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Initial-Boundary Value Problems for Model
Equations for the Propagation of Long Waves

Jerry L. Bona and Laihan Luo The Pennsylvania State University, University Park,
Pennsylvania

1. INTRODUCTION

This paper is concerned with initial- and boundary-value problems for evolution equations
of the form
Ut + ug + P(u), — Vugg — @Pugg = 0, (1.1)

where u = u(z,t) is a real-valued function of the two real variables = and ¢, and subscripts
adorning u connote partial differentiation. Here P is a smooth, real-valued function of
one real variable which will be suitably restricted later, and v and « are non-negative
real numbers. Such equations are often called pseudo-parabolic and the very particular
form appearing in (1.1) arises in the modeling of unidirectional long waves in nonlinear
dispersive systems. In case P is quadratic, (1.1) was studied by Peregrine [28] and

Benjamin et al. [4] as an alternative to the well-known Korteweg-de Vries equation [18]

Ug + Ug + UUg +Uger = 0. (1.2)
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66 Bona and Luo

Equations of type (1.1) have significant advantages over those of type (1.2) when it
comes to the imposition of the non-homogeneous boundary conditions arising in practice,
especially when numerical techniques for the approximation of solutions are implemented.
This point is discussed in some detail in Bona et al. [13] and Bona and Winther [17, 18]
in the context of modeling surface waves in a flume generated by a wavemaker, and it
arises again in the analysis presented by Albert and Bona [1] of the relation between a

general class of models of type (1.1) and their Korteweg-de Vries-type analogues.

Analysis of initial- and boundary-value problems for equations like (1.1) began with

the paper of Bona and Bryant [5] on the regularized long wave equation
U+ Up + UUg — Uggr = 0. (1.3)

When (1.3) is used as a model for waves in a channel, the variable z is proportional
to distance in the direction of propagation, t is proportional to time and u represents
the deviation of the surface of the fluid from its rest position as it sustains the two-
dimensional propagation of small-amplitude long waves. In [5], equation (1.3) was posed
in a quarter plane {(z,t) : z > 0,¢ > 0} with a single boundary condition at = = 0, and
a theory of existence, uniqueness and continuous dependence established. Posing (1.1)
in this form is of somewhat more practical interest than the more commonly considered
pure initial-value problem in which u is specified for all z at some fixed time, say ¢ = 0.

The theory in [5] was extended in [6] to initial- and two-point boundary-value problem
for the equation

Ut + Ugp + UUg — VUgg — Q2 Uggs =0 (1.4)

posed on a bounded interval with the solution specified at the right- and left-hand end-
points of the interval. These results are of especial interest in regard to the construc-
tion and analysis of numerical schemes for (1.4) since numerically feasible approximation
schemes are necessarily applied on bounded intervals. The results in [5] and [6] are fur-
ther developed in various ways in [19, 26, 27]. For example, in [19] Dang and Tran study

the more general initial- and two-point boundary-value problem

ut + P(u),+G(u) — F(u, us,,t), — (b(,t)ust), = H(z,t), 2,t€[0,1]x[0,T),
u(z,0) = f(z), z€l0,1], (1.5)
u(0,8) = g(t),  u(l,t) = h(?), tel0,T].

In all of the works just cited, either the nonlinear term P is allowed to grow at most

quadratically or the boundary conditions are taken to be homégeneous.
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Considerable interest has been shown recently in dispersive, dissipative evolution
equations with nonlinearities that grow a rates higher than quadratic (cf. [7, 8, 21, 22,
23]). Perhaps the foremost reason for this attention stems from efforts to understand
the interaction between these three, competing effects. In addition, mathematical issues
arise for nonlinearities of order higher than quadratic that are not easily understood. Of
course one can also broaden the perspective and consider at the same time more general

dispersive and dissipative processes.

In this paper, we study well-posedness of equation (1.1) for the initial- and two-point

boundary-value problem

{ u(z,0) = f(), z€[a,b],
(1.6a)
u(aat) = g(t), u(b1 t) - h(t)a te [OvT]a
and for the quarter-plane problem
u(z,0) = f(z reRT
{ (2,0) = f(=), €RT, (1.65)
U(O,t) = g(t), te [Oa T]‘

It will be shown that both of these problems for the equation (1.1) possesses at least
locally in time a unique classical solution which depends continuously on v in R* and
on variations of the data f, ¢, and h within their respective function classes. The local
existence theory for the initial-boundary-value problems is relatively straightforward, and
does not depend on the detailed structive of P. A theory that is global in time is more
difficult, and depends upon the derivation of a priori bounds on local solutions. The
provision of such bounds appears to need a growth condition on P, namely that its grow

at infinity at a rate which is not more than quartic.

In addition to establishing the well-posedness of (1.1)-(1.6), we consider the degra-
dation of the wave in case the parameter v is actually positive. This aspect has already
received some attention in the case of the pure initial-value problem on the whole line
R (cf. [2, 9, 20]) and the periodic initial-value problem (see [7]). Especially the decay
problem on the entire line is decidedly non-trivial, but all these results rely upon the
homogeneity of the boundary conditions. Here we study decay in the more practically
interesting setting of the two-point boundary-value problem (1.6a). Our results in this
arena are interesting in their own right, but in addition they justify certain modelling
considerations that arose in [13] in connection with water waves in channels. There is
also interest in decay theory for the quarter-plane problem (1.6b), but the results in hand

for this context appear not to be sharp, and consequently they will not be reported here.
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This paper is organized as follows. In Section 2 basic notation is reviewed and the
main theorem of well posedness is stated. In Section 3, the quarter-plane problem (1.1)-
(1.6b) is studied. Local existence is proved by converting the differential equation (1.1)
into an equivalent integral equation. A priori bounds that apply uniformly on compact
subsets of the temporal variable are then derived in the presence of a growth condition
on P, and these are used to extend the local solutions indefinitely. The continuous
dependence of the solution on variations in the initial- and boundary-data follows readily
from the proof of local existence. The two-point boundary-value problem (1.1)-(1.6a) is
considered in Section 4. The theory for this problem is not dissimilar to that for the
quarter-plane problem, and hence the presentation is abbreviated. In case v > 0, the
decay theory for the two-point boundary-value problem (1.1)-(1.6a) is then discussed in
the final part of Section 4.

2. NOTATION AND STATEMENT OF THE MAIN RESULTS

Throughout the paper, all functions will be real-valued. For any Banach space X, the
associated norm will be denoted || || x except for a few abbreviations noted below. Spaces
that arise in our analysis include the standard spaces C*¥(Q) for Q a bounded open set
in R*, £ =0,1,2,--, Ly(Q) for 1 < p < 00, and the L,-based Sobolev spaces H™(Q)
for m =0,1,2,--- (cf. Lions [25], Treves [30]). If Q is an unbounded open set in RY,
CH(Q) is defined exactly as C¥() except that the function and its first k derivatives are
required to be bounded.

In the analysis of the initial- and boundary-value problem (1.1)-(1.6), the spaces
H™(2) will occur often with m a positive integer and @ = R* = (0, +00), Q = (0,1)
or Q = (0,T). Because of their frequent occurrence, it is convenient to abbreviate their

norms thusly:
[llm = I-lzm@ey,  or |lllm =lNlameay  and  |lmr = [ lam,m)- (2:1)
If m =0, the subscript m will be omitted altogether, so that
=1 Nze@ey, o0 l-l=llleaoy and  |-le=]"lor  (22)

Let X be a Banach space, T be a positive real number and 1 < p < 4oc0. Then
Ly(0,T; X) denotes the Banach space of all measurable functions u : (0,T) — X, such
that ¢t — ||u(t)||x is in Ly(0,T). Similarly, by C(0,T;X), we denote the subspace of
Loo(0,T; X) of all continuous functions u:[0,T] — X.
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For 2 = R* or Q = [0,1], the abbreviation B;’l will be employed for the functions
u:Qx[0,7T] — R such that 3;8f'u€C(O,T; Cy) for 0 < ¢ < k,and 0 < j < (. This Banach

space will carry the norm

lellgss = D 10:8ulloqomcn:
0<i<k
05

The space B%’O will be abbreviated simply Bz and its norm is just that of Lo(2x[0,T7).

In Sections 3 and 4, the following results are proved. For simplicity, and because
all the interesting examples are thereby covered, it is assumed that P is a C*°-function,
though finite regularity assumptions suffice for most of our theory. The result is stated

informally here, with precise versions provided later in the technical sections of the paper.

MAIN RESULTS. Let T > 0, f € CZ(RT)NH?(RY) and g € C*(0,T) be given and
suppose f(0) = ¢(0). If the growth of P is no more than quartic at infinity, then there
exists a unique solution u of (1.1) for the quarter-plane problem (1.6a) in the space
B?p’l NC(0,T; H?2(R1)). The solution depends continuously on the initial and boundary
data, and on v > 0. Similar results hold for the initial- and two-point boundary-value
problem (1.1)-(1.6b). If v > 0, and with appropriate decay assumptions on the boundary
data g and h, the solution of (1.1)-(1.6b) tends to zero as t tends to infinity.

3. WELL-POSEDNESS IN THE QUARTER-PLANE

In this section, interest will be focused on the initial- and boundary-value problem

Ug + Uz +P(u), — vuge — a?uggy =0, for z, t > 0, (3.1a)
u(z,0) = f(z), for z > 0, (3.1b)
u(0,t) = ¢(t), for t > 0. (3.1c)

For consistency, the restriction

u(0,0) = f(0) = ¢(0), (3.2)

will be imposed throughout the discussion and we take it that v > 0 and o # 0.
By converting the differential equation (3.1a) with initial condition (3.1b) and bound-

ary condition (3.1c) into an integral equation and applying the contraction mapping the-

orem to the integral equation, the existence of a local solution may be established. This
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local solution is extended to a global solution by appeal to an a priori estimation of
smooth solutions of (3.1). The results of continuous dependence follow from the local

theory.

3.1. Local Solution

To obtain a local existence theorem, we first convert the problem (3.1) into an integral
equation. The argument closely parallels that given in detail in [5], and consequently

many of the calculations are abbreviated.

Equation (3.1a) may be regarded as an ordinary differential equation for u; by con-
sidering vz, — u; — P(u), as an external force. Solving this equation for u;, formally
integrating the solution by parts and then integrating from 0 to ¢, there appears the

relation

u(z,t) = exp(—tv/a?)f(z) + §(t)e™>/* + B(u)(z, t), (3.3)
where
t + oo
B(e,t) = [ [ expl-v(t - 1)/t K (e, €)[PCu(e, ) + ule, )]

v [t [t
_E/(; /0 eXP(_U(t—T)/a2)L(m,§)u(£,T)d§dT, (3.4)

K(@,8) = 5z [oxp(~(z +€)/a) + sgn(z ~ )exp(~e —€l/2)],  (35)
L(2,€) = 517 [exp(~(z + §)/a) — exp(—lz — €| /a)], (36)

and
4(t) = g(t) — exp(~tv fa*)g(0). (3.7)

Define the operator A by
(Au)(z,t) = exp(=tv/ja®)f(z) + §(t)e™/* + B(u)(z,1). (3.8)

Then assuming that f € Cy(R*) and g€ C(0,T), the operator A maps a function u € By
into itself since K is integrable. If T is chosen small enough, A is a contraction mapping
of a ball centered at the origin in By into itself. This observation leads immediately to

the following proposition.
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PROPOSITION 3.1. Let T > 0, f € C4(R™) and g € C(0,T). Then there exists a

positive constant
T' = T'(Iflcyw*s llglle,m)

such that for any Ty with Ty < min{T", T}, there is a unique solution of (3.3) in Br,.
If f € H'(RY), then there is a positive constant T'(||f||1, [|9||co, 7)) such that for any
To < min{T",T} there is a unique solution of (3.3) in C(0, To; H*(R™)). In either case, for
T sufficiently small, the mapping that associates to initial and boundary data (f,g) the
solution u of (3.3) is continuous from Cy(R*)xC(0,T) into By or from H'(R1)xC(0,T)
into C(0,T; HY(RY)).

As mentioned, this proposition may be established by choosing positive values 7" and
R so that A is a contraction mapping of the ball of radius R centered at the origin in

Br:. The crucial estimate is that for v, w € By with [|v]|g,,, ||w||s,, < R, then
|Av — Aw||s,, < C(R)T'||lv — wl|s,,

where the constant C(R) is an absolute constant connected with norms of K and L
times max|,j<r |P'(z)|. Once this inequality is in hand, the proof follows exactly the lines
worked out in [1] or [5].

REMARK 3.2: The time interval T' for which A is inferred to be contractive depends
inversely on || f||; and [|g||¢(o, 7). If the boundary data g is given in C(0, T') and it is known
somehow that ||u(-,t)||; is bounded on bounded time intervals, then the contraction-

mapping argument used to obtain Proposition 3.1 may be iterated to produce a solution

of (3.3) defined for all ¢ in [0, T]. This remark applies even if T' = +oo0.

If u € Br is a solution of (3.3) and the boundary and initial data has regularity
beyond just being bounded, continuous and consistent as in (8.2), it follows readily from
the representation u = Au that u possesses additional regularity. The arguments leading
to this conclusion parallel those spelled out in [4] and [5], and consequently we content

ourselves with a statement of these useful results.

LEMMA 3.3. Suppose f € CF(RY) and g€ C'(0,T) with f(0) = ¢(0) where k > 1, I >
0 and k > I. Let u € Bt be a solution of (3.3). Then u GB;’I, and, moreover, if k > 2,
[ > 1, then u is a classical solution of (3.1) on R* x [0, T). Similarly, if f € H¥(R*) for
some k > 1 and u € C(0,T; H(Rt)) is the solution of (3.3) guaranteed by Proposition
3.1, then € C(0,T; HX(R™Y)). If f e CERY), g€ C(0,T) where k >1,1> 0, k > | and
f9(z) = 0 as 2 — +oo for 0 < j < k, then the solution u of (3.1) has the property that

31 0iu(z,t) — 0 as T — +oo,
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uniformly for 0 <t < T, for 0 < j < k, 0 £ ¢ < I. In all cases, the mapping that
associates the solution u to the initial and boundary data (f, ¢) is a continuous mapping

between the function classes from which (f, g) and u are drawn.

With these preliminary results in hand, we are ready to undertake the derivation of a
priori bounds that allow the local solution of (3.1) obtained via the contraction-mapping

argument in Proposition 3.1 to be extended to arbitrary time intervals [0, T'.

3.2. Global Solutions

Suppose there is to hand a classical solution of (3.1) at least on a time interval [0, T
for some T > 0. The following lemmas are aimed at extending this local solution to an

arbitrary time interval.

The first foray will be into the situation with relatively weak assumptions on the
initial data and with no dissipative effects. It will be handy in this result and later to
define A(s) by the specification

dA
il P(s), A(0) = 0. (8.9)
LEMMA 3.4. Let T > 0, f € CX(R*) n H'(R") and g € C'(0,T) be given with
f(0) = ¢(0). Suppose that A(s) satisfies the one-sided growth condition

lim sup |s| *A(s) < 0. (*)

ls| o0

Let u(z,t) be the classical solution of (3.1) with v = 0 on R*x[0, T'] whose existence and
regularity is guaranteed by Proposition 3.1 and Lemma 3.3. Then there exists a constant

a; only depending on || f||l1 and |g|1,r such that ||u(:,t)||1 < a1.

PROOF: Multiply (3.1a) with v = 0 by 2u(z,t) and integrate the result over R x[0, ).
After integrations by parts and using Lemma 3.3 to dismiss the boundary contributions

at infinity, it appears that

(I = NI + £ [2Q(g(7)) + 9(7)* — 2a*g(T)uz(0, )] dr, (3.10)

where Q(u) = fou AP'(A)dA. The Cauchy-Schwarz inequality then implies that

1

t 2
luC, I < CCIfll, lgh,T) +2a2|g|T(/0 uit(O,T)dT> (3.11)
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for 0 <t < T, where here and subsequently C will denote various constants that depend
only on norms of the auxiliary data. Continue by multiplying (3.1a) with v = 0 by
2a%ug4(w,t) — 2P(u) and integrating the result over R* x [0,t). After integrations by

parts and using again Lemma 3.3, there obtains the relation
t +o0
o®||ug(-, t)||® + o / ul,(0,7)dr — 2/ A(u(z,t))dz
0 0
20 £1112 e
=atlfIE =2 [T M@)o

(3.12)
t
+ [ [oa ) + 22 Pla(runto. ) - Pa(r)) ~ 26(a(r ]
0
It is deduced that
t
4 2(0,mndr<cC , + 2| A(w)|[?
ot [ u20m)ar < Cll,loh.r) + 2IAGIE, -
= 1 1
< CUUI£lls lgl,r) + 20wl E(Null = |[usl]2),
where
AN = NEQ),  B(r) = sup B(Y),
[AI<r
by use of the elementary inequality
[1u(> )l < V2UIuC DI s 1)1, (3.14)
By using the assumption (%), (3.13) may be further simplified to
t
/0 uze(0,7)dr < C([|fll1, g1, 8) + 8] luul [*[]e] 3, (3.15)

for any > 0. Substituting (3.15) into (3.11), it is concluded that there is a constant ay
such that

(DI < CUIflls lgh,T) = a1, (3.16)

where a; only depends on ||f||; and |g|1,7. The lemma is proved. a

REMARK 3.5: It is easy to see that if A < 0, for example when P(u) = —u?m~!
where m is a positive integer, one immediately obtains H!-bounds without resort to
growth conditions. Even in case A is unrestricted in sign, it still follows from (3.11) and
(3.13) that [|u(-,t)||1 is bounded, independently of ¢, provided the initial data f and the
boundary data g are small enough in H'(R™) and H!(0,T), respectively. This follows
since (3.10) and (3.13) together imply that

I, )11 (1 = $(llull1)) < CUIflls lga,r),
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where § = |g|r. If § is small enough relative to ||f||1 and if ||f||; and |g|;,T are likewise
not too large, then this last inequality provides a t-independent bound on ||u(-,?)||1. Also
note that estimates (3.11) and (3.15) yield a bound on ||u(:,t)||; that only depends on the
norms of the auxiliary data and not explicitly on 7. When boundary data g is specified
in H'(R+), the solution u(+,t) of (3.1) with v = 0 is therefore bounded in H'(R™)
independently of ¢. Finally, it is worth note that estimate (3.16), when unraveled implies
that ||u(-,t)||1 grows more or less linearly with the energy supplied by the wavemaker (cf.
[5]). This satisfying state of affairs points to a certain consistency of the equation that

lends credibility to its status as a model of real physical phenomena. O

If stronger conditions on the initial value are given, the order of growth required of P
can be as high as quartic while still maintaining a satisfactory theory of well-posedness.

The following lemma applies even if v > 0.
LEMMA 3.6. Suppose f€CZ(R1)N H*(RY), g€ C*(0,T) for some T > 0 and f(0) =
g(0). It is presumed that P satisfies the growth condition

limsup [s| *|P"(s)| < € (%)

for some non-negative constant €. Let u(z,t) be a classical solution of (3.1) up to the
boundary on Rt x[0,7"] for some T' < T, as guaranteed in Lemma 3.3. Then for all
t€[0,T"], u(-,t)€ HX(R™") and there exists a constant ay depending only on T, | f|| and
l9lcto,m) such that for 0 <t < T, |lu(-,t)|lz < as.

PROOF: Multiply (3.1a) by 2u(z,t) and integrate the result over R x [0,). After

integration by parts and using Lemma 3.3, there obtains
t
DI + @2 s O 4 [ s )P
= IFI” + &®|F'1I* — 2a”g(t)us(0,1) + 2a*g(0) '(0)

(3.17)
+ [ Q) + o) — 20(r)us(0,7) + 200 (r)us(0, )]

t
0
By using some elementary inequalities, including (3.14) applied to u., we infer that

| /0 —9ug(r)ua(0, 7)dr]
S_/D 2v20g(7)|(uo (- )| [wsa(, 7)) E dr
i (3.18)

<28y (/Ot |g(r)|%lluu(',f)||§dr)% (/0t||u,;(.,7)l|2dr>4

v [* 4 t 3
<3 / s, )IPdr + Cvlgl3: ( / uu”c,f)u?dT) .



Propagation of Long Waves 75

Similarly one has

l/ot a?¢'(T)ug(0,7)dr|
S/O o?|g' (7Y V2l lus (-, )| |fuze (-, 7| Edr

<vaer ([ |g'<r>|%df)% ([ ||uz(-,r>u6dr)% (f ||um<-,r)||2dr)}’_ (3.19)
< Crlghr [( / | nuz(-,f)nﬁdf)% +(/ | ||u”<.,r>||2dr)j ,

and

a? 3a? 4 2
1202 g(#)us(0,1)] < 7||uz('»t)||2 + = lg@)IF [usa(, DI * (3.20)

Using (3.18), (3.19) and (3.20) in (3.17) yields

()] + v / lus(,P)lPdr

< C(Iflls, lgloso1y) + Cla®)I¥ [luss (-, )1 (3.21)

+orlohua | ([ ||ux<-,f)||6dr)% + ([ et % |

or, what is the same,

(e, )8 + 0¥ / e, 7| 2dr)?
< C(Iflln lalerom) + Cla®)Hlluss(, )| (3.22)

t
+ Crlgld r / (52 PII® + e 7)I[2]

Now multiply (3.1a) by 2uz.(z,t) and integrate the result over Rt x [0,%). After

integration by parts and using Lemma 3.3, we reach the equation

t
e 17 + lhuea O 4 [ e,

t + oo
= 1F1? + o2 — / / P"(w)udedr (3.29)

t
0

= / [29'(T)us(0,7) + w3 (0, 7) + %P’(g(r))ui(o,r)]dr-



76 Bona and Luo

By using (*#), (3.14) and some other elementary inequalities, we deduce from (3.23) that

t “+oco
l / / P"(u)uddzdr
o Jo
t ptoo
< / / eluul|dzdr
o Jo
t

< / el IR o ltta ey ) o a7l 2l (3.24)
< / el el )2 iz, )| [H2d
< / () [ I + lealer )2 dr.

Using (3.24) in (3.23), one obtains

el B[ + v / ltaa(c, 7| dr
< ClIfllz l9lcro,my) + Cla)[ug (- 1)) (3.25)

t
+/0 CElluC, I + lluza(, )] dr.
If (3.25) is multiplied by a suitable constant and the result added to (3.22), there appears

(- 8IS + Cllaloro myuan( O

+ 0 lgloro,m) [( A ||uz(-,f>||2dr)3 + [ el T)n%zf]

< CIfllz, 19lero,m)) (3.26)

t
+/0 C(v,& lgloro,my, T) [IluC, T + [luas(, 7)II] dr.

An appeal to Gronwall’s lemma now concludes the proof. a

REMARK 3.7: From (3.10) and (3.17), one sees immediately that an H'-bound can be
obtained without a growth restriction on P if a homogeneous boundary condition ¢ = 0

is posed.

REMARK 3.8: The condition in Lemma 3.6 on the growth of P is not sharp. One may
use a more general version of Gronwall’s inequality applied to (3.24) to handle cases where
the growth of P is a little bit stronger than assumed in (*+). While this strengthening

of Lemma 3.6 is probably not of practical importance, it is perhaps worth recording.
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LEMMA 3.9. (A particular case of Theorem 3 in (3|, Chapter 4, §5) Let T > 0 and let
G be an increasing positive function defined on {0, T| which is bounded away from 0. Let

u be a continuous function on [0,T] such that
t
u(t) < k+ / G(u(s))ds for 0<t<T,
0
where k is a positive constant. Then
u(t) < Q7Y(t) for 0<t< T,

where Q(t) = f,: C;i(’s), range G = [0,T*], T*€(0,4+o00] and T} = min{T,T*}.

COROLLARY 3.10. Let f and ¢ satisfy the conditions in Lemma 3.6. Suppose the

nonlinearity P satisfies the growth condition

limsup 1S
lsl—oo |8*log(2 + [s8) —

(k)

for some constant 1. Let u(z,t) be a classical solution of (3.1) up to the boundary on
R* x[0,7"] where T' < T. Then for all t € [0,T'] u(-,t) € H*(R%) and there exists a
constant a; only depending on T, ||f|lz and |g|c1(0,7) such that

[[u(, )2 < a3 (3.27)

PROOF: The hypothesis (* * *) implies that

t “+oo
| / / P"(u)uldzdr|
0o Jo

¢ (3.28)

< 0(61)/0 Ul DT + luea(, 7)) log(2 + [lul-, 7)II$)dr.

Using (3.28) in (3.23) yields a new version of (3.24), namely
t t
4o + CallsC O+ Co [ lustes )’ + [ uaaly
t

< Cs(|I£ll25 l9ler(0,m) +/ Ce(e1, v, lglero,my) [lluC, 7)IIS

0 (3.29)

+ lluaz(-, 7)1 log(2 + [[u(-, 7)1})dr.

Applying Lemma 3.9 to the above inequality gives (3.27). ad

An immediate consequence of the just derived a priori bounds is our main existence

theorem.
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Theorem 3.11. Let f and g be given with f(0) = ¢(0), and suppose that T > 0. Let

the nonlinearity P in equation (3.1) be specified and assume that A is defined as before
by A'(z) = P(z) for z € R and A(0) = 0.

(1) If feCERY)N HY(RY), geCY0,T), A satisfies the one-sided growth condition

lim sup [s| "*A(s) < 0, (*)

|s]—o0
and A € C*(R%), then the system (3.1) with v = 0 has a unique solution u € BX2' N
C(0,T; H'(R™)) corresponding to the auxiliary specification of f as initial data and g as
boundary data. Moreover, if g€ C'(R*) N HY(R"), then ue Cy(RT; H(RT)).
(2) If feCZ(RY)N H*(R™T), geC*(0,T), P satisfies the growth condition
limsup 5| 1P (s)] < ¢, (1)

|s] =00
for some constant ¢ and P € C*(R"), then the equation (3.1) has a unique solution
w€BX' N C(0,T; H2(R1)) corresponding to the initial and boundary conditions (f, g).

(3) If f € Cy(RT) N H¥(RY) and g € C*(0,T) where k > 2, r > 2,5 > 1,7 > s,
then the solution u of (3.1) corresponding to initial data f and boundary data g lies in
B2 N C(0,T; HF(RT)).

(4) In all the above cases, the solution u depends continuously on variations of the
auxiliary data. That is, the mapping that assigns to (f,g) the associated solution of
(3.1) is continuous from the function class of the initial data to the function class of the
solution, In case (2) and (38), the solution also depends continuously on v.

(5) If the boundary condition g is the zero function, then the above conclusion hold

without the growth conditions (x) or (%) on the nonlinearity P.

By Lemma 3.3 and Proposition 3.2, the initial-boundary-value problem (3.1) has a
solution u in Bg,w’l N C(0,Ty; H*(R™)) for k = 1,2, for small Ty. Then Lemma 3.5 and
Lemma 3.6 show that on any finite time interval [0, T, ||u(,t)||: and hence ||u(-,t)||c,, is
uniformly bounded. Thus the quantity ||u(-,t)||c, + 2||9llc(o,r) is uniformly bounded for
0 <t < T. This in turn determines a lower bound on how far a solution, defined already
on [0, Tp], can be extended by an application of the local existence result in Proposition
3.1 and Proposition 3.2. As this term is bounded above, then the extension length is
bounded below by a positive constant. By iteration of the existence proof of Proposition
3.1 and Proposition 3.2 one can extend the solution u from [0,T,] to [0,7] in a finite

number of temporal steps. O

If v # 0, it would be expected that solutions of (3.1) decay in time. The following

result will be useful for estimating temporal decay.
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COROLLARY 3.12. Let f € C3R*Y) N H*(RY), g € C*(RT) N HY(RY), v > 0 and
suppose P to satisfy the condition () in such a way that if equality occurs in (**), then
either ¢ is sufficiently small, v is sufficiently big, or the boundary data g is small in the
sense that |g|1 40 Is sufficiently small. The corresponding solution u of (3.1) then has
the properties that uy,ugzs € Lo(RT xRY) and ue Cy(R; H?).

PROOF: Since v > 0, the left-hand side of (3.19) may be estimated as
t
l/ a?g'(T)uz (0, 7)dr|
0
t
< [ VBl sl DI sl 2 (3.30)
0

4 1
v t C‘lgls - t a
<% [ huetomiPar + 2008 ([ fusug rar )
0 3 0

Because of this new estimate in regard to (3.19), (3.22) can be rewritten as

$
3
oD + ([ e, )1 Par)

< C1(llfll1; lgl1,400) + Colgli 4oolluza(-, )] (3.31)

C 4 t

+ Pt [N (P
4 0
The elementary inequality (3.14) and the hypothesis (**) show that
t + oo t c _% A
|/ / P"(u)uzdedr| < / (S I E (oI F 4 Zllues( 7P dr. (3.32)
o Jo 0 V3

Using (8.32) and Young’s inequality, the inequality in (3.23) may be revised to read

O e

u(, )13 fus ()| ¥ dr,  (3:33)

Cyed
SCs(”f”z,|g|1,+°°)-|-6||u2(.,t)”6+/0 ;1 |

for any 6 > 0. Multiplying (3.33) by the constant C* determined by the relation

C*|q[1 +oc: _ {1 4 Cge2tifen

v?

y1+ Czlgl +oo},

where Cy and Cj are the constants appearing earher in the proof, and then adding the
result to (3.31), it is deduced that

t
luC,OlT + Cr (v, gl 4oo)lluze (5 I + 12 Calglt oo /0 lua(-, 7)|Pdr)’

+Cafw g reo) [ TuaslylPdr (3.34)
A 3.34

Igl 00
< Cuo(lflles o) + 63 Cua 222 [t ), )] ¥
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It is then straightforward to show that

t 4
a gl e 14
/ cns%'ﬁ"—iﬂnu(-,r)né||uz(-,r)||‘s"dr
0

4 |9|1 +oo
< Ouet Dl o lelarian [ el

, (3.35)
11E |J|| o 4
= L"C'—"” otz luelloms 1,
Cs*|9lt 4oo , [*
+ 7+(/ e -, Pdr)°.
3 0
Putting (3.35) in (3.34) and assuming that '—;‘Ciﬂ;—ﬂ < 1, it follows that
+o0
3
lellG @t mry + Colluszl| G,y + Cr (_/ lua (-, 7)) %dr)
. (3.36)

+o0
40 [ uzale DIPdr < Calll e gl o)
0

Hence the corollary is proved. o

LEMMA 3.13. Let u be the solution of (3.1a) corresponding to initial data f € H*(R™)
and boundary data g€ H'(R™). If P satisfies the conditions delineated in Corollary 3.12
and v > 0, then

Hut("t)”’ ”ux:v("t)ll -0, as t — +oo,

and

[lu(-;8)||z, — O as  t— +oo.

PROOF: By Corollary 3.12, it is known that ||uy(:,t)||, ||uzz(:,1)]] lie in Ly(RY). From
(3.23), it then follows that both ||ug(+,?)|| and ||uzz(:,?)|| have limits as ¢ tends to infinity.

In consequence, these two limits at infinity must be zero. Noting that

luCOIZe < 2l Ollllua( I < 2C(1Fl2; 91,400, ) uz(, DI

and remarking that the right-hand side of this inequality tends to zero as t — 400, the

result follows. O

LEMMA 3.14. Let u be the solution of (3.1a) with v > 0 corresponding to initial data
f € H>(R*) and boundary data g € H*(R*) and suppose P satisfies the condition in
Corollary 3.12. It then follows that u; and uzy lie in Ly(RT xRY).
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PROOF: Multiply (3.1a) by u; and integrate the result over R*+x[0,%). After integration

by parts and using Lemma 3.3, we are reduced to

sl O + [ el + @l DI

= Zjie + [ (620" () = v (r]us(0, ) — " Eus(0,1)
1 +oco
+a2g'(0)£(0) — / / ut(ug + P(u)s)dedr
) - (3.37)
< Ol lglakes) + 5 [ Ilue, I

+ Clolaeo (| t ||ux<-,r>||2dr)% (] st 7ar)

LA IP@IE [ sl

where (3.14) has been used. The result follows from (3.37) since ug, Uzz € Ly(RT xRT)
and ||P'(u)l|z. < CIfll151911,00)- 0

1
1

3.3. Continuous Dependence

Attention is now given to showing that solutions of (3.1) depend continuously on the
specified data. That is, small perturbations of the initial and boundary data f and
g lead to small perturbations of the corresponding solution. This is a very important
aspect of model equations for waves that apply in regimes where breaking and other
singularity formation are not countenanced. Indeed, this property is crucial if laboratory
measurements are to be successfully compared with numerical approximations of the
solutions of the model.

Let (fi, g1) and (f2, g2) be two sets of data for problem (3.1). Theorem 3.11 shows
that if fi € CHR*) N HY(R™T) (respectively, fi € C2(R*) n H?(RY)) and g¢; € C'(0,T),
i = 1,2, then with suitable growth restrictions on P, the corresponding solutions u; and
uy of (3.1) lie in BR' N C(0,T; H') (respectively, B2 nC(0,T; H?)).

For k = 1,2, let Uy denote the mapping that takes the auxiliary specifications v, f
and ¢ into the corresponding solutions of (3.1). Thus Uy maps Xy into Y, k = 1,2,
where

X1 ={(f,9): (f,9)€H'R")NCHRY)xC(0,T)},
X, ={(, f,9): (v, F,9)ERTxHX(RY) N CFRY)xC(0,T)}
and
Yy = B2 nC(0,T; H").
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THEOREM 3.15. The mapping Uy, defined above is continuous, k = 1,2,

PROOF: We deal only with showing that Uj is continuous. Similar arguments suffice to

show that U; is continuous.

It is first shown that Uj is continuous for a fixed positive v. Let (v, f;,9;) € X3, and
u; = Us(v, fi, ¢:) for i = 1,2 and define w to be w = u1 — uz. Then w satisfies the initial-

and boundary-value problem

Wt +wg + {P(u;) — P(ug)}s — vwes — aPwgp = 0, for z, ¢t > 0, (3.382)
w(z,0) = f(z), for z > 0, (3.38b)
w(0,t) = g(¢), for ¢ > 0. (3.38¢)

where
f(z) = fi(z) — fa(z), g(t) = 91(t) — 92(1).

Multiply equation (3.38a) by 2w — 2w, , and integrate the result over R*x[0, t). After

integration by parts, one has
o I+ (1 4+ e P + )
[ (020:7) + 20l + e ]t
= A1 + (L4 @) IP + @211 — 2% 0h0,1) + 20%4(0)'(0)

t

+ / [9°(7) + 2(a” ~ 1)¢" (7 )w. (0, ) = 2vg(7)w (0, 7)) dr (3.39)
0

t ptoo
- /0 /0 2[w(z,T) — waq(z, )] (P(us(z, 7)) — P(us(z,7))) dadr.

By Lemma 3.6, there exists a constant @, which only depends upon T, ||f;||; and
|gil1, such that
”ui("t)llz < az, (Z . 1’2) (340)

From (3.39), (3.40) and some elementary inequalities, including (3.14) applied to w,, it
follows that

o, D113 < 117113 + CillglEa o,y + Cz(v(BT))/O |lw(-, )l [3dr, (3.41)

where v(Br) is a constant such that |P(z1) — P(22)| £ v(B7)|21 — 23| and By = {we
Br : ||lw||s, < 2d3}. By Gronwall’s lemma, it follows from (3.41) that

(5 OI1Z < CUIANE + gl o 1),
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or what is the same,

|lur — uzllE 0,712y < CUIf1 = fall3 + llgr — g2llE (0. 1)- (3.42)
By a Sobolev embedding theorem, (3.42) implies that
llur —uzllsy < C(Ilfr = fall2 + ll91 — g2llcro,m))- (3.43)

In consequence, the mapping Uy: Xy — Br is continuous, at least for fixed v.

To prove that Us: Xy — B%’l is continuous for fixed v, write (3.38a) as an integral

equation, analogous to (3.8), namely

w(z,t) = exp(—tvja?)f(z) + §(t)e_z/°‘

t + o0
+ /0 /0 exp(—v(t — 7) /) K (z,€) [P(u1(€,7)) — P(uz(€, 7)) + w(€, )] dédr

v [ (3.44)
_E/o /0 exp(—u(t—T)/QZ)L(x,g)w(g,T)dng,

where §(t) = g(t) — exp(—tv/a?)g(0) and K and L are as in (3.5) and (3.6), respectively.
By using (3.43) and (3.44), along with the assumption §(¢) € C1(0,T) and f(z)€ H*(R*)N
CE(R), one can easily show that

lwllgzs < C(lf1 = fall2 + llg1 — g2llcro,1))- (3.45)
As an example, by differentiating (3.44) with respect to ¢, it follows that

we(z,t) = —% exp(—tv /o) f(z) + §'(t)e~2/®
v t +oo
o [ [ envte = et e, 0| Pluste, )

~ Pua(6, ) + i, )| dedr
+oo
+ [ KE@OPuE ) - Pue,r) +u(E n]ded  (346)
Vz t “+ oo )
+ 5/0 /0 exp(—v(t — 7)/a*)L(z, )w(¢, T)dEdT

v

+oo
2 [ Lo, gt e,
Notice that
+oo 1 +oo
|0l = g [ esw(—(o -+ €fa) + sonte — €)exal(— e — el/e)lde

1 1o
= %7 ), |exp(—(z + €/a) — exp((z — £) /o) dE

+ % /Ur(exp(—(év + £ fa) + exp((€ — z)ja))dE (3.47)

IA
R~
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and similarly,
+oo 2
/ |L(z,£)]dE < —. (3.48)
s «
Using some elementary inequalities, (3.46), together with (3.47) and (3.48) give
v ~
llorllsr < —5[1fllz +lIglleso,my + C(Tv + 1+ v(Br))||wl|s, - (3.49)

By using (3.43), one then obtains

|lwellsr < C(Ilf2 = fall2 + [l91 — g2llcr0,1))- (3.50)

Differentiating (3.44) with respect to z and then using (3.43) and the same sort of con-
siderations that led to (3.50), one sees that

lwellsr < CUIlA = fallz + lgr = g2llcr0,m))- (3.51)

Differentiating (3.44) with respect to z again and arguing as above yields

[[wezllar < CUlfr = fallz + g1 — g2llcr0,1))- (3.52)

Similar results may be obtained with regard to uz¢ and %z, and in this manner (3.45)
is verified.

Next, we show that Uy is continuous in the variable v when the initial and boundary
data are fixed. Let v; = Uy(v;, fa,92) for ¢ = 1,2, and let y = v; — v;. Then y satisfies

Ll tocut 1 _ .11 h - 1 1
LLIC 1llivial- dlld voulldary-valuc propieiil

Yt + Yz + {P(vl)_‘P(v2)}z - (Vl - V2)(U2):cx — UYzz — azyzzt b Oa (3533')

for z, t > 0,
y(z,0) =0, for z > 0, (3.53b)
y(0,t) =0, for t > 0. (3.53¢)

Multiply (3.53a) by 2y — 2y,, and integrate the result over R*. After integration by

parts and using Lemma 3.6 applied to the solutions v; and v, one has

& (II+ + 0 liye 2 + olge 1) + 52(0,8) + 201 (il + el )
+ o0
= /0 12y — 29as] [(01 — v2)(v2)es — {P(v1) — P(v3)}a]da

< (I = wallleellgge Iyl + 4(Br)llyl13)
< C*(lr = val - Iyl + I9113)

(3.54)
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where C* = maz{y(BT), ””2l|B§:1}' Since y(z,0) = 0, it follows from Gronwall’s lemma
that

llyllz < lv1 — val(exp(C™e()t) = 1)

for 0 < t < T, where da) = gm {'1 77 By a Sobolev embedding theorem, this in turn
shows that

|lv1 — vallBr < Clva — val. (3.55)

Using of an integral equation version of (3.53), the last inequality may be extended to a
bound of the form
los — vallggs < Cla = val (350)

thus showing that U, is a Lipschitz continuous function of the parameter v.

The triangle inequality applied thusly,
||U2(V1,f1,91) - U2(V2, f2,g2)||3§'1r~.c(o,T;H2(m+))
< |[Ua(v1, f1,91) — Uz, f2s g2l g2 nco,my 2 ()
1 |[Ug(v1, f2,92) — Ua(v, f2, 92)| g2 oo, 1 H2(BH))?
allows one to infer from (3.45) and (3.57) that
Uy: X, = {{HX®RY) N CEHRNXCYO,T)} — Y = B2 0 C(0,T; H*(RT))
is continuous. This concludes the proof of the theorem. a

COROLLARY 3.16. Let U denote the mapping that associates with the triple (v, f, g)
the corresponding solution of (3.1). For any k>2andl>1,

U: X ={(nfr9): (nfrg)eRFxHHRH)NCHR)xCYO,T)}
— Y = B nC(0,T; H*(R™)),

and this correspondence is continuous. O

4. WELL-POSEDNESS OF TWO-POINT BOUNDARY-VALUE PROBLEM

In this section, interest will be focused on the initial- and two-point boundary-value

problem
ug + ug+P(u), — Vigs — augge =0, for z€(0,1),t >0, (4.1a)
u(z,0) = f(z), for z €[0, 1], (4.1b)
u(0,) = g(t), fort > 0. (4.1¢)

u(1,t) = h(t), for t > 0. (4.1d)
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For consistency, the restrictions
u(0,0) = £(0) = 9(0), and u(1,0) = £(1) = h(0) (4.2)

will be imposed and it will be supposed that v > 0 and o # 0. Throughout this section,
2 will stand for the interval [0,1].

4.1. Local Solutions

By converting the differential equation with initial condition (4.1b) and boundary condi-
tions (4.1c) and (4.1d) into an integral equation as in (3.3) and applying the contraction-
mapping theorem to this formulation of the problem, a local solution can be established.
The argument closely parallels that worked out above for (3.1) (see also [6]), and conse-
quently we content ourselves with a statement of the conclusions that may be derived by

this approach.

PROPOSITION 4.1. Let T > 0, feC(Q), g and heC(0,T), and P locally Lipschitz
continuous. Then there exists a positive constant T' = T'(1flley oy l9llco,1y) such that
for any t with 0 < ¢ < To = min(T",T), there is a unique solution of (4.1) in Br,. If
feCk), gand b e CY0,T) where k 22,1 >1and k > I, then the corresponding
solution u of (4.1) is an element of B;;l and is a classical solution of the initial- and

boundary-value problem (4.1).

4.2. Global Solutions

The local solution of (4.1) whose existence was just confirmed can be extended to a global
solution by appeal to appropriate a priori estimates. The q priori bounds which allow
one to extend the local solution of (4.1) to arbitrary time intervals is derived by energy
estimates just as was done for (3.1). We have been unable to derive an analog of Lemma
3.4 for the two-point boundary-value problem (4.1). Similar problems were noted for
nonhomogeneous boundary-value problem for KdV (see |8, 17]). Thus we are not able
to obtain the helpful H? (R*)-bound that is the outcome of Lemma 3.4 in the present

circumstances. However, H2(R*)-bounds can be derived as is now demonstrated.

LEMMA 4.2. Suppose that fec*(Q)n H?(Q), g, ke CY0,T) with f(0) = ¢(0) and
f(1) = r(0), and that P¢ C*(R) satisfies the growth condition

lim sup|| TP"(s) <€ (+%)
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for some finite constant €. Let u(z,t) be a classical solution of (4.1) up to the boundary
on Qx[0,T). Then for all t€[0,T) (T < Tp),u(-,t) € H*(Q) and there exists a constant
ay only depending on T, ||f|lz, |9lcr(o,1) and |h|ca(o,) such that ||u(-,t)|]2 < as.

Lemma 4.2 for the problem (4.1) may be proved in exactly the same way as we proved
Lemma 3.6 for the problem (3.1). The principal difference is that the term u,(1,t) arises

on account of integrations by parts. This quantity can be controlled by use of the analogue

llolieso < (Il Cloll + 211112 (4.3)

of (3.14). Applying this relation and an estimate like that appearing in (3.18), a suitable
differential inequality may be derived to which Gronwall’s lemma applies and yields the

desired results.
Using the bound obtained from Lemma 4.2, the local solution obtained in Proposition
4.1 can be extended to arbitrary time intervals. Results of continuous dependence on the

data f, ¢ and h and on the parameter v can be obtained just as for (3.1). Thus the

following theorem for (4.1) emerges.

THEOREM 4.3. Let there be given T > 0, f€ C¥(Q) n H¥(), g, h€ C*(0,T), where
k> 2, 1> 1. Suppose that f(0) = g(0), f(1) = h(0), and that nonlinearity P is smooth
and satisfies the conditions (*x) specified in Lemma 4.2. Then the initial-boundary-value
problem (4.1) has a unique solution u € BC’I“JI. Let U denote the mapping that associates
to v and the triple (f,g,h) of data in (4.1b, ¢, d) the corresponding solutions of (4.1).

Then U is a continuous mapping of X into Y where

X={(v,f,9,8): (v, f,9,h)eERTxCHQ)xC0,T)xC'(0,T)} and
Y = Bh.

The following result is similar to Corollary 3.12. It is useful for estimating decay in

the temporal variable in case v > 0.

COROLLARY 4.4. Let initial data f defined on Q = (0,1) be given and boundary
data g, h defined on all of Rt specified. Suppose that (f,g,h) satisfies the hypotheses
in Lemma 4.2 for any T > 0, and that in addition g, h € H*(R*). Suppose v > 0 and
that either € is small enough, v is big enough, or that the boundary data g and h are
small enough in H'(R"). If u is the solution of (4.1) corresponding to (f,g,h), then
Uz, Ugz € Lo(2XRY) and ||u(-,1)||L., — 0 as t — +oo.
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4.3. Decay Rates

The asymptotic behaviour as t — +o00 of solutions of (4.1) will be considered in this
subsection. To simplify the presentation, it is assumed that (P(z)); = uPu,. It is worth
note that the proof of decay obtained for the pure initial-value problem posed on all
of R in [2, 9] can be taken over intact in case g, h = 0. However, since § is bounded,
stronger temporal decay is expected than the algebraic rates obtained in [2, 9] in case
v > 0. Moreover, the imposition of homogeneous boundary conditions at both sides of
the spatial domain is artificial. In consequence, we undertake now a direct derivation of

temporal decay rates for the initial-boundary-value problem (4.1).

LEMMA 4.5. Suppose v > 0 and that the auxiliary data (f,g,h) and P satisfy the
conditions specified in Corollary 4.4. Let u be the associated solution of (4.1). Then,
ueCy(RY; HE(R)) N Ly(RT; H%(Q)) and ugs, uzet € L2(QxRT).

PROOF: First multiply (4.1a) by the combination 2(8; — z)u(z,t) for some positive
constant b; to be specified presently, and then integrate the result over Q. After simpli-

fication, we reach the relation

/0 [u(ac,t)2 + 2v(b; — w)ui(w,t)] dz + dit/o [(b1 — z)[u(=,t)? + azuz(x,t)2]]dx

2
p+2
o)

= (b1 = 1) [20%A(£)und(1,) + 20h(t)us(1, 1) = R2(H) — I%h"“(t)]

+ vh(t)* — vg(t)? + 207 h(OH(£) — 2a%9(8)g'(t)

=b [2a2g(t)u,t(0,t) + 2vg(t)ug(0,1) — g2(t) =
(4.4)

1
_/ [I%Mﬁ?(a;,t)+2a2uz(:c,t)ut(:c,t)]dw.
0

Equation (4.1a) gives the crude inequality
e, DI <C(lg' ()] + ' (B
+C [“uz('at)“2 + ”uzz('at)“z + ||uxt(',t)“2 + ||u$:ct("t)”2] i (45)

Applying (4.3) to u; and us4, using (4.5) in (4.4) and making other elementary estimates
leads to

/0 [u(z,)? + 2v(by — 2)ud(,1)]dz + % /0 (b1 — z)[u(z,t)? + &Puy(z,t)?]]de
< CEg@®) + [R@)> + 1g' @2 + 1R ®)) + pizllu(-,t)ll’imllu(-,t)lﬁ (4.6)

+ C(O)ual Ol + 8 [[[uas( I + lluat(, )17 + {luzad( OI],
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which holds for any 6 > 0.
Multiply (4.1a) by us, and integrate the result over Q. After integration by parts
and using Lemma 4.2, we derive

a’d
3 dt

| =

s (5 I + lluzs (12 + vlluzs ()P

N
s

t
1
= (20,0 + W1, 0] ~ G300 + ¢ (ux0,] = [ wPusueads
0 (4.7)
v
< C(lg O + K@) + C@) + Il O uaC DI + SllusaC I,
where inequalities (4.3) has been used to control the terms u,(0,?) and ug(1,1).

Multiply (4.1a) by ugq: and integrate the result over Q. After integration by parts
and use of (4.3), it is adduced that

vd

2@
W (uad(L,1) — ¢ (Duse(0, ) + / (WPtstset + Uatizsrlds
< C(lg' (O + H@P) + Ca) (L + [lulIE s, DI

i 2 ao? 2
+ §Hu$t(’at)“ + 7|lum(',t)|| :

lluze (I + & l[uzae( DI + e, I

(4.8)

Adding (4.6), (4.7) and (4.8) together yields the differential inequality

| Tute 7 + 20t — (o0 e + ZlusC DI + % e DI + gl

== % [/0‘ [(bl . $)[u($,t)2 + azuz(x,t)z]]dm + %”u:c(',t)||2 + (0;_2 + %)“uzx(',t)”2]
< O + 1A +1g O + WO+ 2l DIt DI »

+ [C(6) + C@)A + [lu(DIE,) + Cla)( + Nl I usC, I
+ 6 lae (DI + s )P + uzae BI]-

First, choose T' large enough so that, simultaneously,

2

u(- O <1 and
[Ju(- DI, <1 an P

1
G2 < 5,

for t > T. This is possible since ||u(-,t)||L,, — 0 for t — +oc0. Next, choose the constant

b1 in (4.9) so that
C(6) +2C(v) + 2C(a) }

14

b, > max {2,
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Finally, choose § small, say

6= %min{aﬁ, v,1}.

With these choice, (4.9) implies that

Bllul-, DI + G D11
+ Culluzi(, D1 + Callugae(-, DI (4.10)
S CUg®I +ROF +19' ()1 + K (1)),
for all t > T, where 4,Cy and C, are some positive constants depending on «,§ and

v. Integrating (4.10) over [T, ¢), the result stated in the lemma comes into view upon
applying Theorem 4.3 to ||u(-, T)||,. (]

If stronger hypotheses are posited on the boundary conditions, stronger results can
be derived. In fact, if one multiplies (4.10) by Bt and adds the result to (4.10), there

appears

I8 + (0 + 9 01 )
+ tB(Culluae( DI + Calluasd - )][) (4.11)
< OB+ 19 + O + g G + W),

A+l + [ relfuC, )i ar
< @+ TH)lu(, D)lI3 + C/T(Tﬂ + U9 + R +1g' (1) + [B'(r)P)dr,  (4.12)
for ¢ > T. From (4.12), one sees that

luC Iz = 0(¢™)

as t — 400, by using Theorem 4.3 applied to [|lu(-, T)||z.

Repeating this procedure, one may deduce that if (g + |R@®)* + |g'@®)]? +
|R'(t)2) € L1(T, +00) for some T > 0, then [{u(-,#)[|7 = 0(t™™). In consequence, it is seen
that

I, )l|ze, = 0(t™7),

as ¥ — oo, since ||u(, 8)[[7,, < [lu(, )II(ul, )] + 2llua(-, 1)]]).



Propagation of Long Waves 91

If equation (4.10) is multiplied by e?* and the result integrated over [T,t), there is

derived
(O <l TR
b [ ool + P+ + KOPTAr s
It 84O + B + lg' (O + H(B) € La(T,+00), then (4.13) yields
g 113 = 0=, (.14)

for t > T, again by using Theorem 4.3 applied to ||u(-, T)||2. Moreover combining (4.3)
and (4.14) shows that

(> Dl = 0(e™ ),

ast — +o0o.

In particular, if (4.1) is endowed with homogeneous boundary condition, the decay
of solutions of (4.1) is exponential. The results just explained are summarized in the

following corollary.

COROLLARY 4.6. Let the initial condition f lie in C}(Q) and suppose the nonlin-

earity satisfies condition (**) and the other stipulations in Corollary 4.4.
(1) If the boundary data g and h are in HY(R*) and t¥g and t3 h are also in HY(RT),
then ||u(-,t)][3 = 0(t™") and
(). =00~ F),
ast — +oo,n=0,1,2,---.
(2) If ¢% g and eT h are in H'(RY), then ||u(-, )|1z = 0(e~**) and
(> Dllze =0(™ %),

ast — +o0o. O

5. CONCLUSION

In this paper, initial- and boundary-value problems for the generalized regularized long-
wave equation have been considered. Both the quarter-plane problem in which an initial

condition together with boundary data at the end of a semi-infinite stretch of the medium
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and the two-point boundary-value problem in which initial conditions are coupled with
boundary conditions at both ends of a finite extent of the medium of propagation are
shown to be well posed sub ject only to suitable smoothness together with obvious compat-
ibility conditions. Extending earlier work on these problems, results of global existence,
uniqueness and continuous dependence of the solutions on the initial and boundary data
is established for nonlinearities that grow at infinity no faster than quartically in the case
of nonhomogeneous boundary conditions, and for smooth nonlinearities of any growth

rate in the case of homogeneous boundary conditions.

When dissipative effects modeled by the term —yu,, are present, solutions of the two-
point boundary-value problems are found to decay at rates up to exponential. Indeed, the
rates of decay are determined by the evanescence of the boundary data for large values
of ¢. This is in contrast to the sharp decay rates that obtain for the pure initial-value
problem (see [2] and [9]), which are only algebraic. Preliminary decay results are also
obtained for the quarter-plane problem, and these appear similar to those that obtain for
the pure initial-value problem, reflecting the difference between bounded and unbounded

domains.

This work points to a number of open questions. As far as wel] posedness is concerned,
we have not yet determined if the quartic restriction on the growth rate of the nonlinearity
P imposed in our theory is merely an artifact of our proof, or whether singularities
in solutions may form in finite time for nonlinearities not respecting this restriction.
The decay results for the quarter-plane problem could use some refinement and it could

certainly be interesting to treat more general forms of both dispersion and dissipation.
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