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Abstract. The asymptotic behavior of solutions to the initial-value problem for the gener-
alized Korteweg-de Vries-Burgers equation
Ut + Ug + uPuz — Vuzz + Ugos =0
and the generalized regularized long-wave-Burgers equation
ut + ug + uPug — Vugy — Uzzt =0
is studied for v > 0 and p > 2. The decay rate of solutions of these equations is that exhibited

by solutions of the linearized equation in which the nonlinear term is simply dropped.

1. Introduction. This paper is concerned with the decay of solutions of the
damped wave equations

Us + Ug + UPUG — VUgy + Uz =0, (T €R, t>0) (1.1)

and
Up + Ug +UPUL — VUgy —Ugee =0, (z €R, t>0) (1.2)

with initial-value conditions
u(z,0) = f(z), (z€R). (1.3)

In the above equations, u = u(z, t) is a real-valued function of the two real variables
x and t, subscripts adorning u connote partial differentiation, v is a positive number
and p is a positive integer.

Such equations arise as mathematical models for the unidirectional propagation
of nonlinear, dispersive, long waves. In this sort of application, u is typically an
amplitude or a velocity, z is proportional to distance in the direction of propagation
and t is proportional to elapsed time. Important special cases of (1.1) and (1.2) are
the well known Korteweg-de Vries equation (KdV equation)

U + Ug + Uy + Uger = 0, (1.4)
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derived originally as a model for waves propagating on the surface of a canal (Kor-
teweg & de Vries [17]) and the alternative regularized long-wave equation (RLW
equation)

Ug + Uy + Uly — Uggs = 0, (1.5)

put forward by Peregrine [22] and Benjamin et al. [2]. These equations feature a
balance between nonlinear and dispersive effects, but take no account of dissipation.

The addition of a dissipative term to the wave equations (1.4) and (1.5) becomes
necessary when damping effects are comparable with the effects of nonlinearity and
dispersion. This certainly occurs when modelling water waves on laboratory scales
and in the near-shore zones of large bodies of water ([6, 19, 20, 21]). It also occurs
when consideration is given to problems concerning bore propagation (see {7, 8, 13]).
The modelling of dissipative effects at the same level as nonlinear and dispersive
effects in equations of KdV- or RLW-type is a somewhat delicate matter (see [24]),
and consequently the KdV-Burgers equation (KdV-B equation which is (1.1) with
p = 1) or the RLW-Burgers equation (RLW-B equation which is (1.2) with p = 1)
has gained some acceptance when there is need of combining nonlinear, dispersive
and dissipative effects into a single evolution equation (see e.g., [6, 12]).

When an ad hoc dissipative term is appended to a KdV- or RLW-type equation,
it is important in using the resulting model in practical situations to understand
the decay rates thereby implied when initial data of finite total energy is posed.
This issue was the genesis of the study by Amick et al. [1] of (1.1) and (1.2) in the
special case p = 1. It was shown in the last-mentioned reference that solutions of the
initial-value problem for either (1.1) or (1.2) with p = 1 with initial data in L,(R)
only decay algebraically in time. Indeed, it turns out that if  is a solution of (1.1)
or (1.2) corresponding to suitably restricted data, then the Lo (R)-norm of u decays
at the rate t='/4 as t — +o0, and this rate is sharp for a generic class of initial data.
This is the same rate that obtains via Fourier analysis for the linearized equations,
but there is a subtle difference between the linear and nonlinear problems explained
in [1, §5].

The results in [1] have been usefully generalized by making allowance for more
general nonlinearities, dispersion relations, and linear dissipative mechanisms (c.f.
3, 4, 10, 11, 27]). Recently, considerable attention has been given to the generalized
KdV equation (GKdV equation, which is (1.1) with » = 0) and the generalized
RIW equation (GRLW equation, which is (1.2) with v = 0) (e.g., [5, 15, 16]).
These studies have focused on understanding the interaction between nonlinearity
and dispersion by keeping the relatively simple dispersive terms uy; or —ugq; and
varying the strength of the nonlinearity by changing the value of p. Some very
interesting aspects of wave propagation have been turned up in these studies. Also
attention has been given to whether or not properties observed for solutions of the
GKdV or GRLW equation persist in the presence of dissipative effects.

It is our purpose here to add to the discussion outlined above. An analysis is
carried out to determine the temporal decay rates of solutions of (1.1) and (1.2) in
case v > 0 and the initial data has finite energy, by which is meant that it belongs
to a suitable Sobolev space. Attention will be given entirely to the cases where
P > 2 not treated by Amick et al. [1] (the case of asymptotically weak nonlinearity
in the parlance introduced by Dix [11]). The techniques used here to obtain sharp
results are different from those in [1] where a central role was played by the Cole-
Hopf transformation. This change of variables is no longer effective if p > 1 and
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so more general methods are required. In consequence, the proof of our results
is considerably less intricate than that presented in [1], though some of the very
detailed information derived in [1, §3] seems not to be available using the robust
arguments favored here.

The outcome of our analysis is that solutions decay at temporal rates identical
to those of the linear equations, just as for the case p = 1. For the GKdV-Burgers
equation, our conclusions are the same as those one may derive by specializing the
general theory developed by Dix [11]. Both our results and those of Dix considerably
improve the earlier theory of Biler [3]. The proof offered here of decay of solutions
of (1.1) is technically simpler than that presented in [11], but doesn’t have the
range of applicability. It is remarkably similar to one that is effective for solutions
of (1.2). Consequently, the presentation here focuses on the new results for the
GRLW-Burgers equation (1.2) and provides only a brief outline of the theory for
decay of solutions of the GKdV-Burgers equation (1.1). Decay results for (1.2) for
relatively high order nonlinearities (p > 4) have also been given by Zhang [27] using
different estimates than those appearing in Section 3 below.

The paper is organized as follows. In Section 2 the notation is set and the
theoretical results stated. Section 3 contains some preliminary technicalities. In
Section 4, some non-optimal results are derived for solutions of (1.2). With the
help of the preliminary results and the non-optimal decay results, the sharp theory
is derived in Section 5. Section 6 recounts briefly the analogous results for equation

(1.1).

2. Notation and statement of the main results. In this paper, all functions
will be real-valued. For an arbitrary Banach space X, the associated norm will be
denoted || || x except for a few convenient abbreviations to be introduced now. The
Ly-norm of a function f which is pth-power absolutely integrable on R is denoted by
| flp for 1 < p < oo, and similarly |f|eo = [|f||L..- If m > 0 is an integer, W™ (R) will
be the Sobolev space consisting of those L,(IR)-functions whose first m generalized
derivatives lie in L,(R), equipped with the usual norm,

||f||w;n(m) . Z |f(k)|p-
k=0

The case p = 2 deserves the special notation H™(R). The norm of f in H™(R) will
be noted simply || f||,,,- The space CF(R) connotes the functions defined on R whose
first k derivatives are bounded, continuous functions. The class Cf° = Cf°(R) =
Nk>oCF(R) will not be given a topological structure. Let X be a Banach space, T
be a positive real number and 1 < p < +00. The symbol L,(0,T; X) connotes the
Banach space of all measurable functions u: (0,7) — X, such that t — |ju(t)]|x is
in L,(0,T), with the norm

=

T
lyomao = ([ @I dt)”, i 1<p<-+o0

and
lull L. c0,T;x) = essential supremum (||u(t)]||x).
0<t<T
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Similarly, C(0, T; X') denotes the subspace of Ly (0, T; X) of all continuous functions
u :[0,T] — X with the norm

llullco,rixy = sup |lu(t)]x.
0<t<T

If T = oo, then Cp(R™*; X) denotes the bounded continuous mappings u : Rt — X.
This is a Banach space with the norm

lulloym+ixy = sup [lu(t)llx.
R+

Finally, the Fourier transform f of a function [ is defined by

) = = G

As already mentioned, the principal thrust of the present work is to obtain sharp
decay rates for solution of (1.2) in case v > 0. Precise statements of our results
appear in Sections 5 and 6. However, the following informal statement serves to
provide a goal the reader may usefully bear in mind as the theory is developed.

Main result. Let p > 2, v > 0, and consider initial data f that is suitably
restricted in smoothness and evanescence as # — Foo. Then there is a unique
solution u of (1.2) corresponding to the initial value f and u decays to zero as
t — +00 in various norms. In particular, there are constants Cj;, 1 < j < 3, such

that
|u(-, t)]2 < Cr(1+8)~14,

[u(, t)loo < Ca(l +1t)7Y/2, (2.1)
|ua (-, )2 < Ca(1 +t)=%/4,

for all ¢ > 0. If p < 4, the same result holds regarding equation (1.1). If p > 4 and
the datum f is not too large, then global existence and the decay rates (2.1) still
hold.

3. Some preliminary results. The well-posedness theory and a couple of
technical results connected with the linear semigroup corresponding to (1.2) with-
out its nonlinear term are presented here. All of these will find use later in our
development.

The first result is essentially in Kato [15] and extends earlier work in [9], [14] and
[25].

Proposition 3.1. Suppose F': R — R is C*°, and consider the initial-value prob-
lem
up +ug + (F(u))y — Vlgg + Uzze =0, (z €R, t>0), (3.1a)

u(z,0) = f(x), (z € R). (3.1b)
(a) Problem (3.1) is locally well-posed in H™(R) for anyr > 3.
(b) If limsupy oo |s|76A(s) < 0, where A'(s) = F(s) and A(0) = 0, then

problem (3.1) is globally well-posed in H"(R) for all v > 2. Moreover, the
solution u lies in Cp(RT; H(R)).
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(c) For any nonlinearity F, there exists a number yp > 0 such that (3.1) is glob-
ally well posed in HT(R) N {f : ||fll1 < vr}. For data in the last-mentioned
class, the corresponding solution u lies in Cp(R*; H(R)).

(d) If fe WER)NHT(R) and r > 2, v > 0, then u € C(0, T; WF(R)) for any
T > 0 for which the solution exists in H™(R).

It deserves remark that more subtle results are available for certain classes of
GKdV equations with v = 0. A good summary of this recent theory may be found
in Kenig, Ponce & Vega [16]. The relatively straightforward results quoted above
suffice for the present purposes.

Similar theory is available for equations of type (1.2). The following is a straight-
forward generalization of the results in [1].

Proposition 3.2. Suppose F : R — R is C*® and consider the initial-value problem
g + g + (F(u))g — Vuge — Uz =0, (z€R, t>0), (3.2a)

u(@,0) = f(z), (z€R). (3.2b)

Problem (3.2) is globally well-posed in H*(R) for s > 1. The solution lies in Cy(R™;
H(R)) and in C*(0,T; H*(R)) for all k > 0. If f € WF(R) then u and all of its
temporal derivatives lie in C(0,T; W{(R)), for any T > 0.

The linearized RLW-Burgers initial-value problem
Wi + Wy — VWep — Weet = 0, (3.3a)

w(z,0) = f(z), (3.3b)

was also discussed in [1]. This problem can easily be solved by formally taking
the Fourier transform of equation (3.3a) with respect to the spatial variable z. One
deduces that for f € Lo,

—vytt — iyt

w(y) t) = exp ( 1+ yz )w(y) 0), (34)
and therefore that
1 o0 —vytt — iyt s
w(z,t) = — exp (————— + iyx dy. 3.5
(z,1) \/ﬁ/_m p ( iy yz) f(y) dy (3.5)

The integral on the right-hand side of (3.5) will be denoted by S(t)f(x). Here are
some straightforward results about the decay of solutions of (3.3) (see [1, §4]).

Lemma 3.3. If f € HY(R) N L (R), then

@ fm e[ v do = i dsOr@B = @m ([ )
and

b)  lm ¢ /_ = ol e (128%7)7 ( /_ - f(m)dm)z.

t— o0

The following lemma will be useful in establishing the main theorem about equa-
tions of type (1.2).
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Lemma 3.4. Let ¢ be defined by its Fourier transform q3 as

- 1
30r) = = o ().

Then it follows that
00
sup/ |¢(z, —t)|dz < oo. (3.6)
t20 J -0
If instead, $ is given by

2 .
2 y vy” +uy
¢y, 7) = 1442 exp((w)r),

then it follows that
suptl/z/ |¢(z, ~t)|dz < oo. (3.7
t>0 —00

Proof. The proofs of (3.6) and (3.7) are very similar, and so we content ourselves
with a demonstration of the former. The estimation of |¢(x,—t)|; is made by
breaking the range of integration into pieces as follows:

/ 1#(e, 0l de = /|m|s1 6(z, 1) de + /|z|21 6z, ~t)| dz. (3.8

Since the range of integration in the first term on the right-hand side of (3.8) is
bounded, it suffices to show that |¢(x, —t)| is bounded on this range, independently
of t > 0. But by the definition of ¢, we see that

elny
¢(a, t>'—f¢—/ T exp (o

< / ex (_Vth / C
=V _°°1+y2 P\Try z) y_\/27r 1+y dy<C

(N.B. Sharper estimation shows that |¢(z, —t)| < Ct~1/2 as t — 00.)

To control the second term on the right-hand side of (3.8), one may follow a line
of argument suggested in [1]. For convenience, write h(y, t) for ¢(y, ~t). Integration
by parts shows that

00 piny By eii”y 2
V2ord(z,—t) = —/ O t)dy = —/_ ?Byh(y, t)dy.

—00

If |y| > 1, it is easy to check that

vt

Ctle~ %

83001 < 5 s
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and hence that
izy iy
Varipe, ol < | [ Sranndl+] [ o na
biz1 z2 ¥ ) <1 z2 Y (y,t) dy
t2 _ 1 eia:y
<ol + )/_1 & oy, t)dyl.

Note that since

2y uy + i — y?i vyt + iyt
oyh(y,t) =1 — — - = .
yh(y,t) [ 1 +42)2 (1+y2)3 ] ( 1+ 2 )’ (3.9)
it follows that .
vt
Oyh(£1,8)] < C—ze™ 7,
and therefore that
t2 ut 1 iez‘zy
Varlote, 0| < Oze ¥ + | [ Ea,ntu,t)ay) (3.10)
Let us define
L jetoy
10 = [ ot
and then rewrite it as
.el ; 2 2 .3
% . 2y vy +1i—y“i —vy“t 4+t
H ) = — izy—ity [ __ . L
= [ g~ 1 )
(3.11)

Integrating by parts twice leads to the estimate

C.cl_f'z Ct3/2
@0 < oo =9 T o -0

Hence to prove the lemma, it suffices to show that
/ |\H(z,t)|dz < C.
|z]>1

Divide the range of integration into four pieces, namely (—oo,—1), (1,t — v/t),
(t+ v/t,00) and (t — v/1,t ++/t). The arguments for the integral over the first three
intervals are similar, and therefore only one is worked out in detail.

-1 -1 1/2 £3/2
[ o sc | (oo Fa—gm)

—00 —00

o 1 1 Int
=Ct—1/2/ + dy<C— <C,
1t (y(y+1) y(y+1)2) v="un =
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for values of ¢t away from 0. To estimate the integral over (t —+/t,t+/t), use (3.11)
to ascertain that

1 2
@0 < o [ 1+ exp (T2 dy < 02l
0

whence

t+vT
/ [H(z,t)| dz < Ct1/2(ln(t +Vt) — In(t - \/Z)) <C.
t—v1t

The proof of the lemma is complete. [1

4. Some non-optimal results. In this section, interest will be focused on
the decay rate experienced by solutions of the initial-value problem (1.2)-(1.3).
Although some of the following results are true for p = 1, it is assumed that p > 2
henceforth. We will prove here that |u(,t)|s = 0(t~%) and |ug(-, )|z = 0(t~%) as
t — +00. In Section 5, these preliminary rates will aid in obtaining optimal rates.

Lemma 4.1. Let f € H2(R). Then ug, uzy € Lo(R X RY) and u € Cy(R*; H?).

Proof. Multiply equation (1.2) by u and integrate over R x [0, t]. After integrations
by parts, there appears the equation

t
e, ]2 + 20 / jua (- 7) Bdr = [I£113 (4.1)
0

Hence, ||u(-,t)||1 < ||f]l1 for all t > 0 and u; € Lo2(R x RY). In particular, it follows
that

lu(, )3 < Jul, )lalusz(, )2 < I FIF- (4.2)
Multiply equation (1.2) by uz, and integrate over R X [0, ¢]. Following integration
by parts, one obtains

t
s O + s, 0 + 20 | fusa () dr
0

t poo
=f13+I1f"13 +/ / 2uPUgUgy dr dT. (4.3)
0 J—oo
Because of (4.2), it follows that
[e o] 1 [o ]
/ 2uPUL Uy AT < Vitgg (- t)|2 + —/ u?Py? d
—oo VJ_ o
1
< Vluaa (-, 8)  + —Ju(, 8) 2 lua(, 1) 3 (44)

1
< Vluaa (5 O + Sl FI177 ua(, )3
Hence, (4.3) takes the form
t 1 t
|ua:(-,t)|§+lum(',t)|§+'//0 ltta (-, T) |3 dT < llfll%*‘;llfllf"/0 ua(, 7)3 dr. (4.5)

Since u; € La(R x RY), (4.5) implies that uz, € Lo(R x RT). O
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Corollary 4.2. Let u be the solution of (1.2) corresponding to initial data f €
H2(R). Then it follows that

|’U,x(', t)|21 |Um(',t)|2 — 0, as t— +00,

and
|u(-yt)|oo — O as  t— 4oo.

Proof. First note that U(t) = |uy (-, t)|2 + |uzz (-, t)|3 has a limit Uy, as t — +o00
since both the temporal integrals in (4.3) are convergent as ¢ — oo because of
(4.4) and (4.5). Since both summands comprising U(t) lie in L;(R*) on account of
Lemma 4.1, it follows that the limit Uy, must be zero, and thus the first statement
is verified. It then follows that

u(, O30 < Tuls l2lus(, 2 < Ifllilus(, )],

and since the right-hand side of this inequality tends to zero as ¢ — +o00, the result
follows. O

Lemma 4.3. Let u be the solution of (1.2) corresponding to initial data f € H%(R).
Then

U, Ugt € Lz(]R X R+)

Proof. Multiply (1.2) by u; and integrate the result over Rx[0,¢). After integration
by parts and using Lemma 4.1, one adduces that

i
14
SO+ [ ) + e, Blar
v t poo
=_|f’|§—// ug (ug + uPug)dz dr
2 0 J—o0

i . (4.6)
Vi 1 2 1 N V2, 2
S—|f |2+§ o ]ut(-,'r)|2d7‘+§ A (1+u ) uwdxd’r
—00

v 1/ 1 ¢
<HIFB+ g [ e + 5+ IAR? [ s mlBar

Since g, Uge € L2(R x R*) by Lemma 4.1, the result follows. O

The next results will yield decay rates, albeit non-optimal ones. These will be
parlayed into optimal rates in the next section.

Lemma 4.4. If u is the solution of (1.2) corresponding to initial data f € H2(R),
then

. 1 4
t—lg-nootz [|Um.(,t)|% + |u(-,t)|4] = 0’

and

1 +oo
lim ¢z / |umt("t)|g =0.
. t
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Proof. Multiply (1.2) by the combination u; + ug + Lugt and integrate the result
over R. After integration by parts, one has

(% + %)%{lux(-,t)lé} + e (13 + lue(, ) + ua (-, 8)13

= —/ {(us + ug)uPuy + —ugpuPuy, }d.
- v
Then (1.2) is multiplied by u3 and the result integrated over R to obtain
1d 4 2 ® 2
Zalu(-,t)h + 3vfu(-, t)ug (-, t)|5 = —3 {v*ugug: }dz. (4.8)
—00

Add (4.7) and (4.8) together and then use Young’s inequality to derive the inequality

(3 + 50 el 00B + 5l 1 + uae(- O

+ 31/|U( 1t)ua:( at)|2 + Iut("t) + uz("t)'z

o]
1
—/ {(us +ug + ;um)u”uac + 3ulupug b (4.9)

< Sl )+ e B + Sluse )

+ [ + ), O + Sful, O fuC- s, O

]

Note that since 2p — 2 > 0, one may use Corollary 4.2 to infer the existence of a
positive value T" such that for ¢t > T,

( =+ )|u( %2 2<v and 9u(,t)% < (4.10)
In consequence of (4.9) and (4.10), it is assured that
d(I'(t 1
WD) 4o s, O + Suae, DB <, (411)

for t > T, where
I'(t) = ( + 5> )lux( t)I3 + IU(',t)lﬁ-
Since |u(:,t)|2 is bounded, u, and uz; € L2(R x RY), and
(- )| < Jul, )12 u(, )13 < lua(, t)l2lul, )13,

it is inferred that I'(t) € Ly(R*). At this point, the line of argument in [1] may be
followed to finish the proof of the lemma. In fact, because of (4.11), one has

+oo i
/ T(s)ds > / T2(s)ds > (¢~ T)T2(t), for t>7 and 7> T.
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It follows that e
/ I'?(s)ds > limsup tT?(t)
T t—+o00

for any T large enough. Since I'(t) € Ly(RY), the left-hand side of the above
inequality can be made as small as desired by choosing 7 large enough, and thus
one has the desired result
Jim¢3 (jus (-, O3 + [u(, 8)[4) =0. (4.12)
To obtain the second result, choose T so large that for ¢ > T, the inequality (4.9)
yields
dr'(t)
dt

Integrating this relation over the temporal interval [t,+o0) for ¢ > T, it appears
that

1
+ 3 luae (- 1)l5 < 0. (4.13)

1 [t
TO+3 [l <o,
t
and hence by the result (4.12),
+o00 )
/ gt (- )BT = o(t=3)  as ¢ — oo,
i

The proof of the lemma is thus complete. O

From Lemma 4.4, a decay rate for the Ly,-norm of the solution u can be derived.
Indeed, for any z € R,
+o0
/ wlugdr
T

as t — 400, and it follows that

u(z, t)* =3

3 [ 4 2 -3
<> (@t tul)ds =o(t™?)
2/

fu(-t)|oo = 0(t™3) as t — +oo.

Corollary 4.5. Let u be the solution of (1.2) satisfying the conditions in Lemma
4.1 for the initial data f. Then

[u(,B)|oo = 0(t8) as t— +oo.

The following lemma plays a key role in the proof of our main theorem.

Lemma 4.6. Let u be the solution of (1.2) corresponding to the initial data f €
H?(R) N W2(R). Then for any fized, positive constant a,

sup t/ v2|i(y, t))%dy < oo.
2t vl

Proof. Differentiate equation (1.2) with respect to z, take the Fourier transform of
the resulting relation with respect to the spatial variable x, and solve the resulting
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ordinary differential equation by the variation of constants formula to reach the

expression
2 .
N —vy“t — iyt »
yi(y,t) = yexp (Tyz)f(y)
i T —vy? —iy — ()
= S (t - 7))t (y, T)dr.
p+1/0 1_|_yzexp( T+ (t = 7))urti(y, 7)dr
It follows that
lya(y, t)[* < 2% exp (= 1+} )If( 2
2 ) y2 e y 2
i (p+1)2(/0 TS 3¢ =) [ T)|dT) (4.15)
4.15
<2wlexp(7— 5 1+ 74 fe
2 [ty
i (P+1)2/0 (A +y2)2 ° (1+ Ve ) ¥ ) e
Note that .y
2 exp (—L2)| f(y)[2dy < C(|fl2)t™" 4.16
~&&@y p (T Fw)Pdy < O o) (416)

Because of Lemma 4.4 and the assumption that p > 2, it transpires that
[, Tloo < WP, Tl < Jul D22, TR, Tle < OT7M4, (417)

as 7 — 400, where C is a constant. It follows from this that for ¢t > «,

t A 2
/Iy|<\/?/o (T+22 P (1 +y? (¢ =)ty drdy
=\t -

aw [t 1
SC(_ﬁ) /0 Py~ |ytg\/%_exp(-uy2(t—'r))dydr

I 2
< Ct_z/ —/ eV =) dudr (4.18)
0 V/""_— —00 i
L |
< Ct‘z/ —dr
0 \/t— \/_
<m—/
\/w(l—w

Combining (4.15), (4.16) and (4.18) gives

<02

/ lyii(y, t)|*dy < Ct7Y, (4.19)
MESVES

where C is independent of t. The lemma is proved. O



NONLINEAR DISPERSIVE WAVE EQUATIONS 973

Lemma 4.7. If f € HX(R) N WZ(R) and p > 2, then the solution of (1.2) corre-
sponding to the initial data f satisfies

t3lug( )2 <C  and tluge(t)2 < C,

for allt > 0, where C is independent of t.
Proof. If (1.2) is multiplied by u% and the result integrated over R, there appears

1d .
Ealu(a t)lg + 5V|u2(" t)um(" t)lg =- / 5u4umumt dz. (420)

—00

Multiply (4.20) by a constant b and add the result and (4.7) together. Using Young’s
inequality then implies that

v 1.d 2 bd 6 2
(5 + E)alum( )t)|2 + 6'&'“(30'6 + |u$t("t)|2

+ 5bwfu? (-, Yua ()13 + |ue (-, 8) + ua(-, )13

00
1
= —/ [(ut + ugy + ;’U:a:t)upum + 5bu4uzumt]daz (4.21)

o0

1
< I'U/t(‘,t) + Uz(';t)lg + Eluwt(" t)lg

[+ Il D12 + 2587, O] s ),

DO | =

Since p > 2, we may choose b large enough that
1 1
dbv > (— +3) sup |u(,t)|B*+ 1. (4.22)
ve 27 0<t<oo

Then choose T so that for t > T,
25b2|u(-, t)|2, < 1. (4.23)

With these restrictions on b and T, it is assured that
B (E ot sl + ol OIE) + b e DB <O, (420
2 ' 2v A e ’ ke

for t > T. Moreover, if (1.2) is multiplied by u,, and then integrated over R, one
sees readily that

d :
7 (182 (o D3 + luas (- £)[3) + 2v|uaa(, )13
— [ 20tz do < Ve O + e O sl O

—00
Now multiply (4.24) by a constant and add the result and (4.25) together to reach
the inequality

d

= (s )1 + luaa ()13 + [u(, 0)§) < —Alusa (-, 8)13 — Blu’(, Jus(, )3 (4.26)
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Formula (4.26) holds for ¢ > T, where A, B and T are suitably chosen positive
constants. The inequality (4.26) leads to the related differential inequality

%(ﬁ(luz("t)lg + |umz(vt)|% + Iu(vt)lg))

(4.27)
< 24((ua(, O — S laaC O8) + 26(hul 018 — D, el )B),

ift > T = maz{T, %}. By using Parseval’s theorem and Lemma 4.6, the first term
on the right hand-side of (4.27) can be bounded above, independently of t > T; viz.

tA
Gt - Sl OB <t [ PawoPasc. @
¢ 4 WV E

If we let v(z,t) = u¥(z,t), then v, = 3u?u,. Using Parseval’s theorem again, the
second term on the right hand-side of (4.27) can be bounded above as follows:

t(|u(, t)I§ — %uz(-,t)uz(-,tn;) <t /ms \/glﬁ(y, t)*dy < C, (4.29)

since
19(, )loo < lu(®, t)|§ < |u(:, B)I3lu(, t)]2 < CEYV4

Because of (4.28) and (4.29), (4.27) reduces to

(2 (sl B + luaa, OFF + (-, 0)) < €,

whence
|ug (-, 813 + [uaa (-, t)I3 + |u(-, t)I§ < Ot

Corollary 4.8. If u is the solution of (1.2) corresponding to initial data f in
H2(R) N W2(R), then |u(-,t)|oo = o(t~1) as t — +oo.

Proof. This follows from the last result since

u(, )13 < lua(y t)lalul, D)2 < CEV2[u(:, 8)ls. (4.30)

5. Decay rates for the GRLW-Burgers equation. With the help of the
non-optimal results derived in Section 4 and the preliminary results in Section 3,
we are now ready to prove the main result concerning the RLW-Burgers equation
(1.2).

Theorem 5.1. If f € HX(R) N WZ(R) and p > 2, then the solution of (1.2) corre-
sponding to tnitial data f satisfies

lu(-,t)|2 < C(1+18)7%, (5.1)
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for allt > 0, where C is independent of t.

Proof. According to [1, Theorem 5.1], the desired result (5.1) is equivalent to
showing that
sup |u(-, )1 < oo. (5.2)
<t<oo
Proceeding as in the derivation of (4.14), except without first differentiating, leads
to the following formula for the solution v :

u(z,t) = VIT_W/_ exp 1:—- +zym)f(y) dy

i t o) y iy
 Son(n+ 1) ex t—7) + dyz)uptl dud
2?r(p+l)/0/_°ol+y2 p( 1|_z ( ) y) (y,7)dydr.
(5.3)
The first term on the right-hand side of (5.3) is in L;(R) because of Lemma 3.4. In
fact, if one lets

Mot == [ en (CL i) fay

(—uyzt — iyt

1442 +iyz) (1 + %) f(y) dy (5.4)

=\/ﬂ / 1+y2 P
/ o(z — y,~1) (FW) — F"(4))dy,

where d; is defined in Lemma 3.4, then

e oie < = [ o -iae [© (el +irwd a6

—00

Lemma 3.4 asserts that

| @ -vjaz <0,

—00

and so (5.5) implies that

| @, < cUislwecm) (5.6)

In a similar manner, the second term on the right-hand side of (5.3) can be repre-
sented as

_'_z‘—‘— t - T — —r)u ) T
9(z,1) = (p-{-l)\/2—7r/o /_001/)( 97— Uy, ) dydr, (6.7)

where

2 s
—VYy°r — myr)

n __Y
¢(y’ T') - 1+ l+y‘3

5 exp (
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In consequence, one sees that

/ l9(, )l dz < C / wer-oh [ R ldgdn 69)
i 00
Note first that by Lemma 3.4,
[p(, —r))s < Cr~1/2
for r > 0. Note also that

/ [+ (y, 7)| dy < Clu(, Tl Tl < Cr 72 u(, T, - (5.9)

where use has been made of Corollary 4.8 in the last step. Hence the left-hand side
of (5.8) can be estimated above by

o0 t 1 1
< —_— | ul- g R
/—oo Ig(w,t)ldw_CA mﬁlu( ’T)lldT (5 10)
Use of (5.5) and (5.10) leads to

B il o
. < —|u(- . 11
0 <+ G [ e tul, )l dr (5.1)
An application of Gronwall’s lemma then gives
w
StHh £C C dr) <C C
u( ) < 1exp(z/ \/m\/- T) 1 €xp 2/ \/m)

and the theorem is proved. O

Corollary 5.2. If f € H*(R) NW2(R) and p > 2, then the solution of the initial-
value problem for (1.2) with initial data f satisfies

(@ tilus(t)l2<C, tiu(tf<C,
and )
(b) t2|u(, t)|oo < C,
for all t > 0, where the constants are independent of t.

Proof. A suitable linear combination of (4.11) and (4.25) leads to the differential
inequality

%(qu(',t)lg + [uza ()13 + [u(, 1) < —Altao(, D)3 — Blu(, Hua (-, )13,

for t > T, where A, B and T are positive constants. It follows that

d :
E(f?(lum(- t)l2 + [uza (-, 1)1 + [u(, )] t) (5.12)
9

< 24 (Ju(-, 1)1 ~ |Um( t)I3 + lu(, O3 = 5 lul, hus (-, 1)13),
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for t > T = max{T, %}. By using Parseval’s relation, it transpires that

t(lum(‘,t)lg - 'tTAIU’IJJ(,t)‘% i |u(',t)|3 - %lu("t)um('at)lg)

= t/IyIS\/_

2|5 2 ") 2
yoluly,t dy+t/ u2(y, t)|%d
- |a(y, t) Iy|£\/§| (y,t)dy (5.13)

< ct( tiA)3 + Ct\/g(%)z < tl—(jg
where recourse has been taken to the inequality
3 2 2 c
02(y B)loo < Uy )l = lul, D)2 < 75, (5.14)
which is a consequence of Theorem 5.1. Using (5.13) in (5.12) shows that

d /., ) C
2 (2 (o O + iz DG + 1)) < 75

from which one ascertains that

c

[ua (5 )13 + [tan (- )13 + [u(- )13 < 75

(5.15)
Part (a) is thereby established.
To prove part (b), note that

[u(, )l < Ju(, t)lalus(, Dl < G575 = Ot~
by using Theorem 5.1 and (5.15). Hence
[u(-, t)loo < CE72,

and the corollary is proved.

6. Decay rates for the GKdV-Burgers equation. Subject to the provisos
mentioned in the informal statement of the principal results at the end of §2, the
decay rates of solutions to the generalized Korteweg-de Vries-Burgers equation (1.1)
are the same as those exhibited by solutions to (1.2). The overall structure of
the proof of this assertion follows the general lines presented above in regard to
the generalized regularized long-wave-Burgers equation (1.2). In consequence, we
content ourselves with an outline of the steps in the proof with especial emphasis
on aspects that differ from those appearing above. ‘

The first and most crucial difference between (1.1) and (1.2) is visible already in
Proposition 3.1 and Proposition 3.2. Unlike the situation that obtains for equation
(1.2), equation (1.1) appears to admit a t-independent bound on the H Y(R)-norm
of a solution only if p < 4 or if || f||1 is not too large in case p > 4 (see [5]).



978 JERRY L. BONA AND LAIHAN LUO

Lemma 3.3 has an exactly analogous statement and proof for equation (1.1) (see
again [1, §4]). The analogous version of Lemma 3.4 also holds with

d(y,r) = exp ((Vy2 + iy — iys)r) and ¢(y,r) = yexp ((Vy2 + iy — iya)r)

replacing those that appear above (3.6) and (3.7), respectively. The proof is a little
more complicated, but still straightforward.

The important Lemma 4.1 holds for the global solutions u of (1.1) whose existence
is charted in Proposition 3.1. The proof relies on the same energy-type estimates,
except that the t-independent H'-bound promised in Proposition 3.1 is needed since
the ‘analog of (4.1) is

t
() + 20 /0 g (o) B dr = |£12, (6.1)

and this relation on its own does not provide the essential Lo,-bound in (4.2).
Moreover, the analog of formula (4.3) only contains |u,(-,t)|3 + 2v f; [ugz (-, T)|3dT
on the left-hand side. Hence it is convenient to multiply (1.1) also by 4gzez and
integrate over R x [0, t] to reach the relationship

t
tas O + 20 [ hugaal B
0
t +o00 i [e%)
= 2/ / P U Ugrs da:d‘r+2p/ / u”_luﬁumz dxdr (6.2)
0 —c0 0 —00

t t
C
< V/ |uzm('»7)|gd7'+ ;/ Iuwm(,"')lg dr,
0 0

where the constant C depends on the t-independent H'-bound on u guaranteed
by Proposition 3.1. One readily deduces from these relations that us, gy, Ugpe €
Ly(R x RT), u € Cp(Rt; H*(R)), and the conclusions that |ug(:,t)|2, [tga(-)t)|2,
|u(+,t)|oc — 0 a8 t — +oo. With this information in hand, it is easy to demonstrate
that u; € L2(R x RY), while the relation ugy; € Ly(R x R) takes the place of the
condition on u;; in Lemma 4.3. A new version of Lemma, 4.4 valid for solutions of
(1.1) now follows by essentially the same of energy inequalities (multiply (1.1) by
Ug + Uy — %um and by 43 and proceed as before). Naturally, the second conclusion
is replaced by
lim t%/ |tige (-, T)|2dT = 0.
t—4o00 !

Corollary 4.5 is then inferred to hold as stated for global solutions of (1.1). The
same is true of Lemma 4.6, and again, the proof differs only slightly from that
presented in Section 4 for solutions of (1.2). With these results in hand, Lemma
4.7 and Corollary 4.8 follow by the same arguments for solutions of (1.1) as for
solutions of (1.2).

The main result as it applies to solutions of (1.1) is then deduced as it was for
solutions of (1.2) by use of the preliminary results analogous to those in Section 4



NONLINEAR DISPERSIVE WAVE EQUATIONS 979

together with the representation
u(@,t) = == / " exp (- vyt — iyt + iyt + iy) Fy)dy
' V21 J—o
i i o] . ) D
- Y exp ((—l/y —dy+iy)t—7)+ imy)uP‘H y, 7)dydT,

obtained by taking the Fourier transform of (1.1) with respect to the spatial variable
z.

It is worth summarizing the foregoing commentary in a formal statement.

Theorem 6.1. Suppose p > 2 in (1.1) and that the initial data f lies in H*(R) N
WE(R). Suppose also that either p < 4 or that || fll1 < yr where F(2) = 2P*!/(p +
1) and yr is the ceiling featured in Proposition 3.1. Then the solution u of (1.1)
corresponding to the initial data f satisfies

(Bl <CA+1)E,  |ug(t)l2 < C(L+1)E, (6.3)

for all t > 0, where the constants C' are independent of t.

7. Conclusion. The rate of decay to the quiescent state v = 0 of solutions of
the generalized Korteweg-de Vries-Burgers equation and solutions of the generalized
regularized long-wave equation has been studied. Attention has been concentrated
on the case of nonlinearities of cubic order and higher, so complementing the earlier
studies of Biler [3] and Amick et al. [1], and paralleling the current work of Dix [11]
and Zhang [27].
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