ Y (u, —u)|? dx dr. (A.9)
0 Y—R

Since {f,}°_, v {f} comprises a compact subset of H *(R), it follows that
the first and third term on the right-hand side of (A.9) are o(1), as e >0,
uniformly in n. Hence, given y > 0, there exists €0> 0 such that if 0 < g < gy,

then
T sR T sR
L e avdr<y+ [ 7 104 ) de i,
Y0 Y—R -l 0 Y—R

and this holds for all n. Fix a positive value of ¢ <e,, say. For this fixed
& Wpe— Y, as n—> oo in H**!(R). Hence u,,~u, in C(0, T; H**YR)).
Thus it transpires that

T pR
lim supf f 0%+ (0, — u)|? dx dr <,
0 Y—R

h— o0

and since y >0 was arbitrary, the advertised result follows. ]

APPENDIX B

In this appendix we will be concerned with some detailed properties of
the solution of the linearized KdV equation when the initial data has the
special form studied in Section 4. As spelled out there, interest will therefore
be focused upon the integral

%0 0= | AL (FEE) A=+ g5 (B

— 00
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A simple change of variables removes two of the four parameters appearing
in the definition of J, and we are then left to analyze the integral

I(x, s)=-15- f Ai <x’s y> Al(—y)(1+ ¥y (B.2)

where s=1'". The result in view is the conclusion of Lemma 4.3, namely
that for suitable values of the parameter m, the integral I 1s @ C*-function
of x at all points (x, t) in the upper half-plane & X% R+ except at the point
(%,5)=(0, 1) where the kth derivative of I with respect to X does not exist,
and in fact the limit of 8% I(x, s) as (X 5) tends to (0, 1) is infinite.

These facts about I are established next. In the exposition 10 follow, we
chall concentrate on the special case =0 where the ideas are most
transparent. Once the method of proof is appreciated, the case of general
k present no extra difficulty in principle.

Proof (of Lemma 43). As already mentioned, we consider in detail the
reprcscntativc case k=0. A few remarks about the general case appear at
the end of the proof. .

Because of (4.2), it follows that the Airy function lies in Ly(Tk )) for
any finite value of k. In particular, the integral

N

oL (XZ y> A-) L+ )T

= Sm A1(:) Al(s:— x)(l + (SZ__X)Z)—W dz

0

converges absolutely and ‘upiformly in the upper half plane RxR* =
{(x,5): X€ R, s=0}, and represents 2 bounded, continuous function there.
Note also that

1 Xx+s — YV . )
LT A (’i—l) Al =)L+ )"

NES N

= El Ai(—2) Ai(—sz —-x)(1+ (s:-+x)2)”" dz

0

ijs also a bounded, continuous function of (X, s)eRx @+, It is thus left to
consider the integral in (B.2) where the range of integration is [x 48§, 00)
rather than the entire real line.
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Using the relation (4.3) one may write

1[“; Ai (x:y) Ai(—y)(1+y?) ™" dy

s
1 o 2(y—x\* =
=2n”233“-[ - (3( P) ) —Z>

x+s

2
x (y—x)" Ai(—y)(1+ y>) " |:1 +0 <W>] dy.

The term on the right-hand side containing O(s*?/(1+ (x— ¥)*?)) clearly
converges absolutely and represents a continuous function of (x,s) in
RxR* which is uniformly bounded on any bounded time interval. The
remaining term may be integrated by parts and put into the form

LT g (B(25)-E) A
el LR EANE ) = (Y
w  (2({y=x\" = i Ai(—y)

— ) —= 0 d
Lf‘“(s( s ) 4>(y—x)“* ’(u+y=)*”{yrx)“‘*> ¢
Cafy—x\ o SFAI=y) P ]

) —= y B3

“‘“(3( s) 4>(y—x)3“(1+y=)'" {59

The boundary term in (B.3) is zero at y = +00 and at y=x+ s it equals

1. (2 n> Al(—x—)

T2 N\3T ) (1 (x+5)7)”

which is certainly a bounded, continuous function of (x, s). Since m >0, the
first integral in (B.3) converges absolutely to a continuous function of (x, s)
which is bounded on R x [0, T'] for any finite value of T.

As for the second integral in (B.3), an application of Leibniz’ rule for
the differentiation of a product yields a sum of three integrals, two of
which converge absolutely to continuous functions on Rx R* which are
uniformly bounded on bounded time intervals. Interest thus attaches to the

remaining, troublesome term, namely

1 (o . (2({y—=x\* = s AI'(—y)
anLss‘“(3< p ) _4>(1+y2)'"(y—x)’f‘dy’ (B4)

which requires more exacting analysis.
We proceed to study the integral in (B.4). Note first that if x+s5<0,

then the portion of the integral in (B.4) corresponding to integrating over
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the interval [x+s,0] is a uniformly bounded, continuous function on all
of RxR™* since Ai(—y) has the exponentially decaying upper bound in
(4.2) for negative values of y. So, if one defines o =max{0, x+s}, then it
is only necessary to consider the integrand in (B.4) integrated over [a, o).
In this range, we may use (4.3) again to write the last-mentioned integral

as
1o (2(/y=x\*?* = 2 ,, @ plrdgis
- - i 3 o= /2 __
4nL S“‘<3( 5 > 4>S‘“<3y 4>(y~x)3f“{1+y2)'“dy

+ bounded continuous function. (B.5)

If we let y be defined by

lfﬂsll’d

1 ;
y(P) =9y, %, 5) = d (B.6)

dn (y—x) (L4 7)™

then elementary trigonometric identities reduce the integral displayed in
(B.5) to

1 roo o
2 [ cos(@, (M1 dy+5 [ eosO_NAN D, (BT

2J, 2
where
_ C2((y=x\P o, o
0.(y)=06.(» X,S)—3<<T>”M:ﬁy. ___5) . (BY)
and ——
5 o T i
0- =00z 0)=3((E5) =), == @9)

Note that if M is any fixed, positive number, then

j[ cos(8 4 (»)) 7(») dy

is a continuous function of (x, s) which is uniformly bounded on bounded
time intervals, where our convention is that /= [a, M ] provided M > ¢, and
I= (& otherwise. Thus up to a continuous function bounded on bounded
time intervals, we might as well suppose that in fact « =max{x+s, 2}, say.
In particular, y gets nowhere near the value zero on the interval [a, o).
Provided the relevant denominators are well enough behaved, the integrals
in (B.7) can be integrated by parts thusly:
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[7 cos(8 (N (1) b

o

aiot(}’)

=+ [ SN G Y
= y
® 2,7(») sin(0.()) . |77
60055 51 e e (8.10)

For 0, (p) it is readily deduced that all the terms on the right-hand side
of (B.10) are continuous functions of (x, s) on Rx R* which are bounded
on bounded time intervals. This follows since 8,0, (y) Brows like y'/?* as
— 4o and is bounded below on [, co). For the term involving 6 _,
more detailed analysis is needed. Henceforth, § _ will be written unadorned
as simply 6.
It is worth remarking at this point that if x=0 and s=1t"=1, then
g=0_=0, so that the integral involving §_in (B.7) reduces to

L2
which is a divergent integral since m < 1/4, diverging to +co in fact. This
is in accord with the statement of the lemma, and, indeed, it is easy to

ascertain that

!

tim [ cos(O(») ¥(y) dy= +oo

(x,5) = (0, 1) “u

once it is known that the integral under the Timit in (B:11) conveig sdor o
(x,8)# (0, 1), e eSS

Thus interest is now centered upon the integral in (B.11) for values = 7o
(x, ) # (0, 1). Indeed, let 6> 0 be given and let (x;5) be such that=+

x| + 11 —1] 6. (B.12)

The argument proceeds in two parts. First, suppose that |x| <8/2 so that
|1 —1]>3/2. In this regime, one quickly verifies that 8,(y) grows like y*7
as y — +o0 and that 0,(y)=¢>0 uniformly for y € [&, ) and 0<t<T,
where T is any finite, positive number. Hence an appeal to formula (B.10)
assures that the integral comprises a continuous function which is bounded
on bounded time intervals.

For the second part, suppose now that |x| = 4/2. An examination of 0
reveals that it has a single critical point at the value y= Yo where

X X
Yo=T- =Tt (B.13)
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This point may or may not lie in the interval [a, o) of integration of

[ cos0()) () . (B.14)

If it lies well outside this range, then partial integration as in (B.10) yields
a representation of the integral in (B.14) that is clearly a continuous
function bounded on R x [0, 7'] for any finite value of T. If y, is in or close
to the range of integration then we proceed to break up the integral as in
the classical method of stationary phase. Notice that only values of ¢
between 0 and 2 (and non-zero values of x) lead to critical points in the
range of integration. For definiteness, take 0 < x and t < 1. We also con-
tinue to suppose that |x| > /2. A simple change of variables converts the
integral in (B.14) to the form

[ = et o(z) d, (B.15)

where it is only the real part of this integral that is of interest here. In the
integral in (B.15), w, 4, and g are given by

_2[e4r=1) 5, _(x\”
w@)_B[ il = A=)

r1/4(1 _t)l/z \ 21;4

and

g(z)= Tl o e (B,lﬁ} .

The critical point w is now located at z = 1, independently of x and . The
integral in (B.15) is broken into two parts, namely =TT

2 o .
j e*Ce(z)dz  and j e"*Clg(z) dz, (B.17)
& max{2,&}
with the understanding that if & > 2, the first integral is zero. Since &> 0
and |x} > §/2, the first integral in (B.17) is a bounded, continuous function
of (x, ¢). For the second integral, we simply integrate by parts once again
to reach the formula

Jm e Wg(z) dz

]

1hw(=)

o, (2)

=1 x glrmwiz)
—f e’ gl2) ,

=10 =) A w:(z} 2 (BIS)

= g(t)
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where zo=max{2, &}. The boundary term vanishes at z= +oo, while at
z=2, we obtain a function which is clearly continuous as long as both
x#0 and t# 1. Moreover, we have that for some constant c,

e#Zm(za} t1/4(1 e t)
\g(“) Bz x

and since we are dealing with the situation in which |x| > d/2, it follows
that the boundary term is continuous even at =1, and uniformly bounded
on bounded time intervals. As for the integral on the right-hand side of
(B.18), the absolute value of the integrand is bounded by an expression of

the form
M"M1—-nr 1 1
= ()]

and since x is bounded away from zero and 1 is likewise bounded below
on finite time intervals, we may again conclude that this integral converges
absolutely and uniformly for |x|>8/2 and ¢ bounded, therefore repre-
senting a continuous function that is bounded on bounded time intervals.

It is thus established that I(x, s) is a convergent integral if (x, s) # (0, 1).
Moreover, I(x,s) is jointly continuous in this domain and uniformly
bounded on any region of the form

— {(x,s):|x|+|1—s|>6>0,0<s<5"< +o0}.
-~~~ We now turn briefly to the convergence of I(x, s) to the initial datum mee
“P(x)= Ai( —x)/(1 +x*)™ as s = 0. Notice first that since ¢ € L,(R) and the

“ Airy kernel generates a C-semigroup in any space H*(R), s=>0, it follows
that I(x, 5) converges to y(x) in L,(R) as s — 0. Indeed, this fact is obvious
upon consideration of the Fourier transform of / in the variable x. It is also
the case that I(x, s) converges to }(x) as s— 0 in L (R), a fact which is
now verified.

First, since Ai is improperly integrable with total mass one, it follows
that the difference I(x, s) — Ai( —x)(1 +x*)~" can be written as

1= (x—y\[ Ai(=y) Ai(-x)
Ej—wm( s )[(I+y2)’“_{1+x2)m]dy' (B.19)

This latter, improper integral is broken up into three parts I;, I, and I,
corresponding, respectively, to the intervals of integration (— oo, x—ol,
(x—a, x + ), and [x +a, ), where a = a(s) will be specified momentarily.
The three integrals I, I,, and I, will be estimated separately.
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First, by the mean-value theorem we have that

1 px+2 —
L=t () ot -0 b

§ix—a

where

me=—{Aﬂ“” z.iﬂtﬁL}

w2y A

and, for each ye [x—a, x+a], 2 = z(x, y) lies between x and y. Referring
to (4.2) and (4.3), one sees easily that o is a uniformly bounded function
of x and y provided that m > 1/8. Hence the estimate

2

co
|z| dz<—
s

|| o | Al [
<
i) <o e |

—a

follows readily, where the constant ¢ is independent of both x and s.
Choosing o =a(s)=s" where v> 1/2 then leads to the upper bound

I S es™ !

which tends to zero uniformly in x as s tends to zero.
Turning now to I3, we proceed as follows:

T e 1 = '. .
I; -:._.[ _=Ai (-{Ti) A;(_.y)(] Ny }{'}_"' dy

xdad

—Jw-iﬁ(x:y>dyAﬂ—xK1+xﬂ‘W (B.20)

The second integral on the right-hand side of (B.20) may be written as

A=) [

Ai(z) dz

—a/s

and if it insisted that o =s" where v<1, then a/s — o as s — 0 and there-
fore, because Ai is improperly integrable, this term is seen to tend to 0 as
s tends to zero, uniformly for x € R. As for the other term, the combination
(y—x)/s is larger than =1 on the interval of integration and this tends
to infinity as s tends to zero. Hence, one is naturally inclined to use the
asymptotic form in (4.3) of Ai((x— p)/s) in the following way. First, write
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7 Zai <¥> Ai(—y)(1 + y?)~" dy

xX+a S

1 1
F————r172 COS

L L Ay=x)'" =
—\/; xra 8 (p—x)4 32 4

Ai(—y) s>
U+ [”0<1 +<y—x>3/2)]dy'

Clearly the term containing O(s**/[1+ (y—x)**]) tends to zero
uniformly in x as s tends to zero. The other term is integrated by parts to
reach the expression

37T 4) (y=— " {1+ Y

2 x+a

© 32 3/4 s
1 sin(z(y x) n) § Ai(—y)

[ sin (M_E>

X+ 3532 4

5 Ai(—y)
T [{1 + y‘)"’(y—x)'f'*J @

. (2y—=x)" @\ s Ai(—y)
“m( 3T A) (= (L4 )"

y=ot

(B.21)

VY=

The boundary term at y = +c0 is zero and the boundary term at y=x 4« =
tends to zero as s tends to zero, uniformly in x since v < 1. By writing the

first term in (B.21) in two parts wherein the integrand is integrated
separately over the intervals [x+a, x+1] and [x+1, ), and using

again the restriction v <1, it is deduced that this expression, too, tends to

zero as s tends to zero, uniformly for x € R. Consider now the second term

in (B.21) and use Leibniz’ rule to write the derivative with respect to y as

a sum of three terms. Two of the resulting integrals clearly tend to zero as

§ tends to zero, uniformly for all real x, The third term, namely

f“’ Sin(Z(y—x)"’” n> s Ai'(—y)

W) =T e B2

x+a

requires more exacting consideration.
In fact, we argue very much like we did earlier following formula (B.5)
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to obtain the desired conclusion regarding the integral in (B.22). First since
Ai’ lies in L(m, o) for any finité value of m, it follows that

j°° am (2(y—xJ’” n\ s Ai'(—y)
Sa—— 333,{2 4 y_x}3jl1 [l [ yZ}m

g\
<) Milaron

and the right-hand side of this inequality tends to zero as s —0 since,
again, v<1. Of course, if x> 1, this integral does not appear in our
appraisal of the integral in (B.22). Letting X =max{1, x +a}, we are left to
consider the integral

f""sin(?ﬁ(y—x)"’z g) s Ai'(—y)
- 374 =0T Y

X

Since x>0, use may again be made of the asymptotic formula (4.3) to
write

o (Hy—x)P? =n s A(~y)
J S“‘( 3577 ~4>(y—x)’*f“‘(1+yE)”' g

1 e Ap—x)" =
'2n1/ZL WM TE T

x sin (3 y¥2— ”>. - sHEyWE =t
G=x) " (157 )"'

1 e - (=X
+znv‘2f- Sm( 3s-3/--27-»-_hz

gy 14 1
Gyl () @ (5:23)

The second term on the right hand side of (B.23) converges absolutely
and tends to zero as s~ 0, uniformly for xe R. The first integral on the
right-hand side of (B.23) is written, up to a constant, as

X

7 eos@ () dy+ [ cosO_ NNy (B24)
where 6, , 6_, and y are defined in (B.8), (B.9), and (B.6), respectively.
Using the formula for integration by parts in (B.10) leads quickly to the
conclusion that the integral in (B.24) involving 6 , tends to zero as s -0,
uniformly for x e R. K
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Turning now to the second integral in (B.24), and abbreviating 6 _ by
simply 0, we proceed as in the analysis of the second integral in (B7). First
consider the case wherein % < 1/2, say. Since x > 1, it follows that if 1< 1/2,
then for all y>%, 6,(y)>cy'?/s** for some positive constant c. This
inequality combined with formula (B.10) assures that for such values of x,
the second integral in (B.24) converges absolutely and tends uniformly to
zero as s —+ 0.

If ¥>1/2, we proceed in a manner like that appearing earlier near
formula (B.15), making a change of variables to put the integral in
question into the form

f g (z) dz (B.25)
where A, o, and g are defined in (B.16), ¥ =max{(1 —¢)/x, (%/x)(1 -1},
and it is only the real part of the latter integral that is of direct interest
here. This integral is broken into two parts, namely

2 (>
[ etog(z)dz  and [ e"Cg(z2) dz, (B.26)

max{2,x}

where it is understood that the first integral is to be ignored if X > 2. Since
#>0, the absolute value of the first integral in (B.26) is bounded above by
ct'* where ¢ is a constant which is independent of x> 1/2 and ¢<1/2. The
second expression in (B.26) is integrated by parts as in (B.18) to reach the

alternate form ) ey,

eﬂm{z) z=c 1 o

e gz(z),d,z. e

) o) scmasier) Aoz © o)
But w,(z) > cz"*/s*? if z> 2 and ¢ < 1/2, and so it follows at once that both
the terms in the last display tend to zero as s — 0, uniformly for x > 1/2.

The proof of the lemma is now complete in the case k=0.

As for the cases wherein k > 0, the arguments are identical except that
the kth derivative Ai®)(—y) replaces Ai(—y) in the integral expression in
(B.2), the power m is taken to be larger in compensation, and the general
asymptotic formulas (4.4) are used in place of those in (4.2) and 4.3). 1
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