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Abstract. Considered here are model equations for the propagation of bores on the surface of a
canal or river. Interest will be focused on both the Korteweg-deVries equation and the regularized
long-wave equation with a Burgers-type dissipative term appended. Existence, uniqueness and
continuous dependence results are established using the techniques of Bona and Smith. We then
consider the steady bores whose existence was established by Bona and Schonbek and show these
to be stable solutions of the evolution equation. This latter result extends the earlier work of Pego
on this problem.

1. Introduction. The physical phenomenon underlying the present study is the
propagation of a surge of liquid in a channel. Such motions have attracted atten-
tion for centuries, being readily observed in nature. The first careful and extensive
laboratory study of such wave motion appears to have been made by Favre [7]. In
his experiments, a gate separating different levels of water in a channel is abruptly
removed. This is the same experiment as that performed by Scott Russell [28] nearly
a century earlier, but the impetus for this previous study was the newly discovered
solitary wave, and thus a different physical regime was in view. By selecting suitable
geometries and varying the levels of the water on either side of the gate, two general
classes of waves may be observed, both of which are termed bores. So-called strong
bores have a rapid, turbulent change of water level, whilst weak or undular bores have
a gently sloping or oscillatory transition between the different levels. The matter may
be viewed on a much grander scale, for example in the Tsein-Tang river where the
motion is driven by the tides (cf. Stokes [32] for a photograph and commentary
concerning bores).

The present study will be concerned with an idealized, two-dimensional situation
in which an undular bore is uniform across the channel in which it propagates and the
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channel itself is level and uniform with a rectangular cross-section, say. A forthcom-
ing report will deal with the case when there is cross-channel variation of the wave.
The three-dimensional situation is more realistic of course, but there is much to be
learned from the simpler case considered here that is somewhat obscured by the com-
plexity inherent in the three-dimensional models. For both the two-dimensional and
the three-dimensional situations, our theory will rely upon approximate, long-wave
models to describe the fluid motion.
Both the Korteweg-deVries equation

U+Ui+UU 4+ Uy =0 1.1)

(Korteweg & deVries [20], henceforth referred to as the KdV equation) and the
regularized long-wave equation

U;+Ux+UUx—Uxx; =0 (1.2)

proposed by Peregrine [27] and Benjamin et al. [2] have been suggested as models for
the propagation of bores. Both these models incorporate the nonlinear and dispersive
effects inherent in bore propagation, but neither takes account of dissipative effects.

On laboratory scales, there is little doubt that dissipative effects must be included
to have any hope of accurate prediction (cf. the experimental studies of Hammack
[10], Hammack & Segur [11] and Bona et al. [3]). Even on the larger scales often
appearing in nature, dissipative effects need to be considered, at least near the front
of the bore.

The modeling of dissipation in surface water waves at the same level of accuracy as
nonlinearity and dispersion appear in KdV-type equations is somewhat complicated
(cf. Kakutani & Matsuuchi [15], Mei & Liu [21], Miles [22], Ott and Sudan [24]).
In practice, one often incorporates some relatively simple dissipative term into one
of the models (1.1) or (1.2) (see Bona & Smith 5], Grad & Hu [9], Johnson [13],
[14]) in the hope that the resulting solutions will still reflect the essentials of what
occurs in the field. As pointed out by Bona et al. [3], as long as only a relatively small
number of wave numbers are present in the disturbance, one has reason for optimism
regarding this point of view.

This just-mentioned approach is adopted here. Thus the principal aim of this work
is to demonstrate the classical well-posedness of the initial-value problems

U+ U, +UU, —vU,y + Uy = 0 (1.3)
and
Vi+ Vi +VV, — vV = Vie = 0, (1.4)

when initial data corresponding to bore propagation is provided, namely

Ux,0) = gx) or V(x,0) = g(x). (1.5)
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In (1.3) and (1.4), it is assumed that v > O whilst in (1.5) it is supposed that g is
sufficiently smooth with

g(x) — C; as x —> +o00 and g(x) — C_ as x — —o0, (1.6)

where C_ > C,. (In both equations (1.3) and (1.4), three physically important but
mathematically irrelevant constants have been scaled out.)

The KdV equation (1.1) has attracted considerable attention in the last couple of
decades, partly because of the inverse-scattering theory introduced by Gardner et al.
[8] and partly because of the large number of important physical situations that it
or its generalizations model (cf. Benjamin [1], Jeffery and Kakutani [12], Scott Chu
and McLaughlin [29] for a partial list). Rigorous theory for the KdV equation began
with the work of Sjéberg [31] and Temam [34] on the periodic initial-value problem
and was extended and refined by Bona & Smith [5] and Kato [16]. The latter authors
studied the initial-value problem on all of R with data lying in Sobolev classes, and
so tending to zero as the spatial variable x tends to +00. They showed that solutions
exist, are unique, and define a continuous mapping of the temporal interval into the
function class from which the data was derived. Moreover, they demonstrated that the
solution depends continuously on the initial data. More recent work has combined
the ideas in Bona & Smith [5], Kato [17] and Strichartz [33] to obtain well-posedness
corresponding to rather rough initial data and some surprising smoothing results
for the solutions of the KdV equation (cf. Kenig et al. [18] for a review of this
theory). Similar results were obtained somewhat earlier (Benjamin et al. [2]) for the
regularized long wave equation (1.2). The mathematical status of equations (1.3) and
(1.4) is less well understood when bore-like initial data is in question as in (1.5)—
(1.6). One problem is that such data has an infinite amount of energy, thus leading
to difficulties in obtaining a-priori bounds on solutions. Benjamin et al. [2] were
able to circumvent this problem and thereby concluded a satisfactory theory for the
initial-value problem (1.4)—(1.5) with v = 0. A theory for the initial-value problem
(1.3)—(1.5) has not been put forward heretofore save for the case v = 0 for which
Cohen [6] obtained some preliminary results using the inverse-scattering transform.

The plan of the paper is as follows. After briefly reviewing our notational conven-
tions in Section 2, the initial-value problem (1.4)—(1.5) is considered in Section 3.
The theory presented is a straightforward generalization of that presented in Benjamin
et al. [2] and consequently our presentation is abbreviated. The more difficult case
of the initial-value problem (1.3)—(1.5) is considered in Section 4. Here we follow
the lead of Bona & Smith [5] in regularizing equation (1.3) with the additional dis-
persive term —eU,,,. The regularized equation thus obtained is reduced via a change
of variables to equation (1.4) and the theory in Section 3 then comes to our aid in
establishing global solutions for the regularized equation. The remaining part of the
section is devoted to obtaining a priori bounds on the solutions of the regularized
initial-value problem. In Section 5 the strong convergence as € tends to zero of the
solutions to the regularized problem is established. The limiting functions are shown
to be the desired solutions to the problem (1.3)—(1.5). It follows readily from the
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strong convergence of the regularized solutions that solutions of (1.3)—(1.5) depend
continuously on the initial data. In Section 6 the theory developed in the earlier
sections is put to use in considering the stability of the steady bore solutions of (1.3)
or (1.4). The existence of these traveling-waves was shown by Bona & Schonbek
[4]. Pego [25] has demonstrated the stability of these steady bores. However the
stability is only established in the special circumstance that the perturbation has zero
total mass. This assumption is somewhat artificial and is shown to be unnecessary.
The crucial ingredient is a theory for (1.3) and (1.4) in suitable weighted Sobolev
spaces.

2. Notation. The notation to be used is mostly standard, but worth briefly review-
ing. For 1 < p < o0, we denote by L, = L,(R) the Banach space of measurable
real-valued functions defined on the real line R which are p-th power Lebesgue inte-
grable (essentially bounded in the case p = 00). The usual norm is denoted by | - |,.
For a non-negative integer s, H* = H*(R) is the Sobolev space of functions in L,
whose generalized derivatives up to order s also belong to L,. If s is an integer, this
space is equipped with the norm

5
1712 =S| .
Jj=0

For non-integer values of s, the norm is defined via Fourier transforms in the usual
way. Of course H® = L, and the Ly-norm | - | = || - [lo will be denoted by the
symbol | - . The symbol H® is reserved for N;>¢ H*, but no topology will be needed
for this space. The symbol C, = C,(R) connotes the Banach space of bounded
continuous functions defined on R with the supremum norm. Similarly C,’,‘ = C,’,‘ R)
is the subspace of C), consisting of functions whose first k derivatives lie in C,, with
the usual norm. For T a positive real number or 400, let

Co(0, T; H) ={u:Rx[0,T] > R:u(,t) € H V¢ € [0, T] and the mapping
t —> u(:, t) from [0, T} into H*® is bounded and continuous}.

In case T is finite, the correspondence ¢ > u(-, t) is automatically bounded and the
superfluous subscript b is therefore dropped. The norm is the obvious one given by

lullco,r;m5 = sup lu(, o).
O<t<T

The space C(0, T; C,’,‘) is defined similarly.

3. Existence theory.

3.1. The regularized long-wave equation. Giving precision to the assumptions
about the initial data g in (1.5), it will be assumed that it satisfies the following
conditions:

(i) glx) — Ci as x — %00,

() g € H¥, (3.1)
(iii) (g — C4) € L2([0,00)) and (g — C_) € La((—00,0]),



MODELS FOR PROPAGATION OF BORES 703

for some non-negative integer k. It follows immediately from (ii) that g is continuous
and this fact coupled with (i) implies g is bounded. The following elementary result
will be used at an early stage in our analysis.

Lemma 1. Let h satisfy (3.1) (i), (ii). Then there is a C* function ¢ such that
¢ € H®, ¢ satisfies (3.1) (i), (ii) and h — ¢ lies in H**'. The function ¢ can be
chosen such that

|6 —hla <2|1W|y and |9loo < |hloo, (3.2a)

and so that there are constants Cy for which,
19"l < Cilh|2 (3.2b)

fork =0,1,2,....Moreover, if h satisfies (3.1)(iii), then so does ¢.

Proof. Let p(x) be a non-negative C*°-function with support in [—1, 1], say, such
that

1 1
/ p(x)dx =1 and / p2(x)dx < 1.
-1 -

1
Define the function ¢ to be p » 1 where x denotes convolution. We see plainly that

Bl = | [ hx = 9001y < hle,

since p has L;-norm equal to 1. From the general properties of convolutions, one
has, form > 1,
dm¢ dm-! p
dxm = dxm—l
The right-hand side of this relation is the convolution of an L;- and an L,-function,
and so is an L,-function. In addition,

*h.

0™, < |p™= DYy |h' |5 = Cy W2,

which shows that ¢’ is an H* function and that (3.2b) holds, fork = 1,2,... . In
particular, (¢ — h)’ lies in H & (If ¢ — h were also an L,-function, then one could
adduce that ¢ — h € H¥! c H!)

To prove (3.1)(i) holds for ¢, consider

(o) |
lim $(x)= lim ] hx - y)o)dy = lim f h(x — Y)pO)dy
x—>%00 x—>300 J_ o x—>x00 f_
1
- f lim h(x —y)p()dy = C,
x>0

-1

since p has mass one. The interchange of the limiting procedure and the integration is
justified since h is bounded and continuous and lim,_, 1o, #(x — y) = C4, uniformly
for |yl < 1.
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We now show that ¢ — h € L, and verify (3.2a). Since p has mass one, it follows
that

(e e]

$(x) — h(x) = / p() (h(x — y) — h(x)) dy,

-0

from which one concludes that

/ : @) —hx)ds = [

—00

(e o]

1 2
(J p5ttx = 3) = hixnay) ax

o0 1
< f 2 / )G = ) — h(o)l dyd

1 © Py -y
- f 2/02()’)[ {f h(x + t)dtf R (x + s)ds}dxdy
-1 —00 0 0

1 -y -y 00
- / 20%(y) / / [ f K(x+0h(x +s)dx}dsdtdy.
-1 0 0 —00

But, the Cauchy-Schwarz inequality implies that

o0
f B (x + )b (x + s)dx < |W']3,

—00

and the latter quantity is bounded, independently of s and z. Hence, it transpires that

1
6 — h2 < 2/h'B f Ny <2

If h satisfies (3.1)(iii), define H to be

C: for x > 0,

H =
2 { C_ for x <0.

Then the function ¢ satisfies (3.1) (iii) if and only if ¢ — p » H lies in L,. But one
notes that
¢—p*xH=pxh—H),

and the right-hand side is an L;-function convolved with an L,-function, and hence
is an L,-function.
The proof of the lemma is complete. [J

Attention is now focused on the initial-value problem
U+ Uy +UU;, = VU = Uppe =0, U(x,0) =gx), (3.3)

where g satisfies the conditions in (3.1). The requirement C_ > C,, which is an
appropriate assumption for bore propagation, plays no role in the theory presented
now.
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The initial-value problem (3.3) has already been treated by Benjamin et al. (1972,
p.65) in the case v = 0 and the analysis is virtually unchanged if v > 0, as is now
briefly indicated. First rewrite the equation in the form

(1 —932) (U, +vU) =vU - 8, (U + LU?),

and then formally invert the elliptic operator (1 — 32) subject to zero Neumann
conditions at L-o0 to obtain the integro-differential equation

U(x, ) +vU(x, 1) = %f e WU E -0 (UE H+1UE 1) }ds. (3.4)

Integrating by parts the last two terms in the integrand, and viewing (3.4) as an
ordinary differential equation of the form U, 4+ vU = f, we find U to satisfy the
integral equation

UGs, 1) = e™"g(x) + fo 9 [T K- pUE.9 +iUre )

—00

E v/ K(x — &)U, t)dg}ds, (3.5)

with K(z) = e ¥, K'(z) = —sgn(z)e™"|, and g(x) the specified initial value of
U. Supposing that g € C,’,‘ for some non-negative integer k, it is straightforward
to view (3.5) as an operator equation of the form U = A(U) and, by use of the
contraction-mapping principle, conclude the existence of a solution in the subspace
of C(O, T, C,’,‘) of functions satisfying (3.1) (i), provided T > 0 is sufficiently small.
If k > 2, it follows that this solution of (3.5) is also a classical solution of (3.3), and
that U,, U,, and U,, all tend to zero as x — +00. Even for k = 0 or 1, U defines
a distributional solution of (3.3) (cf. Benjamin et al. [2]). The local existence result
may then be extended to a global result by the use of energy-type estimates, The
main step in obtaining a global result is an L ,,-bound on the local solution which is
finite on any finite time interval [0, T'] on which the solution is known to exist. Thus
suppose U is a solution of (3.3) lying at least in C(0, T'; C,’,‘). LetV = U — ¢, where
¢ is defined as in Lemma 1, relative to g. Then we find that V satisfies the equation

Vt+Vx+¢x+(V+¢)(V+¢)x _v(V+¢)xx"" xxt =0,
V(x,0) =g(x) — ¢(x).

By Lemma 1, it follows that (g — @) € L,. Multiply equation (3.6) by V and integrate
over R to obtain the relation,

d
2d

(3.6)

(v2+v / (VV, + ¢, V)dx

e e}

- f V(V 4+ )V + ¢)edx +v f V (Vs + bre)dx.

—00 —00
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Simplifying this equation, and estimating in a straightforward manner yields

d o0 (e o]
g f (V2 +V2)dx +2v f Vidx
=00

=00

-/ T (VAV, = V2 — 200,V + Vb dx

[oe]

< 1xlool VI3 + 2B looldx 21V |2 + hrx 2| V ]2

By an application of Gronwall’s lemma, it follows that the H!-norm of V is bounded
on bounded time intervals. By the use of Sobolev’s inequality, it then follows that
the L-norm of V is bounded, and since V = U — g, it follows that the L,,-norm
of U is bounded on bounded time intervals. With this bound in hand it is then
straightforward to pass from the local solution to a global one. We summarize the
state of affairs for equation (3.2) in the following theorem, which contains stronger
regularity conclusions than those established by Benjamin et al. [2].

Theorem 1. Let g satisfy the conditions in (3.1) for some k > 0. Then there is a
unique solution U to the initial-value problem (1.2) which, for each fixed T > 0, has
amU, € C(0, T; H*) and 3" (U — g) € C(O, T; H**Y), form =0,1,2, ... .

3.2. Approximation of solutions of the Korteweg-de Vries equation by
solutions of the regularized long-wave equation. The initial-value problem (1.3)
is now the focus of attention. Changing to a moving coordinate system wherein
V(x,t) =U(x + ¢, t) leads to the initial-value problem

Vt+ VVx — VvV +Vxxx =0, V(x’ 0) =g(x)’ (37)

for V. The theory for (3.7) will be approached by way of the regularized initial-value
problem

Vt + VVx - VVxx i Vxxx - evxxt = O, V(x’ 0) = g(x)- (38)

Here € > 0 is fixed for the time being but eventually tends to zero. Now (3.8) is
comparatively easy to handle. As noted in [5] the change of variables

Ux,t) = eV(el(x —1), eit)
transforms (3.8) into the initial-value problem
U+ Us + UU; — pUs, —Upyy =0, U(x,0) =eglelx),  (3.9)

where u = v/ e1. For € a fixed positive number, Theorem 1 comes to our aid and the
following result is the consequence.
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Theorem 2. Let g satisfy (3.1) for some k > 0. Then the initial-value problem (3.8)
admits a unique solution U such that, for each fixed T > 0, U, € C(0,T; H ky and
U —¢ e C(0, T; H**'). Moreover,

/U eC©,T; H**'")y for 1<l<k+1. O

To obtain a solution of (3.7) by passing to the limit as € | O in (3.8), a-priori
bounds on the solution of (3.8) will be needed. For the present, let g satisfy the
conditions in (3.1) with k = oo. The solution U to the regularized problem will
therefore be a C°°-function of both its variables and any derivative of U is, for each
t > 0, an L,-function of the spatial variable. Let ¢ be as in Lemma 1 relative to g.

Proposition 1. If W = U — ¢, where U and ¢ are as just described, then W admits
the bound
[Wlz < My(2), (3.10)

where My : RY — R is continuous and monotone non-decreasing. Moreover, M
is independent of v > 0 and € in the range (0, 1) say, but does depend on |g'|, and

18 o0-
Proof. The function W satisfies the initial-value problem

Wt + (W + ¢)(W + ¢)x + Wxxx - l)Wxx - GWxxt . V¢xx + ¢xxx =0,
W(x, 0) = g(x) — ¢(x).

Multiply the above equation by W and integrate over R. There appears, after appro-
priate integrations by parts, the equation

(3.11)

14

2dt
00 o0 o0 [o.0]

=—f ¢Wdox+vf ¢xdox—/ (W+¢)¢dox—/ Brxx Wdx.
—00 —00 -0 -0

o0 . 00
/ (W2+ve)dx+v/ Wldx
-0

—00

After estimation and simplification, this yields,

d (% w2 2 * w2

— (W +eW)dx+2v | Widx

ar ) o - (3.12)
< (e lool W13 + 21 loolz L2 W |2 + 2bsxx 21 W2 + 20| hxx 2| W 2.

Define the functional E by
[o.0]
Et) = / (W(x, 1) + €W, (x,1)?) dx.
—=00
Then equation (3.12) implies the inequality

E
‘Z—t < CLE() + GE ),



708 J.L. BONA, S.V. RAJOPADHYE, AND M.E. SCHONBEK

from which it follows that

Ei(r) < E1(0)e*™ + % (9 — 1) = Mo(2).
2
Here My depends only on the norms of ¢’ in H'! and ¢ in L, and on |g — ¢|, and

€2 |g’ — ¢’|2. Thus, because of the conclusion enunciated in Lemma 1, M, depends
only on |g’|2, |g]e and on ¢ and the proposition is proved. O

Bounds on W in higher-order Sobolev norms will be needed. These are quite easy
to obtain in case v is positive, but are a little harder to derive when v is allowed to be
vanishingly small. The case v > 0 may be handled as follows.

Proposition 2. Suppose that v > 0, and that g satisfies (3.1) for somek > 1. Let U
be the solution of the associated regularized problem (3.8) and let W = U — ¢ as
in Proposition 1. Then for 0 < j < k there is a non-decreasing, continuous function
Nj; such that

18] W2 < N; (@),

where N; depends only on the H’-norm of g’ and the Loo-norm of g.

Proof. Let ¢ correspond to the initial data g as in Lemma 1, continue to write
W =U —¢, and set ¥ = ¢, + Prxx — V1. Multiply (3.11) by W,, and integrate
over R. After suitable integrations by parts, it transpires that

1d 2 2 2

i (W + €W, )dx +v Wxxdx (3.13)

f VIWxx +/ (W+¢)W Wxx +/ W¢x xx = IWxIZIW |2+ Il +I2

Bounds on the terms /; and I are needed to make further progress. A bound for I;
is obtained as follows:

o0 o0
= [ WeWer — $W2)ax = f (W2 + 6. W2) dx

[e.e] o]

5 1
< %|¢x|2|Wx|2|Wx|oo 2|W |oo|W 12 CIIW |2|Wxx|2 2|‘VJ¢|22|WJMI22
3 1
< CIIVV,\:Izzlwaurlz2 &l Elﬁllzﬂtlwxxlz4 < %waxlz'i' C2|Wx|2+ C3|W|50

In deriving this estimate, Young’s inequality and 31mple Sobolev and interpolation
inequalities have been used. Note that since C| = 5 |¢x |2, C can be chosen to equal

E (—L) 3, and thus depends only on the L,-norm of ¢,. The constant Cs is an absolute
constant times an inverse power of v. The quantity I, can also be bounded using the
same techniques as follows:

o0
v
L= f W Wexdx < |delool Wi2|Wexla < C4|lW 2 + lexu%,
—00
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where C, depends only on the Lo-norm of ¢, and 1/v. Substituting the last two
estimates into (3.13) leads to the inequality

d o0 oo
a—tf (W2 +eW2)dx + v/ W2,dx < Cs / Wdx + J1(t),
-0 -0

where, using (3.10), one may take J; = C3My(#)'®+C4sMo(2)?, which is a continuous
function of  and which is bounded on bounded time intervals, independently of v > 0
and € in the range (0, 1). Using Gronwall’s lemma, it follows from the last inequality
that,

t
Wl OB+ v [ 1Wantes)ids < NP,
0
where Nj is a continuous function depending only on the L,-norm of g’, the Ly-norm
of e 3 g", the L-norm of g, and some inverse power of v, but is independent of € in
the range (0, 1).

The argument now proceeds by induction on k. At the kth stage, we multiply
(3.11) by Wiy = 32*W and integrate over R. The terms

d * 2 2 . 2
—00 =00

appear. The other terms may be bounded in terms of the bounds obtained at the
(k — 1)st stage, or they may be hidden in the quantity

2
vf W(k+1)dx,
—00

asinthecasek =1. O

The case v = 0 is considerably more challenging. We begin with an L,-bound
on W,.

Proposition 3. Let W = U — ¢ be as defined above in Proposition 1 and assume
that v = 0 in (3.8). Then there is a continuous function M,(t) such that

|Wyl2 < Mi(2),

and M, (t) depends only on |g’|, and |g|co-

Proof. Multiply (3.11) by (W, —eW,, + %Wz + W¢) and integrate over R. Let
denote the expression @@, + ¢y, After integrating by parts, and a couple of crucial
cancellations, there appears

00
f (Aw2-13 3—%¢W2)dx=—/ ¥ (Wax + W2 —2eW,, + Wo) dx

=00
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Integrating this over [0, ¢] yields,
o0 o0
f W2dx = f (W + ¢W?)dx
—00 -00
t o0
2 [ [ Wt AW~ 26,0+ Wrdx £V O),
0 J-0

where the quantity V (0) denotes the value of the integral [ (W2 —2W? —¢W?)dx
at t = 0. Estimating the right-hand side of the above 1nequa11ty, it is found that

f Widx =} / Wdx + f ¢ Widx
—00 —00 —00

+f foo YW + Yy W2 + 299 W) dxdr + V (0) (3.15)

t
-32-IWI2IW |2 +CUWIS+ /(C2IWI2+C3IWI%)dT + V(0) < 3IWel3 + 112,

where J;(¢) is a continuous functional of the L,-norm of W, and hence by Proposi-
tion 1, is uniformly bounded on bounded time intervals, independently of € in (0, 1).
Note that the coefficients in J; depend only on the L,- and the L,-norms of ¢ and
its derivatives and hence according to Lemma 1, depends only on |g’|; and |gleo. O

The difficulty in obtaining a-priori bounds for the case v = 0 occurs at the next
stage. The bound on the H2-seminorm of the solution is established in the next
proposition.

Proposition 4. Let W = U — ¢ as in Proposition 1, and assume that v = 0. Given
anyT > 0, thereisan ey = €y(T, ||g'|l2, |gloo) > O and a continuous function M, (t)
such that for 0 < € < €, the inequality

[Wixla < Ma(t)

holds for 0 < t < T. The function M, depends only on T, ||g'||l2 and |g|co.

Proof. Multiply equation (3.11) by the expression Wiz, + (W + @)W, + W2 and
integrate over R. After several integrations by parts and cancellations, we are led to
the equation

Mf {1 = €W + ) W2, +eW?, ) dx
- _f [WWxxW, + W2W, + ¢W,, W, + 26 Wy Wix Wer + = W,W2 ]dx
5 _;: 00 o0
_Ef ¢xW3xdx - 3f Gux Wy W, dx _/ Grxx WW,,dx
—00 —00 —00

o f (Vex W + 9 W Wy + +06 Wiy + 9 W2)dr. (3.16)
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Fix the time T > 0. According to Propositions 1 and 2, the H!-norm of W is uni-
formly bounded on the temporal interval [0, T'] by the quantity (Mo(T)?+ M, (T)2)% A
independently of 1 > € > 0. By an elementary imbedding theorem, it is inferred that
|W (-, t)|oo is also uniformly bounded for 0 < t < T, independently of € in the afore-
mentioned interval. Consequently, there exists an g > 0 such that if 0 < ¢ < ¢,
then

W, 1)+ Ploo < 3

for 0 <t < T. Using this fact and the H!- and L ,-bounds, the following inequality
is inferred from (3.16):

oo oo

i / (W2, +eW2,,) (x, )dx — / (W2, +eW2,) (x, 0)dx (3.17)

[o0] =00

t
5C1+f [C2|Wxx|§+%IWIIOOIWxxI%+26|Wx|oo|Wxx|2|le|2+C3|Wt|2]d5,
0

where the constants C;, 1 < i < 3, depend only on My(T), M;(T) and on various
norms of ¢ which can be referred back to |g’|> and |g|« Via Lemma 1, and so are
independent of € in (0, €g].

Information is now derived from (3.17). For convenience, two auxiliary variables
are introduced, namely,

[oe] o0
A%(t) = f W2dx and B*(t)= f (W? + eW2)dx. (3.18)
—00 —00
We aim at obtaining bounds for the terms on the right-hand side of (3.17) by using a
combination of the functions A(z) and B(¢). First note (see [5, Lemma 3])
@ |Wiloo < €74 B(),
(i) Wil < CAZ(D),
i) |Wal2 < €77 B(),
from which follows \
€| Wilool Wex |3 < €3 B(1)A%(r)

and ] ,
€| Wrlool Wit 2| Wixla < €2CAZ(t) B(2).

Some control on B(t) is needed. To this end, differentiate (3.11) for v = 0 with
respect to ¢ and multiply by W,. On integrating by parts over R, the following relation
emerges:

d 20 o0 00 -
i / (W2 4 eW2)dx = — f (W + ¢ W2dx < (Wsloo + [ 1oo) f W2dx
—00 —00

—00

1 1 oQ 1 oo
< (AWelE [Warld + 16 1o0) f Wdx < C(Werld +1) f W2dx,
—00 — D0
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where the constant depends on My(T'), M,(T) and g, but is independent of € < ¢;.
With the notation introduced above, this inequality can be expressed in the form

B%*(t) < B*(0) +2C f '(A%(r) + 1) B%(1)dr,
0

since ]
(IWelZ +1) <2(A2(x) +1).

To obtain a bound on the initial value B(0), multiply the regularized equation (3.11)
with v = 0 by W, and integrate over R. After a suitable integration by parts, the
following relation appears:

[0 o] o0
/ (W2 +eWl)dx = — f W, (WWy + (W), + Wyy + Grnx) dx
= —00

o0

< B(t) (IWleol Welz + |@lool Wi l2 + 1¢x ool Wz + [Wixx 2 + [@xsx]2).

Simplifying the above expression by canceling the factor B(¢) on both sides of the
inequality, we are led to

B() < llolls + W3 (C + W),

where C depends only on norms of ¢. Setting ¢ = 0 in this last inequality, it is found
that

B©0) < llglls + llg — #l13(C + lig — ¢l

Using the foregoing analysis and (3.17), we arrive at the following system of inequal-
ities:

! 3
A2 <Ci+ %G%sz (BA% 4+ B+ BAydt + %03/ (A% + A)dr,
e = (3.19)

H t
325C4+C5/ A%BZdr+c6/ B%dr,
0 0

in which the constants are independent of € < €g, but depend on T', Mo(T), M (T)
and g in the ways appearing previously. The analysis of the system (3.19) now
presents itself. Define a new quantity D by D? = A2+ 1. Using the fact that A? and
A? are bounded above by A? 4+ 1, it follows from (3.19) that

t !
D? < c1+e%c2f BD2dr+C3f D%,
0 0

t t
B? < c4+csf D%Bzdr+06f B3,
0 0
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where the constants have the dependence mentioned below (3.19), and so are inde-
pendent of € < €y for0 <t < T. Next, define G and H by the equations

. 3 t
G? = C, +e%czf HG2dr+c3f G%dr,
0 0
t t
H? =c4+c5f G%szr+cﬁf H2dx.
0 0

If (G, H) solves this latter system and (D, B) satisfies the related integral inequality,
then clearly D(t) < G(t) and B(t) < H(¢t) for0 < < T. To analyze the system
satisfied by G and H, it is helpful to make the change w = G? and z = H of the
dependent variables. It is also convenient to choose the constants C3 and Cg above
so that C3 = 2C¢ = A, say. The resulting system can then be written in the form

d .
— (we‘“) =ciA e Mwz,
dt
r (3.20)
E; (ze_)“') = Aze""wz.
Having arrived at this point, a little calculation reveals that
A
w=el—z+Ce (3.21)

A,

for some constant C determined by the initial data. When this expression is substituted
in the second equation in (3.20), a quadratic differential equation in z results which
can be solved explicitly in the form

eR(I)

—€1A;8(1)z(0)

z(t) = z(0) ] (3.22)

where
M

R(t) = At + CAS

and S@) = ft R(s)ds.
0

1

Given T > 0, choose € so that the relation above (3.17) holds, and eg A1S(T)z(0) <
1, say. Thenif 0 < € < o, it follows that z(r) < 2z (0)exp(R(T)) for0 <t < T.
Once z is known to be bounded on [0, T, independently of € < €, w is seen to have
the same property because of (3.21).

Tracing these bounds back leads to the desired bound for W which is independent
of small e. This completes the proof of the proposition. O

Finally, a-priori bounds on the higher-order derivatives are proved in the next
proposition.
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Proposition 5. Let T > 0 be given and suppose initial data g is provided that
satisfies (3.1) for a value k = m + 1 where m > 3. Let ¢, be as in Proposition 4
relative to g and T. Then for 0 < € < €, the solution W of the regularized problem
(3.11) is bounded in C(0, T; H™) with a bound that depends only on T, |g|oo, and
18’51 + €lg™+D3.

Proof. The proof is by induction. By Proposition 4, W is bounded in C(,T; H%
with a bound depending only on T, |g|o and ||g’[l». Letm > 2 and suppose by
induction that W is bounded in C(0, T; H™"!) independently of € € (0, €p] with a
bound depending only on T, ||g’|[n—; and |g|cc.

Multiply the regularized equation (3.11) by Wamy = 32™W and integrate over R
to obtain

d % 2
-0
% 1 0o (3.23)
= [ Wl W + ) Ysndx - | W + 6)innd,
—00 —00
after integrations by parts. By the induction hypothesis, we have,
IWipla <C,  for j<m-—1,
. (3.24)

IW(])IOO<C! for jsm—zi

where the constant C depends only on T, |g’|; and |g|cc. Straightforward analysis
shows that, in light of the bounds in (3.24), the most troublesome terms on the right-
hand side of (3.23) are

[o) ) o] 00
/ Wimy Woms1) Wdx, / Wi, W,dx, / WonyWon—1y Wixdx.  (3.25)
—00 —00 —00

The first term in (3.25) is equivalent to the second after an integration by parts. Since
m > 3, |W,|xo is bounded because of the induction hypothesis, and so the first two
terms are bounded by a constant, which is independentof 0 < ¢ < T and 0 < € < ¢,
times [Wen) |3. The last term in (3.25) is bounded by a similar constant times | Wiy |2/>
since m > 3. The other terms are bounded outright, or bounded in terms of a lower
power of | W) |2. When the dust settles, there appears a differential inequality of the

form
o0

2; (W(2m) +€W(2m+1)) dx < C1|W(m)|§+C2.
—00

If we define o
En@) = [ (W +eWpoy)dr,

o0

then the above inequality implies that

%Em(t) < CE, () + Cy,
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from which it follows at once that
En(t) < En(0)e® + 8 (5 - 1),

where - )
E,(0) = ﬁw{(¢(m) _ g(m))Z +e(pmD — g('”+1))2}dx.

The inductive step is now complete and the advertised result is established. [

4. Convergence of the approximations. In this section the behavior as € | 0
of the solutions to the regularization of the KdV and the KdV-Burgers equation (3.8)
is studied. It is shown that these solutions converge strongly to the solution of the
unregularized initial-value problem. This result is obtained by dint of regularizing the
initial data as well as regularizing the equation, following again the line of argument
in [5].

In more detail, if g is the bore-like initial data satisfying (3.1), let ¢ connote the
smooth version of g constructed as in Lemma 1. Form the difference h = g — ¢,
which is an L,-function according to Lemma 1. The function 4 is then smoothed
in an e-dependent way by convolution. The smooth version of # will then be set as
initial data for the solution W = W, of (3.11). The directed family {W,}o<c<, is
then shown to be Cauchy in an appropriate function class. Its limit W is such that
V = W + ¢ solves the originally posed initial-value problem (3.7).

The program just outlined commences with some preliminary results. Forh € H*®
and € > 0, the regularization 4 of h is defined by

he(k) = Ye (K)h(k) = ¥ (€ k)R k), (4.1)

where i is an even C*°-function with compact support such that 0 < ¢ < 1 every-
where, ¥ (0) = 1, and §(k) = 1 — (k) has a zero of infinite order at 0. It follows
from these stipulations that the inverse Fourier Transform ¥ of ¥ is, along with all
its derivatives, a real-valued L-function. Moreover, 1} has total mass ff°°o ¥ (x)dx
equal to 1.

Lemma 2. Let h € H® and let h, be the smoothed version of h defined in (4.1).
Then, as € | 0,

lrcllss; = O€™89),  forj=1,2,...,

Ih = hells—j = 0(e¥)), forj=1,2,...,

Ih — hells = o(1).
Furthermore, the first bound holds uniformly on bounded subsets of H®, and the last

two hold uniformly on compact subsets of H*. The second bound holds uniformly on
bounded subsets of H* if o(¢§/) is replaced by O(e~$/).

For a proof, see [5, p. 569].
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Corollary 1. Let g satisfy (3.1) for some s > 3, let ¢ be as in Lemma 1 relative
to g, seth = g — ¢ and, for e > 0, let he be as defined in Lemma 2. Let W,
connote the solution of the initial-value problem (3.11) with initial data h.. Then
for any T > O, there is an €9 > 0 such that for 0 < € < €y, W, is uniformly
bounded in C(0, T; H®). Moreover, for any m > 0, €™/W, is uniformly bounded in
CO, T; H**™) for 0 < € < €.

Proof. By applying Propositions 3, 4, and 5, it is ascertained that there is a constant
C suchthatfor0 <t < T and 0 < € < €, where ¢ is determined in Proposition 4,
one has

IWe-, )lls < C = Clkells, €'Plhellss1s 1812, 18loos T).

By Lemma 2, it is seen that

IBells < Cllkll, and  €Z||hellssr < Ced |lhclls.

Hence, independently of ¢t € [0, T'] and for sufficiently small €, we see that || W¢||,
has a bound depending only on T, €, and ||&||;. A similar argument yields the
C(0, T; H*+™)-bounds on €s"W,. [

Remark. By use of Proposition 4 above, one infers that W, isboundedin C(0, T; H')
with a bound that is independent of € altogether.

Corollary 2. Let the hypotheses and notation be as in Corollary 1. Then forany T >
0 and all positive € < €y, 3, W, is uniformly bounded in C(0, T; H*~3). Moreover,
form =1,2,3,40r5, 6'”/68;”“‘33, We is bounded in C(0, T; Lj), independently
of € in the range (0, €].

Proof. From equation (3.11) it is seen that

a
(1 =€) Wa = =~ (3 (We + )"+ (We + e —v(We +0):). (42)
Inverting the operator on the left-hand side gives
Wer = —Ke * Fe(x, t)

172
where K¢ (x) = -2;lm-e“"‘|/€/ and

a
Fe(x,1) = a{%(We + )2 + (We + ¢)sx — v(We + 6):).

It follows that, for any r,

[0 a]
IWatll2 = 1Ko % |2 = f (1 + KR P Bk, )Pk
N ~o0 @3)
< f (1 + k) Bk, OPdk = | Fo(, D2
—00
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since K.(z) = 1/1 + €k? < 1, for all k. Applying (4.3) with r = s ~ 3 yields

" Wet(‘, t)".\‘—S < " Fe(', t)"s—3
< Cil[(We + d)(We + D) + (We + @)xxx — V(We + @)xxlls—3
< Gy + C3||Wells + Call Wells—2ll Wells—3 < Constant.

Similarly, if (4.3) is applied with r = m 4 s — 3, we obtain

€™\ Wer llmas—3 < Cy + C1e™S || Wellmas + Coe™ I Wellmts—3 1l We llms—2
< Constant,

for € sufficiently small, because of Corollary 2 and the restrictionm < 5. [

Proposition 6. For 0 < € < €, let W, be the solution of (3.11) with initial data h,
where h € H®, s > 3, and h¢ is the regularization of h defined in (4.1). Then for any
T > 0, {We)eso is CauchyinC(0,T; H ) ase | 0.

Proof. First notice that
he(x) = / F(x = Dh()dy = / 0 = »)(e0) — $G)dy
= f ¥ (x —y)g(y)dy — f P (x — )P (0)dy = ge(x) — de(x),

the latter two integrals making sense because 1,5 € L, and g and ¢ are in L. Indeed,
because 6,{ 1} lies in L, for all j, it follows that g, and_ ¢ are both C*°-functions, all
of whose derivatives are bounded. Since ¢’ € H®, 3{ ¢ lies in H® for j > 0.

Let W = W, and V = W; with § < e. It is intended to show that for any o > 0
and T > O there is an €y = €p(a) such that ||W — V||, < « for all € < ¢ and for all
t € {0, T]. Since W and V satisfy the initial-value problems

Wt - GWxxt + (W + ¢e)(Wx + ¢ex) - vax - v¢exx == Wxxx + ¢exxx = 0,
W(x,0) = he(x)

and

Vt = 8Vxxt a8 (V S ¢8)(Vx + ¢8x) - vvxx - v¢8xx & Vxxx s ¢6xxx = 0)
V(xa 0) = h&(x)’

respectively where ¢ is defined above, and similarly for ¢;. We findthatY = W -V
satisfies

Yy — 8Ysxr + Yixx — VY = (€ = ) Wiy + XY, —X¥W)) = (W(pe — ®s))x
+ (Y¢8)x - (¢e¢ex + ¢exxx - v¢exx) Sl (¢8¢5x + ¢5xxx = v¢8xx) s
Y (x,0) = he(x) — hs(x) = f(x). (4.4)
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Upon multiplying the differential equation in (4.4) by Y5y = 'y ,where) < j <,
and integrating over R x [0, T'], and after some rearrangements and integrations by
parts, there obtains the relation

1 0 5 N t (o] 5
5/ {YG) +8YGap }dx + "/ / Yiendx
—00 0 J—o0

1 [ o] , t oxX
= 5/ {fGy +8fGn ) dx + (1) (e - 5)/ / Wi Gi+2Y(jhdxdt
—00 0 —00

—11"/'/c>o YY, — (Y W), Yendxd
+ (=) ] _oo( YW)e)) Ypdxde a5

+(=1)/ fo / (Y s)e — (W(de — b))y ¥ipdxde

+ (1) /0 /_ [(Bobsx — dedes) + Borns — denss)

- v(¢5xx - ¢exx)](j) Y(j)dxd‘t.

forj=1,2,...,s. O

The argument now proceeds by induction on j as in [5, Proposition 5]. The idea
is to start at j = 0, use Gronwall’s lemma to obtain a bound on |Y (-, #)|, in terms
of €, proceed to the case j = 1 similarly, but making full use of the bound already
established for j = 0, and so on until reaching j = s. In carrying out this program,
we will rely upon Corollaries 1 and 2 for bounds on W = W,. For j near s, terms
will appear that are not bounded, independently of €, but in fact blow up as € tends
to zero (the case m > 0 in Corollary 1 or Corollary 2). These terms will be offset
by other terms that are not only bounded, but converge to zero at a suitable rate as €
tends to zero.

A couple of preliminary remarks will simplify the subsequent, inductive argument.
First, note that because of the result of Lemma 2 and the fact that ¢’ € H®, it transpires
that for 0 < j < s, the inner integral in the last term on the right-hand side of (4.5)
admits a bound of the form

CiY Gy G Dl2(llgz — ¢'llj+2 + ld5 — ')A + L1 + 151l + |deloo + 1ds1o0)
<C;V;(t)'?D,¢€", (4.6)

as € | 0, for any r > 0, where C; depends only on j and v and D, depends on the
HS*i=2.norm of ¢’, and hence on the L;-norm of g’ (see Lemma 1). The function
V; is defined by the integral

o]
Vi(e)? = / (Y3 + Y%, p))dx.
—00

It will appear shortly that for suitable choices of r, the upper bound in (4.6) implies
the last term on the right-hand side of (4.5) to be negligible compared to the other
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terms in (4.5) for sufficiently small values of €. Similarly, for any T > O there is an
€o > 0 for which the term

f (W(de — $))jan Yipdx

—00

may be bounded in absolute value by an expression of the form
Cjr€ Y (o D2, 4.7)

uniformly for ¢ in [0, T] and € in (0, €], where C;, depends upon the norm of W
in C(0, T; H/*!) and the norm of ¢’ in H* for suitable k, and so ultimately on the
L,-norm of the initial data g’ (see again Lemma 1). Note that in obtaining the upper
bound in (4.7), the following remark is needed. If j > s — 1, then |W(;41]oo is nOt

known to be bounded as € | O, but rather may blow up at the rate e‘j%:'%. This is
compensated by the fact that |pe — @sl2 < |pe —Pl2+ ¢ — ¢s |- tends rapidly to zero
as ¢ tends to zero, again because of the smoothness of ¢. The upper bound exhibited
in (4.7) is, for small values of ¢, also negligible in comparison to others that arise in
the analysis.

Making use of these remarks together with the results of Corollaries 1 and 2, the
equations in (4.5) imply the following collection of differential inequalities:

t
10 < 30 +e [ V@ W gahae (48

4 o0 t
+ ‘ /0 / Y(j)(%Yz —YW+ Y¢3)(j+1)dxd1—‘ + C;,rerfo Vj(T)l/zd‘L',
—00

forj=0,1,---,s.

The argument has now reached a point where all the ingredients are available to
proceed exactly as in the proof of [5, Proposition 5]. Briefly, consideration is given
consecutively to each of the differential inequalities in (4.8) starting with j = 0.
Taking r = 1 in (4.6), say, and using the bounds available from Corollaries 1 and 2,
one derives the differential inequality

1 < 1 d
Vo(t)_<_Vo(0)+5C-0€2/3 / Vo(t)l/sz+EDo f Vo(r)dr, (4.9)
0 0

which is valid for 0 < ¢ < T and the constants Cy and Dy depend only on T and the
norms ||g’||2 and |g|eo Of the initial data g. It follows at once from Gronwall’s lemma

that
DyT 1

Vo) < Vo(0)'/2e™T + e2/3co“"—D—_—,
0

for 0 < t < T. Combining this inequality with what we know from Lemma 2 about
the dependence upon ¢ of the initial data A, it is concluded that

(4.10)

1Y (-, £)l2 < Eo€'’? 4.11)
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for0 <t <Tand0O <e <¢. Ifs > 3,a higher power of ¢ can be obtained.
Consider next the case j = 1. Carrying out the same sort of estimates that led to
(4.9) and making use of the already derived (4.11) yields the inequality

1Y (D)2 < Ere'?, (4.12)

validfor0 < ¢t < T and 0 < € < ¢, where E, depends only on the H!-norm of A.
Continuing in this manner leads to the desired conclusion. We may safely rely upon
[5, §5] for details. It deserves remark that when j = s, the inequality one derives in
place of (4.12) has the form

;Y ¢, O)l2 < E[€"° + [lhe — hlls + I1hs — R))s] (4.13)

where E; depends only on the H*-norm of . [J
Corollary 3. The family {8, We)e»o is Cauchy in C(0, T; H*3) as e | 0.

Proof. As before, let Y = W — V where W = W, and V = W; with € > §. Then
Y satisfies equation (4.5). The convergence of 8Y,,, and (¢ — 8)V,,, follows by
Corollary 2 and the rest of the terms on the right hand side of (4.5) converge by virtue
of the last proposition. [

Theorem 3. Let g beasin (3.1) and leth = g—¢ where ¢ is as specified in Lemma 1
relative to g. Then there exists a unique solution W of the equation

W+ (W +o)(W + A+ (W + O)xxx — V(W + ?)xx =0,

with initial data
W(x,0) =gx) — ¢ (x).

Moreover, W € C(0, T; H®) for all finite T > 0, and U = W + ¢ is a solution of
the KdV equation with initial data g.

Proof. Uniqueness is immediate, for if y and z are two solutions, define w = y — z
so that w(x, 0) = 0 and w satisfies the differential equation

Wy + Wyyy — VWyy + (W), — ywy + (pw), = 0.

Multiply the above equation by w and integrate over IR to reach the relation

2d o0 o0 oo

1 d o0 (o0 oo o0
2dx+vf wldx = —f w(wy)xdx-l-f wywxdx-f w(we) dx.
L 00 L »

Upon simplification, we are led to the inequality,

li P * 2,1 2 2
wdx +v wedx < |yxleolwls + 31@xleclwl; < Clwls,
2dt J_o -
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and Gronwall’s lemma then implies w(:, #) = 0 in L(R) for all # > 0, and since w
is continuous, w is identically zero, whence y = z.

Attention is now turned to the question of existence of the solution. Let ¢, and
ge be the regularizations of ¢ and g as defined in (3.11) and let w, be the solution of
problem (3.14) with initial data g — ¢.. Then for each fixed T > 0, as € 0

we — W in C©, T; H*),
. _3 4.14)
dJwe — W =29U in CO,T;H).
It follows that
dw? — 8,(W? in CO,T,H™,
(4.15)

8x)n:xwe — axxxW in C(O, T; Hs—S)’

since 8,w, is bounded in C(0, T; H*~3) and 828w, is bounded in C(0, T; H*™%).
Hence, in the sense of distributions, 6338, we —> 0, as € | 0, and (4.6) then implies
that w, —> W in the sense of distributions, so that 3,w. —> 9, W as distributions
and hence U, = 8, W. This, combined with (4.14) and (4.15), shows that at least in
the sense of distributions,

W+ W+ o)W+ D)+ W+ @xxx — V(W + @) =0,

W(x,0) = g(x) — ¢(x). (4.16)

Since W = U — ¢, we have, in the sense of distributions
U +UU, + Ugyx — VUi =0, U(x,0) = g(x).

Since W € C(0,T; H*) and W, € C(0, T; H*%), and s > 3, then W is an L,
solution of (4.16). If s > 3 then W is a solution in the classical sense because then all
the terms in the equation lie in C(0, T'; H 1(R)) and hence are bounded, continuous
functions of (x,¢). Hence in case s > 3, U = W + ¢ is a solution of the KdV
equation in the classical sense. [J

5. Continuous dependence of solutions on the initial data. In this section
it will be shown that the mapping I/ which assigns to each continuous function g
satisfying (3.1) the unique solution u of the KdV-Burgers equation with initial data
g, is continuous in the following precise sense. For s > 1, define the function class

'Ps={g:ger(R), g— Ciasx — :l:oo,g’eH“‘}.

Then we have the following theorem.

Theorem 4. Letv > 0, s > 3and T > 0 be given and suppose {g»}yo; and g all lie
in Ps. If

lim(g, —g)=0 in H’,

nfoo
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then,
Iim(U,-U)=0 in C,T; H),
ntoo

where U, and U are the unique solutions of the KdV-Burgers equation with initial
data g, and g, respectively.

Proof. Let ¢, and ¢ be defined as in Lemma 1 relative to g, and g, n = 1, 2, .. .,
and set W, = U — ¢, W = U, — ¢. The theorem will be proved if we show that

lim [|W, — W|; =0
n—00
uniformly for ¢t € [0, T]. For then

”Un e U”s =< ”Wn - W"s + "¢n s ¢”s

and
"¢n - ¢"s = "p*(gn - g)"s =< Cs "gn - g"s,

so that (U, — U) — 0in H*®, uniformly for ¢ € [0, T].

Let W} and W, be the solutions of the regularized equation (3.11) with initial data
(g¢ — ¢2) and (g — @), respectively. By the triangle inequality, we see that

IW? = Wil < |W* = W7 s + I1W] — Wells + | We = W|s.

Since g, — g converges to zero in H*, it follows as before that the regularizations
{Pn)32, of {gn)22, are such that ¢, — ¢ also converges to zero in H*. Hence the
sequence {h,}°2, defined by h, = g, — ¢, converges to g — ¢ in H* and thus the set
{hy :n=1,2,...}U{h} comprises a compact subset of H*. In consequence of this
remark, the third bound in Lemma 2, and the outcome of Proposition 6, it is adduced
that the families {W}'}o<,<1,n = 1,2, ..., and {W€}g.. <) are uniformly Cauchy in
C(0, T; H®). Therefore, givena § > 0, an €y > 0 can be chosen so that for all € in
(0, ¢p] and foralln=1,2,...,

IW* - Wells <

w|es

’ "W—WE"SS%-
Fixing € in the range (0, ¢€p), it then remains to show that there exists an ny such that

foralln > ng
|We — Welly < %

For this fixed ¢, use is made of the transformation
Ve(x, 1) = eUc(e'*(x — 1), €71)

used already in [5].



MODELS FOR PROPAGATION OF BORES 723

Since ¢ is fixed for the moment, the notation may be simplified by dropping the
subscript € in the ensuing calculations, so W = W, uv=U.,V=YV,¢=d, and
g = g.. With this proviso, we have

W(x, 1) = Ux, ) — p(x) = e [V((x + €7 '0)e T, e ) — f(e™ix)],  (5.1)

where ¢(x) = e¢(e%x). Define y tobe V — #, so that y satisfies the initial-value
problem
Y+ O+ B)x = Yot + O+ O+ 8 = vy + Phax =0,

s z (53.2)
Y(x,0) = h(x) = € '[g(ex) — p()].

Let y* = V" — ¢". We show that if h* —h —> Oin H* asn —> oo, then y" —> y
in C(0, T; H*).If Z" = y* — y, then Z" satisfies
Zr+ 20— 70, = vZi A+ Z"ZE+ (Y2 + @727 + (@ — D)Y)x

== = = N " (5.3)
+ (¢n¢:) — (P¢s) + (@" — P)x — V(9" — ¢)xx =0.

Letting 8" = " — $, we may write

(@ Z")x — (@y)x = B} + y:B"] + $",. 2" + $"Z,
", — b = " BL + 6:",
@ — ) = ﬂ,’:,
@" = P)xx = By
The quantity } 3
y'=Br+ @ +o"+ DB + Ox + ¢:)B"

will also appear presently. In the following computations, the superscript n is also
dropped. Define the quantity E; by

Ej(t) = / {Z2) + Z{j) dx.

Multiply equation (5.3) by Z2;, and integrate over R. After appropriate integrations
by parts, there appears

1d
53 B = gg;f {Z8) + ZGan) da

=0 [ 2z 4 02+ b2 432 Zapdx G

o0
+(—1)’“/ (V")(j)z(j)dx—"_/ Z}ndx.
—00

-0
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Integrate over [0, ¢] to obtain
. t o0 . -
Ej(t) = E;(0) + 2(—1)/*! f f {ZZx +OZ) + ¢ Z + ¢Zx}Z(2,-)dxd1:
0 J—o0

. 4 o o] t o0
+ 2(-1)/*! / / Y Zgydxdt —v / f Z} ,ydxdr, (5.5)
0 J-o0 0 J-oo

where "
| M Zidx < 1y biZipl < constiBg, biZok
—00

and | B(;) (-, $)|2 — O as n — oo, uniformly for 0 < s < r. Integrating by parts and
using Leibnitz rule gives

% k=0 k=0
1 (o ¢] j+l - j+1 ;
+ /(;/ (Z¢j+2—kZ(k)Z(j) + Z Z(j+1_k)¢kZ(,-))dxdr 5.6)
T k=0 k=0

t
+ const, f 1B/ 121Z;2d,
0
where the constants depend only on j. If j = 0, we are led to the inequality
t t 1
Ey®) < Bo©) +Ci | Eo@dr +C, [ 18}

0 0

Using Gronwall’s lemma to solve this inequality yields

1 1 ' C " ]
E () < EZ 0¥ + Zf 2% _1),
1

from which it follows that lim,_, o [|Z||; = O uniformly on [0, T]. Now assume
inductively that |Z(;]» — 0 as n — o0, uniformly on [0, T]. From (5.6), one
obtains

t
E;(t) < E;(0) + c‘ / (Ej(v) + a, E;(v)'/*dr) ‘
0
where a, —> 0 as n — oo. Therefore for ¢t € [0, T], we have,
1 1 Ct Ct
E} () < E} (0)e? +an(e? —1). (5.7)

From (5.7) it follows immediately that || Z"]|;;; —> O uniformly for ¢ € [0, T']. The
proof of the theorem is complete. [
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6. Stability of steady Bores. In this section, attention is devoted to travelling-
wave solutions of the KdV-Burgers equation

U, 4+ UU, + Upey — vUyz = 0. (6.1)

Such solutions, having the form U (x, t) = ®(x —ct), satisfy the ordinary differential
equation
—cd' + DY + O —vd' =0. (6.2)

They provide a family of models for steady bore propagation. Without loss of gen-
erality, a traveling-wave solution can be scaled so that $(z) - 1 as z - —o0 and
®(z) —» 0as z = +oo. This is possible since the travelling-wave profile ¢ only
depends on the difference C_ — C where Cy = ZEr:trlc’od)(z). (cf. [4]).

Consider the initial-value problem (3.7) for the KdV-Burgers equation (6.1) and
suppose that a solution U is a perturbation of a travelling-wave @, so that

U(x,t) =d(x —ct)+ V(x,t). (6.3)

It will be supposed that U (x, 0) satisfies the conditions in (3.1) with C_ = 1 and
C, = 0. This latter specification is in no way crucial to our theory, but it is a
convenient normalization. Since the travelling-wave profile & has the properties that
® € Lo, and @’ € H® N W, this means that the initial perturbation V(x, 0) has the
property that V (x, 0) € H**!, where k appears in (3.1). Because the solution U of
the KdV-Burgers equation with initial value U (x, 0) = ®(x) + V(x, 0) is such that
forany T > 0, U, € C(0, T; H*) and U — U(x,0) € C(O, T; HY**Y), it therefore
follows that V € C(0, T; H**") for any finite T > 0. In particular, for any T > 0,
V. and V, are uniformly bounded on R x [0, T]ifk > 1.

Substituting (6.3) into (6.1) and simplifying, it is found that V satisfies the initial-
value problem

Vi+ (V) + VVi + Vi — vV =0, V(x,0) = Vp(x). (6.4)
Pego [25] has shown that perturbations of a travelling wave which have zero mass

are asymptotically stable.

Theorem 5 (Pego). Let v(x,t) satisfy (6.4) and suppose that Vo = 0, Vo where
vo € H3. If ||woll3 is sufficiently small, then the solution V (x, 1) of (6.4) exists in
Cy ([0, 00); H?) and satisfies ||V (-, t)||2 —> O.

Our aim is to generalize the above result by dispensing with the zero-mass condi-
tion imposed on the initial data. We begin by proving the following lemma.

Lemma 3. Let y be positive number and let V (x, t) satisfy (6.4) where V (x, 0) lies
in H?, say, and is such that,

1+ x%)?V(x,0) € Ly(R).
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Then for each fixed T > O, there is a constant C depending on v, T, the norm of the
function (1 + x2)Y V(x, 0) in L,(R), and the bounds on V (-, t) in H! such that

|+ 2"V (x, )|, < C(T) forO<t<T.

Proof. Define a weight function ¢ by v (x) = (1 + x%)”. Notice that ¥ (x) > 1
everywhere and especially that y'(x)/v¥ (x) = 2yx/(1 + x2) is bounded and tends
to zero as x — o0, like 2y /x.

An energy-type argument is now mounted that leads to the desired conclusion. In
the process of deriving a priori bounds, derivatives of V of order higher than two
will appear in intermediate computations, but are not featured in the final differential
inequalities. Because of the continuous dependence results derived in Section 5, the
calculations leading to the crucial differential inequality may be justified for more
regular intial data and then, by passing to a limit, are seen to hold under the relatively
mild assumptions set forth in the statement of the lemma.

1d
2dt
o0 (o ¢] oo o0
= —[ V2V (VD). dx —/ V2V2V,dx —/ szVxxxdx+v/ V2V V,dx
-0 -0 -0 -—00
=I1+11+1I1+1V.

/ ” v2Vidx = f " V2V Vdx (6.5)

Analysis of 7 :
o0 o0 o0
I = —/ Y2V (VD) dx =/ Y, Viddx — %/ ViV2id,dx
—00 —00 -0
o0 o0
52/ w2V2(¢x¢)dx+%/ ViV3|d, |dx
oo o
o0
S QCol9les +310uk) [ W?Vidr < K1 [ yvaan
-0

Analysis of 1 :

o0 o ¢] o0
I1=3 f ¥ Vdx < §Coll Vil mxio.1y f Y?*Vix < K, / v?Vidx.
—00 —00 —00
Analysisof 111 :
o0 o0 (o @]
1= [~y VVndr =2 [ pgVVindr + IR
—00 —00 —00

=-3 f_ Z Yy, Vidx + f_ :(wwx)xxvzdx.
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Forany A > 0,

00
3 wnviarss [ wwdvises [ wwdvias
—00 lx|<A

jx|>A

w o0
< 3Vl Lo qea.aixio. | Vel + 3"j'"Lw{x:|xl>A]) Y2V2dx
-0

o0
<Ks+a f Y2V2ds,
—00

where K3 and a both depend on A and o may be taken as small as desired by
choosing A large enough. As for the other term, we may simply rely on the fact that
(Y ¥y )xx| < K32 for some absolute constant K3. In conclusion, one deduces that

o0 [o.¢]
111 <K, +oz/ ¥2V2dx + K3 v2V2dx.
-0

— 0

Analysis of 1V:

o0 o0 00
1V = v/ VAV Vdx = —2vf Yy, VVedx — v/ Y2V2dx
o0 —00 —00

[0 o] o0 o0
<X / W2V2idx + 2v f v2V2ix —v / ¥2V2dx
2J -0 —00
00 00
< —Kf V2Vidx + K4/ ¥2V2dx.
2J) -0

If the last four estimates are used in (6.5) and A is chosen large enough that @ < 1 v,

2
one obtains the differential inequality

d 2y/2 2y2

o Y VE<Q+P | y°V-

An application of Gronwall’s lemma then insures that

foo v2V3i(x, t)dx < e foo ¥2V2i(x, 0)dx + %(e”' -1,

and the desired result follows. [

Now an interesting point arises. Because the evolution equation is translation
invariant, if ® is a travelling-wave profile, so are all its translates ®, for ¢ € R,
where ®,(x) = ®(x + «). When initial data U (x, 0) is posed, we can think of it
as a small perturbation of not just a given travelling-wave profile, but also of any
of a one-parameter family of travelling-wave profiles {®g}q|<s, for § small enough.
Roughly speaking, if Up — P is small, then so is Uy — @, for a small. If we can show
that for an appropriate small value of «, the solution U of the KdV-Burgers equation



728 J.L. BONA, S.V. RAJOPADHYE, AND M.E. SCHONBEK

(6.1) corresponding to the initial data Uy has the property that U (x, ) — ®,(x —ct) is
small in some translation-invariant norm, for all # > 0, then by the triangle inequality
sois U(x,t) — ®(x —ct).

Adding precision to the foregoing comments, we now assume to be given a
traveling-wave profile @ of (6.1) such that $(x) - 1 asx — —oo and ®(x) — 0
as x — +00. At a certain crucial point, we will also assume that ® is monotone
decreasing throughout its domain. From the results in [4], it is known that & is
monotone decreasing exactly when v > +/2. (When v < /2, the travelling-wave
profile oscillates infinitely often as x — —o00.) Let Uy(x) be initial data which is
near to @ in the sense that the norm of U — ® in X = L,((1 + x2)%dx) N HX(R)
is small, say less than €, a parameter to be determined presently, where k£ > 2 and
y > L. It follows that Uy — ® € L;(R) since

3

® % (14 x%)Y |Up(x) — ®(x)|

_/:oo |Up(x) — ®(x)|dx < /_oo Ty dx (6.6)
et 1

1% 1/2 172
< (/ (1 4+ x)% |Up(x) ~ <I>(x)|2dx) (f (1—+x2—)2ydx) < Cye.

Define G(a) = [%5 (Uo(x) — Do (x))dx = [ (Uo(x) — ®(x+a))dx. Then G is a
smooth function of ¢ and G’ () = —1 since $(—00) — P(00) = 1. In consequence,
there is a unique value o such that

o0
0=G(x) = / (Uo(x) — Py (x))dx. 6.7)

—00

The value of « is small. Indeed, note that

@
0 = G(ag) = G(0) +/ G'(s)ds = G(0) — ap,
0
whence

lag| = |G (0)] < Coe,

according to (6.6). Since g is small, it follows that Uy — @, is small in the X -norm.
This is clear since

U0 — @gyllx < [[Uo — Plix + 1P — Poyllx

(6.8)
L€+ P — Py llat + | P — Pogll Ly 1 4+52)27dx)s

the two terms on the right-hand side of (6.8) are small because
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f °°(1 + x2)% (D (x) — Doy (x))dx
- f ) 1+ x%)¥ f ) ' (x + y)dy f ) @' (x + z)dz dx
—00 0 0
= f K f K f 1+ x)¥ ' (x + y)P'(x + 2)dx dy dz

[ [ [avaas
—oo U+ G +PHYA + (x+ 2027

(14 (x + )’V (x + y)A + (x +2)2)" &' (x + 2)dx dy dz

< sup [ (1 4+ x2)¥ ]/ /ao e by de
—"GllR-l)’lSdo A+ (x4 }’)2)7’(1 +(x+ z)z)}’ 0 0 La((1+x2)> dx)
zl<op

—ca?,

with a similar but simpler calculation applying to the H k(R)-norm. Note the fact that
|®’| tends exponentially fast to zero at 00 (see [4]) guarantees 1D || L, ca+x2)2r dx) tO
be finite. In summary, in terms of €, [|[Up — @ llx < Ci6, where C; depends on &,
y and on «ay, but is independent of |ap| < 1, say.

With these preliminary considerations in hand, the principal result concerning
asymptotic stability is now stated and proved.

Theorem 6. Let ® be a monotone decreasing, bore-like travelling-wave solution
of the KdV-Burger’s equation (6.1) with speed of propagatton ¢c >0 LetX =
Lo((1 + x2)*dx) N H*(R), where k > 2 and y > 3. There is an € > 0 such that
corresponding to any initial data Uy with ||Up — CDII x < €, a real number a exists
with |a| < € having the property

HUC, 1) — @ —ct +)llmr@ — 0

ast — +0o, where U is the solution of (6.1) with initial data Uy.

Proof. Suppose |[Up — @|lx < €, where ¢ will be determined momentarily. We
continue to assume that C_ = 1 and C,. = 0 in the specifications in (3.1), but note
again that this is an assumption of convenience only.

Let ap be determined so that

/°° (Up(x) — @y (x))dx = 0.

It follows from our previous ruminations that |ag| < Coe and that [[Up — ®q, | < Che,
where Cp and C; are the constants introduced in the preceding analysis.
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It follows from Theorem 3 and Lemma 3 that the solution U emanating from U
has the property that if

V(x,t) =U(x,t) — Oy, (x — ct), (6.9)

then V € L,(0, T; X) for each finite value T > 0. It follows from this that
V € Loo(0, T; L1(R)) for each T, and then a simple computation using the equation
(6.4), with &, replacing ®, satisfied by V shows that

o0
f Vix,t)dx =0 (6.10)
-0
for all ¢ > 0. If we define W (x, t) by
X
wen = [ vo.ndy, (6.11)
—00

then W is bounded since V € L;(R) and W(x,t) — 0 as |x] = +o00, because of
(6.10). Moreover, since (1 + x2)’V(x, t) € Lo (0, T; Lo (R)) for any finite value of
T, we can infer spatial decay rates for W via the following observation: if x > 0,
then

IW(x, 1) <

/°° 1+ yH)r|V(y, Dl , ’
: 1+ y2y

- 1 1/2 B
= (/x. 1+ y2)2y / A+ ) V3, t)dy) (6.12)

<— % Wi
(1+x2)7~s

where C is a constant that depends only on the value of y > 1. A similar calculation
shows (6.12) to hold for x < 0 as well. A consequence of (6.12) is that W e
L (0, T; Ly(R)) for finite values of T if 1 — 4y < —1, or what is the same, y > 5
Substitute V = W, into equation (6.4) satisfied by V, with ® replaced by ®,, to
obtain the equation
0= Wy + W, W, + (W, Do) + Warxx — vWiss
= 3 (W, + %sz + W@y + Wiy —vWy,).

This implies the expression in parentheses is independent of x. Upon integrating the
resulting relationship with respect to ¢ and remembering that W, = V, we come to

W(x, ) — W(x,0)+ /t[%Vz(x, 5) 4+ V(x,5)®o(x — cs)
0

+ Vix(x, 8) — vV, (x, s)]ds =G@).
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Taking the limit as x — +-00, say, in this last equation shows G(t) to be identically
zero, and it follows that W is in C(0, T; H**!'(R)) and that it is a solution of the
initial-value problem

W, + A W2 4 Wy @ + Wygy — vWyy =0, W(x,0) = Wo(x),  (6.13)

where

Wo(x) = f V(y, 0)dy = / (Uo(5) ~ Ba(y))dy.

=00

The aim now is to obtain the relation (6.1) by deriving decay results for W from
energy bounds. To this end, we proceed to make a few formal computations which are
easily justified either directly via the regularity of W, or by regularizing the initial data
and making use of the continuous-dependence theory in Section 5. First, multiply
the equation in (6.13) by W and integrate the result with respect to x over the real
line. After suitable integrations by parts, we obtain

1d [® I T L I L
2w w | wwldx—= | @,Wix=
2.:1:[_00 x+”f_w *d"+2f_m x % 2f_m W ak=1,

where the subscript @ on ® has been temporarily dropped. Since ® is monotone
decreasing, so is ®, and hence 9, ®, < 0. It follows that

d [e.@] oQ
| wdx+ / W2(2v — |W|e)dx < 0. (6.14)
dt —00 —00

If (6.13) is multiplied by W,,, then integrated over R and the result simplified, there
appears

o0
f W2dx + vf W2 dx + = f o, W2 =0, (6.15)
—0Q

If equation (6.15) is multiplied by a constant A > 0 and added to the inequality (6.14),
and then further estimates made, we obtain

—f (W2+)LW2)dx+f W2(2v — |W oo — A Dy (co)dx+2uf W2.dx < 0.

(6.16)
First choose A > 0 so that
2V — A|Dyloo = V. 6.17)
For any function f € H I(R), and A > 0,
112 < wz ——= N Fllas (6.18)

where

f () + A2 dx = I f 12,
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In consequence of the choice of A and (6.17), the differential inequality (6.16) can be
extended to

d o0 00
d—llWlIf',\ + (- r‘“nwuu)/ W2dx + 2vx/ W2dx <0. (6.19)
t —o0 —oo

As ) is now fixed, the time has come to restrict the parameter €. If, for example, €
can be restricted so that [| W (-, 0)]|1., < vAl/4/2, then it follows from (6.18) that

d 2 1 * 2 oo 2
TIWIa+5v [ Widx+ow [ Whdx <o, (6.20)
—00 )

at Jeast at £ = 0. But then for ¢ near O, || W (-, t)];.» is decreasing, and hence (6.20)
continues to hold, and so is globally valid. It would then follow that

o0
f (W2 4+ AW2)dx (6.21a)
—00

is decreasing, and that

o0 o0 o0 o0
/ / W2dxdt and f f W2 dxdt (6.21b)
0 —00 0 —00

are bounded. In consequence, |W(:, t)|; and |W,(:, t)|, are uniformly bounded in
time.

The condition ||W (-, 0)]l1, < vA!/4/2 is guaranteed by a suitable choice of e.
Indeed, using (6.12) at ¢t = 0, it is seen that

/w[WZ(x, 0) + AW2(x, 0)dx = /oo W2(x, 0)dx + ;\/w V3(x, 0)dx

—00
o0

< CIVE )2 f dx + AV E O

1
o (1 +x2)2y—1/2
< C'IVoll} = C'é.

With (6.21b) in hand, it is straightforward to show that |W,. (-, t)|» = |V (-, 1)|2 —
0 as t — +400. In fact, according to (6.15),

[ee]
—[ Wzdx——v/ Wzdx——/ @, W2
—00

lies in L1(0, 00). An L;(R*)-function whose derivative lies in L(R*) necessarily
tends to zero at infinity.

This establishes the desired result (6.11) for k = 0. A straightforward induction
on k suffices to establish the general result. The arguments just put forth for the
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case k = O are all that is required, and consequently we may suitably pass over the
details. O

Remarks. 1. Anentirely similar theory of asymptotic stability of bore-like traveling
waves can be worked out for the regularized long-wave-Burgers equation (1.4). The
details differ in no essential aspect from those presented above.

2. Once an asymptotic stability result has been obtained for monotone profiles
when v > +/2, the argument can be extended to prove the stability of oscillatory
profiles where v < ﬁ, provided the oscillations are small. The results of [4] show
that small oscillations correspond to v smaller than, but near the value V2. This sort
of result has been worked out recently by Khodja [19] and Naumkin & Shishmarev
[23] for the cases where the perturbation has zero added mass.

3. It also deserves remark that for the related problem where the nonlinearity takes
the form u”u,, Pego et al. [26] have shown using their Evans-function approach that
the travelling waves are unstable for v small enough .
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