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Abstract

The renormalization techniques for determining the long-time asymptotics of nonlinear parabolic equations
.pioneered by Bricmont, Kupiainen and Lin are shown to be effective in analyzing nonlinear wave equations featuring
both dissipation and dispersion. These methods aliow us to recover recent results of Dix in a way which is both
transparent and has interesting prospects for generalization.

1. Motivation and statement of the main results

This study is focussed on the long-time behavior of solutions of the damped, non-linear wave
equation
u—Mu+tu,, +ufu, =0, (xR, t>1), (1.1)

with initial data

u(-,1)=£f("), (x<R). (1.2)
Egre M is a Fourier-multiplier operator, which in Fourier transformed variables has the form
Mu(k) = — | k| *?4, where 3<B <1,and p > 2. The initial-value problem (1.1)-(1.2) is always

locally well posed, but for larger values of p and large initial data, it appears that it may not be
globally well posed (see Bona et al. [1,2]). If attention is restricted to small initial data, then
(1.1)-(1.2) is globally well posed and it is not difficult to see in this case that solutions decay to
the zero function as ¢ becomes unboundedly large. It is our purpose here to determine the
detailed structure of this evanescence. ’
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This program has already been carried out in the elegant paper of Dix [4] (see also Naumkin
and Shishmarev [5] for the case p = 1). We will show how some of Dix’s results follow readily
from a suitable adaptation of the renormalization techniques put forward by Bricmont et al. [3]
in the context of nonlinear parabolic equations. While the results obtained in this way are no
more telling than those of Dix, they are here obtained in a transparent and appealing way.
Furthermore, this method appears to be a promising avenue of approach for the derivation of
more refined aspects of the long-time asymptotics of solutions.

The principle result derived herein is easily motivated by consideration of the linear
initial-value problem

v, —=Mv+nqu,,., =0,

v(x, 1) =fo(x), (1.3)
with parameter 7, which is formally solved by the formula
O(%, 1) =S(1)fo=S,(t)fo= [ e kIP+inkxi-1 o-ikxfe () qp (1.4)

where ﬁ,(k) = 7 .e"**f,(x) dx is the Fourier transform of fo- For large ¢, the kernel in (1.4) is
very small except where |k | is near 0. For such values of ky k1% > q|k| ’, and hence if fo is
sufficiently regular,

= [ eTPeD emiks( £ (0) 4 kf2(0) + 21 k7]) dik

=fo(0) [ emikx emlk1®u-n gy (1.5)
Defining
f*(x)=f e kx e IkIP®U-D g (1.6)
and making the change of variables k' = k¢1/28 ip (1.5) vields
fo(0)
0(x, 1) = =T ¥ (x/11/%8) (1.7)

as { — . Our main result, here stated informally to provide the reader with a concrete goal,
shows both that the approximations made to reach (1.7) are justified, and that they remain so
even in the context of the non-linear initial-value problem (1.1)—(1.2).

Theorem 1. For a sufficiently small and smooth initial condition f, and for 1 <B <1, p > 2, and
€ > 0, there exist constants A, C 2» Co > 0 depending only on the given data such that

ust) = (o) <G (1.82)
& t1/28 12 1GAB =) :
A 0.
u(-,t) - tl/Zﬂf*('/tl/ZB) Lm< NOYOED) (1.8b)

where f* is given in (1.6).
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Remark. A careful look at the proof in Section 3 will convince the reader that the theory could
be formulated in a sharper way, in which for a given B, the decay results in (1.8) are valid for
any p > 2. In applications of (1.1) to physical problems, the dependent variable is real-valued
and consequently non-integer values of p are seen to be somewhat artificial. If non-integer p
are contemplated, a complex-valued version of the theory for (1.1)~(1.2) would be required. In
consequence, we have eschewed the extra precision that might be possible in favor of the
simpler development that is available for integer values of p.

The plan of the paper is straightforward. In Section 2 detailed consideration is given to the
linear initial-value problem (1.3). This discussion leads naturally to the introduction of a
particular weighted norm that turns out to be very useful in the analysis. The theory for the
linear problem is both instructive and useful when attention is turned to the nonlinear problem
in Sections 3 and 4. The paper concludes with a short summary and suggestions for further

inquiry.

2. Norms and the linear problem

The approach taken is to apply the renormalization group ideas of Bricmont et al. [3] to the
equation (1.1). It is convenient to start with the linear equation (1.3) since the theory for this
simple situation already deviates from that of Bricmont et al. [3], because the main ideas

hnicalities associated with the nonlinear term, and
heory in studying the nonlinear initial-galue problem.

Let & be the Banach space of functions [ such that their Fourier transform [ lies in (R),
and for which the norm

Ifll= sxklp(l + 1k 1) k)| + sup | F(k)] (2.1)

is finite. Note that this norm controls both the L,- and L_-norms of [. Note also that f
belongs to & if, for example, [ lies in W*X(R) and xf is a member of L(R).

The renormalization group map is now introduced. Taking the solution v given by (1.4),
define

ve(x, t) =Lv(Lx, L*t) (2.2)
for L > 1. The (linear) renormalization group map is denoted R L.y and its action on a function
fis

(Rpnf)(x)=0,(x,1), (2.3)

where v is the solution of (1.4) with initial data f, v, is as in (2.2), and the second subscript on
R connotes the coefficient of the dispersive term v, in (1.3). Direct calculation shows that v,
satisfies

U, =My, ~ L*#3n83y, (2.4)

Thus the rescaling accomplished in the definition of R, , diminishes the dispersive term if
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B<3/2 and L is large. Moreover, because of the semi-group property of the evolution
equation, it transpires that

RL",l =RL,C!"—]°RL,Q'"-2° . ORL,(IORL,I’ (2.5)

where a = L*~>,

Observe that the putative similarity function f* defined in (1.6), which according to the
intuition provided by (1.5) captures the long-term asymptotics of solutions of (1.3), is a fixed
point

RL,Of* cn e (2.6)
of the renormalization group map R, , without dispersion. Assuming that the e in (2.5) is less
than one, which will be true if B <% and L > 1, it is a reasonable conjecture that Ry
converges to R,  as n becomes unboundedly large. It is possible then that successive
applications of R, ,. for n large drive one toward f*. Thus for a given initial datum f, the
right-hand side of (2.5) applied to f may, in the right circumstances, converge to f*. This in
turn means that RL..',f—>f* and this result, properly interpreted, is exactly what we are after.

The latter observation leads to a search for conditions under which R, , is a contractive
mapping.

Lemma 1. Let the power B in the dissipative operalor be positive and suppose § €Z satisfies
2(0) = 0. Then there exists a positive constant C = C(B) such that

IR, gl <C(B)L'ligll (2.7)
The constant C(B) is independent of 1 €[0, 1].
Proof. The solution of (1.3) with initial condition g, written in Fourier-transformed variables, is
0(k, t) = e—(lk|2"+ik3xr-1)g'~(k),
and therefore
R’;,Tg)(k) =Lo(Lx, L?) = ﬁ(_li, LZB) = e—(lk|’B+iL""3nk’x1—L'2’)g(E)_
: L L

Since 2(0) = 0 and ¢ € C(R), the Mean-Value Theorem implies that for any k, there is a point
£ =¢, with |£, | <k/L such that
k At
1 8'(&) l.

f(z)|<lz

In consequence, we have that

<

= 1
sup (1+ lk|3)\RL'ng(k)‘ <7 sup (1 + k1) [kt e 1 ) g (&)
k k

1
<ZC(ﬂ)||gll.
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Similarly, one determines that

%(Rng)(k) = {— (2B k%71 +31L23nk?)(1 - L™%)g(k/L)

vt (g )} e )

“(z)

It will also be useful to understand the action of R, , on the fixed point f* as L becomes
large. To this end, we state and prove another lemma.

1
<7 ¢(B)

and the result follows. O

il
< Z-C(B)llgll,

Lemma 2. Suppose that 3 <8 < 1. Then there is a constant L= L B) and a constant C = C(B)
such that for any L > L, one has

1
Ry f* =M < CF’ (2.8)
forn=1,2,..., where a« =L*®3 and f* is defined in (1.6).

Proof. First notice that

(R’L‘:F*)(k) = e~ Uk|?+ia"k?X1~L"#) e—[k|2"L‘25’
from which is follows that

(RiaT*)(k) = f* (k) = e k1 (et - ),
Attention is now turned to estimating the quantity

sup (1+ 1k 1)1 (R oo f*) () = £* ().

The estimate is made in two parts. Suppose first that k, L and n are such that | k|® <a~"* for
some fixed positive u < 1. Then it is easily seen that

e~ =L _ 1} < Ca™~#), while (1+ |k|%) e~ *1” < C(B)

for all k. If on the other hand k, L and n are such that | k|> > ™", then
le—ia"k:‘(l—L'zp) _ 1 l < 2

and, therefore,

sup (1+ k| 3) e~ 1K1? ¢ =W/ g (1+ |k|3) e~ 1/21k1*
lk|Psa—m k

< C(B) e—(l/Z)L(J'zsz"“/:

Cl
< —_—
L’l
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for L large enough since B, 4 > 0and 3-28>0.If uis restricted to lie in the interval (0,

(2-2B)/(3 —2p)), then

n

1
a1 = [@B-31-mn < (}:) .

In consequence of the above inequalities, it is seen that there are constants C and L,

depending only on B such that
S . |
qup (1 + k1) (B )0 ~F 001 <€ (1
k
for L > L,. A similar set of inequalities shows that
& i -Fu)| <l 7
dk b L

for L large, where C again depends only on B.
The lemma is thereby established. DO

n

n

sup
k

Remark. If g =1, the foregoing reasoning leads to an estimate of the form

(1-g)n
R n & & S C
” L,x f f “ < ( [ )

valid for any e > 0, where C depends on ¢ as well as B.

ergence of the composition of the

These two lemmas provide the tools needed to show conv
€% to be given and define f, for

renormalization group maps. More precisely, suppose f = fo
n > 1 by the formula
fao=RpgnoRpgn-10777° RL,lfo-

We aim to show that {f,);.o is a conver

CONVErgence.
Turning to the just mentioned task, for each n=1, 2,...

fa=Anf* 8,
where g,(0) =0 so that A, = 7.(0). Straightforward computations show that
fas1=Rp amifo =AnRL,a"+'f* + Ry on+18n
=A,f* +A,,(RL,Q..+|f* —f*)+ R 18,

It is easy to verify that m(O) = f(O) (see Proposition 2.1 in Bona et al. [2]). Consequently,
one has A, =A =f(0) for all n and i
En+1 =A(RL.a"”f* —f*)+ Ry a1 8n-
Applying Lemmas 1 and 2 leads to the estimate

(2.9)

gent sequence in & and to obtain the rate of]|

, write

G C
g, ll <AF + Z“ gl
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valid for all n > 1, where C, which is larger than 1 without loss of generality, depends only on
B. A simple induction then shows that

n+1

n+1 C
Lyl <(n+ 1)A(Z) lgoll < (n+ 1)(3) 15,

from which is follows at once that for all n,

ran

1 £, —af* | sn(%) £ .

Recalling from the definition (2.3), that
fu(x) =Lro(L"x, L2#7),
where v is the solution of (1.3) with initial value v(-, 1) =f,, and setting ¢ = L?P", we see that
f(x) = 1280 (xtV/2, 1)
and that
nL=" < C(log 1)t~ 0728,
We have thus established the following proposition.
Proposition 1. For 3 < 8 < 1 and any initial condition f, €SB, there exists a constant C > 0 and a
time ty > 0 such that for t > t,, the solution v of (1.3) with 1 =1 satisfies
No(-22/28, ) —At=12Bf* () < C(e7 VR log 1)1 fo l, (2.11)

where A = f(0) and f* is defined in (1.6).

Remarks. The proof only showed convergence for the sequence of times ¢, = L?"?, However,
the result is self improving if one notes that as in Bricmont et al. [3], the analysis is unchanged
if L?# is replaced by 7L?# throughout for 1 < 7 < L?#. One thereby infers (2.11) for all ¢ > L2£.

The above analysis may be adapted to the case 0 < <% in the linear case. One has to
compensate for the non-differentiability of |k [ZI’Afor B in this range by modifying the norm

defining the space &, replacing the C'-norm on f by an appropriate Holder norm.

3. The nonlinear problem

Attention is returned to the nonlinear problem (1.1)—(1.2) with the aim of showing that the
term u”u,, p > 2, does not affect the results of Proposition 1 provided || f, |l is sufficiently
small.

Let u be a solution of (1.1)-(1.2) and consider the renormalized version

u,(x,t)=Lu(Lx, L*t) ' (3.1)
of u. The renormalized solution u, satisfies the evolution equation
du, =Mu, — L*%3u, — L*~P1yP3 u,. (3.2)
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[ntroduce the notation a=L*~* as in Section 2, vy =[*f~P~1 and let R, ,, denote the
renormalization map (3.1) corresponding to the semi-group for equation (1.1) with coefficient n
for the dispersive term and p for the nonlinear term. Thus if f €4 is given, then (R0 )
is u,(x, 1) where u, is as in (3.1) and u is the solution of the initial-value problem

u, +pufu, + i, —Mu= 0,

u(x, 0) =f(x),
for x € R and ¢ > 0. Note that (R, , fo)(x) = Lu(Lx, L?f) where u solves (1.1)-(1.2).
To proceed with the program that was effective in Section 2 for the linear problem, estimates
on the Fourier transform of the nonlinear term in the evolution equation are needed. The

following lemma is helpful in this regard.

(3.3)

Lemma 3. Let p > 1 be an integer. Then there is a constant C depending only on p such that for
any fEB and all k € R,

T+l C +1

|f”+l(k)|<m—'|—3||f“p ; (3.4a)

Yy C +1

[77,(k)| < e T (3.4b)
d _—

\Ef"fx(k)) <Clfie (3.4c)

Proof. These straightforward estimates follow immediately upon writing

Frri(k)y=fx - x flk) = fwf(k—(kl+ e k) flky) - fk,) dky o dky,

ﬁ:(k)=f* *f:(k)
- [[R‘"f(k - (kl o +k"))f(k1) o f(kp—l)ikpf:(kp) dkl T dkp
and
d 71, 2 £ A . A
E;fﬂfx(k)= fwf'(k— (ky+ - +k,))f(ky) - flk,_ )ik, f(k,) dk, -~ dk,. -
A bound on the kernel of the linear propagator will also prove to be useful.

Lemma 4. There are constants Cy and C, such that for any n € [0, 1), t > 1, and for all k,

w , (3.5a)

<

t—1 _ 26 45003
f e s(ik| +lnk)ds
0

ds < C;t(1 +k?). : (3.5b)

(1| d i
o a—S(lk|?P+ink?)
|k|/0 ‘dk e

Proof. These two inequalities follow by computing the integrals in question and making
elementary estimates. O
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A little later in the analysis, Duhamel’s principle will be used and it will then be helpful to
have estimates on the functional N =N, defined for u € CcQ, T; &#)by

N(u)(x,t)= /;rS(t — s+ Vul(x, s)u,(x, s) ds, (3.6)

where {S(r)},,, =(S,(r)},,, is the semigroup defined in (1.4) associated to the initial-value
problem for the linear equation (1.3). By using the estimates in Lemmas 3 and 4, one deduces
that if ue C(1, T; &), then for 1 <t <7,

stklp(1+lkl3)lﬁm(k,t)l

< sup(l+ k| 3) f’ e U0y Py (k, s)ds
k 1

t
(-, )17 [ ememmend ds}
1

< 1+ k3 ( ¢
< sup ) Sup | T3

1<s<T
C(1+|k[3) -1
p+1 —rik|*
< lull% sgp{ T %2 fo e dr}

(1+ k%)
(1+k2)(1+ k1)

< llull5 ' sup (CC,
k

<Cllulg,

provided that 8 > 1. Here 6(k) = | k| ?# 1 ink® and we have introduced the space-time norm

Nullr=1Hullcar.ey= sup llu(:, )l (3.7)
1<rgT

In a similar vein, it transpires that for u € C(1, T; &),

Sup [Ny (k, 1)l

d .
= sup afl e~ =8k Py (k, s)ds

1

< su
kpp+1 '/;

¢ d

a(e‘("’)"("))iku””(k, s)ds

{ d ——
+ su e U= __yPy (k,s)ds
up | [ Pt k, )

<llullgt?

C (-1 ‘d
sup ———— k||— e k)| dr
kp1+|k|3/(-) el | 3%

!
+CllullF! supf e (=9 Re 8(K) 4 ¢
k1 _

<CtllullF!

 for 1 <t < T, where C is independent of both T and u.
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These estimates lead to the following result, which will find use immediately in the attack on
the main result.

Proposition 2. Suppose %< B <1 and that u,, u, € C(1, T; &) where T =L?® with L > 1 given.

Then the following inequalities hold:

| N(uy) 7 < CT N 157, (3.9)
(3.10)

I N(y) = N(up) |7 < CT (g W+ g 17 ) ey = w2 Ml 7
Proof. Inequality (3.8) shows that || N(u)(-, Dl <Ctllu, 157! for 1 <t<T. Taking the
supremum over ¢ € [1, T] thus gives (3.9). Using the elementary relation

|uP*t— P+t = lu—vllu? +u? o+ - +vP L <Clu=vi(lu?l+1v?])
and the same sort of estimates that appear in (3.8), the inequality (3.10) is likewise verified. O

With these preliminaries in hand, we turn to the primary task of determining the asymptotic
behavior of solutions of (1.1)—(1.2). Let f, in % be given. Much as in the linear case, we

consider the sequence
fa=Rpyifor n=12,...,

where L > 0 will be specified later. Because of the semigroup property,
fa=Rpa-ign-1° " o Rp gy RS0

or what is the same,
fn= RL,a”"',-y""fn-l ’

forn=1,2,..., where a=L**">and y = [2P-P=1 a5 above.
To analyse the sequence {f,)%_,, it is convenient to consider the initial-value problem

(3.11)

n-—-1

- -—1a72 nn
du,=Mu,—a” ‘ou, =y U U,

(5 1) =F.

Duhamel’s principle is applied to (3.12) to obtain the formulation

(3.12)

un(cs )= SOV + 9" [ S, (= )R (:, sYoan(: ) ds

=ud(, 1) +y T IN(u,)(0 5 1), (3.13)
where S (1) =S,.-i(t) is the semigroup defined in (1.4) associated with the linear initial-valug
problem (1.3) with 7 —=o"~!. Because of the previously derived results, the terms on the

right-hand side of (3.13) can be estimated thusly:
hulllz<CllfIl and y* HIN(u )7 < CsT llu, 15"y, (3.14

for T> 0, where C, and C, are independent of n, T, f, @ and v.
Define a mapping T, on functions v € C(1, T; &) by

Tn(u) = ug U yn_an(U)’
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where 10 is as in (3.13). Let B/ ={ue C(1, T; &): lu—ulllr< |l f} and presume that f is
drawn from Br={ge%: g || <R}

It will now be shown that if R is chosen small enough and L is sufficiently large, with
T = L%, then T, defines a contraction mapping of Bf for all n. First, because of the second
inequality in (3. 14) T, will map B into itself prov1ded

C,T a5yt < I £ (3.15)
for u € B/, and the latter holds if

CTy"(F I+ 1ulll)” < £ 1.
Because of the first inequality in (3.14), this holds provided

CTy" M1+ C) I fII7 <1
Since y=L%*"?~"1, T=L? and || fll <R, (3.15) will hold if

C,y(1+ CZ)P+1RpL2nB—(p+l)(n—l) <1.

Since p > 2 and B < 1, the exponent is negative for n > 3. Moreover, the inequality (3.10) in
Proposition 2 shows that 7, is a contraction on B/, if || f || is small enough and thus (3.12) has a
unique solution there.

Taking f=f,_, in (3.12), then using (3.11) and (3.13) leads to the formula

") =Lu;_(-L, L*?) +y"7'LN(u,)(-L, L**)
=Ry gn-1fua() +w,(0)
for f,, where
lw, I <Ly" I N(u,)(-L, L*)l
Ls n— lllN(u )”L L2;3+3 n— lllu ||p+1
< CLP#*3yn=1|| £ |17*, (3.17)
Writing f, =A,f* +g, with a constant A4, chosen so that £,(0) =0, we see from (3.14) that
fo=Ap Ry g1 ¥+ Ry gn-18, 1+ W,
=A,  f*+ A, A(Rp a1 f¥ = f*) Ry gn-18poy + W,
So A,=A,_, +Ww,(0) and
8n=Au (RLar=1f* = f*) + R o185y + W, = W,(0) f*. (3.18)

As observed for the linear case, 4, =A,_, = A, say, for all n. Furthermore, we see that

C
g, Il < |A|—+C I 8n—1 I +ClIw, |l

C 1 .
|A|—+c Il g,_ Il +CL2E*3ym=1| £ |7+, (3.19)

where we used Lemmas 1 and 2 from the linear case and the bound on w, from (3.17).
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Assume inductively that for all m <n ~ 1, we have

G If, Ih<lifoll, I foll <1/L, and
(i) llg,ll <CL™™ =9 f, |l
Note that [ gyl < C |l fy Il, and that (3.19) implies

g, ICL™" It fo I P+ 4+ CL™L="0=2| fy || + CLP+3L@E—p=1Xn=D| £ |
—1. Hence, for any € >0, for all L

p+1

Since p>2 and 1< B <1, if follows that 2B —p—1<
large enough and R small enough, we have

g, ll <CL™"=2 fo

where C depends on ¢ but not on n.
It follows that

I, —Af* | <CL=™ =2 £y |l. (3.20)
Setting ¢ = L?#", we see from (3.11) that
1072801728 1) — AF* () < C Il fo lI(2™1/26)" " (3.21)

for ¢ large enough and || f, || small enough.

As we remarked in Section 2, this result can be extended to any ¢ > > L%,

Theorem 1. Let 1< B <1 and p > 2, then for || f, |l small enough and t, large enough, there
exist constants A and C > 0 such that for all t > t,

(3.22)

A —£
(1172, ) = g * () < Cll fo (™)

4. L,- and L_-bounds

The error estimates in (3.22) also imply estimates in the L,- and L-norms on R. For any
function f € L*R), Plancherel’s Theorem states that || f [l2 = || flliz<Cll fll. Observing that

Hf(y I z=y" 21 ) 2,
(3.22) implies
f*(,/tl/ZB) ||2< C ” fo ”(t-—l/zp)l—e. (4.1)

(1748 IIu(-, ) Vb

t
Similarly |l f Il < Il Il <CI £, and so we have
(4.2

4 =
78w, ) = <7 f*(/072) e < CILf N/

These are precisely the estimates claimed in Theorem 1.
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