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Abstract. The asymptotic behaviour of golutions to the generalized regularized long-wave-
Burgers equation
wg + Uz + wPuUz — VUuzgz — Uzsxt = 0 (*)

is considered for v > 0 and p = 1. Complementing recent studies which determined sharp
decay rates for these kind of nonlinear, dispersive, dissipative wave equations, the present
study concentrates on the more detailed aspects of the long-term structure of solutions.
Scattering results are obtained which show enhanced decay of the difference between a
solution of (#) and an associated linear problem. This in turn leads to explicit expressions
for the large-time asymptotics of various norms of solutions of these equations for general
initial data for p > 1 as well as for suitably restricted data forp > 1. Higher-order temporal
asymptotics of solutions are also obtained. Our techniques may also be applied to the
generalized Korteweg-de Vries-Burgers equation

ut + uz + uPug — Vigs + Uzzz = 0, (%*)

and in this case our results overlap with those of Dix. The decay of solutions in the spatial
variable  for both () and (*x) is also considered.

1. Introduction. This paper has as its genesis our earlier study [6] which was
motivated by the work of Amick et al. [2] and Dix [13], and which determined the
temporal decay of various norms of solutions of the pure initial-value problem for
the generalized Korteweg-de Vries-Burgers (GKdV-B) equation

ug + Ug + UPUg — VUgg + Usze = 0, (x€R, t>0) (1.1)
and the generalized regularized long-wave-Burgers (GRLW-B) equation

Uy + Ug + UPUG — Vlgy — Uzt = 0, (z€R,t>0). (1.2)
Here u = u(z,t) is a real-valued function of the two real variables « and ¢, subscripts
adorning u connote partial differentiation, v is a positive number, p is a positive

integer, and the initial condition

u(z,O) - f(:E), (.’l: € R)’ (1'3)

——
Keywords: nonlinear, dispersive, dissipative, wave equations; Korteweg-de Vries-Burgers equation;
regularized long-wave-Burgers equation; decay rates; large-time asymptotics.
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is assumed to be suitably smooth and evanescent as z — +o0.
Special cases of (1.1) and (1.2) are the well known Korteweg-de Vries equation
(KdV equation)
Ut + Ug + UUg + Uggy = 0, (1.4)

derived originally by Korteweg & de Vries (19] as a model for waves propagating
on the surface of a canal and the alternative regularized long-wave equation (RLW
equation)

Ut + Uy + UL — Uggy = 0, (1.5)

put forward by Peregrine [24] and Benjamin et al. (3]. The equations (1.4) and (1.5)
feature a balance between nonlinear and dispersive effects, but take no account of
dissipation.

In many practical situations, damping effects are comparable in strength to non-
linear and dispersive effects [7, 20, 21, 22), and in such cases the models (1.4) and
(1.5) require a dissipative term if good predictive power is desired. This is especially
true in problems involving bore propagation (cf. [8, 15]), but it is also the case for
water waves in all but the largest spatial scalés. A popular model dissipative term
is ~vugq, v > 0, which has often been appended to (1.4) and (1.5) when the need
to account for damping arises (cf. [7, 14, 15]), though it must be acknowledged
that when a range of wavenumbers are present in the disturbance under consid-
eration, and depending on the physical situation being considered, more accurate
appendages may be appropriate (cf. [16, 26]). The operator —v8? has the advan-
tage over some of its more accurate counterparts of being local, a property that
greatly facilitates its analysis.

Whatever dissipative correction is added, it is important to understand the cor-
responding decay rate experienced by solutions (see [7]). Accordingly, and because
it is an interesting question in its own right, the asymptotic behavior of solutions of
equations like (1.1) and (1.2) has been the object of a number of recent works (cf.
[2, 4, 6, 12, 13, 23, 28]). An example of the outcome of these studies is that if «
is a solution of (1.1) or (1.2) corresponding to a generic class of reasonably smooth
Lo-data, then the Ly-norm of u tends to zero as ¢ tends to infinity at the rate ¢t~ %
(see [2] for p = 1, and [6, 13, 28] for larger vaiues of p). The value —1% is exactly the
exponent of decay experienced by the Ly-norm of solutions of the linear problem
obtained by dropping the nonlinear term in (1.1) or (1.2).

When p = 1, there is a subtle difference between the linear and the nonlinear
equation for (1.1) and (1.2) (see [2]). Because of the nonlinearity, the value of the
solution of (1.1) is smaller (as measured by #1/2 I, u*(z,t)dz) than that of the
corresponding solution to the linear equation, at least for most initial data. However,
when the power of the nonlinearity is larger (p > 2), this difference disappears. More
precisely, we will show that the asymptotic behavior of the solutions is, to lowest
order, exactly the same as that of the corresponding linearized equation in case
P2

In [2], it was also pointed out for the case p = 1 that if initial data has zero mass,
then solutions of (1.1) and (1.2) decay faster than solutions of these equations with
generic initial data, by which we mean data restricted only by membership in a
Sobolev function class, but without auxiliary specifications like zero mass. Dix also
showed in [13] that a suitable restriction of the Fourier transform of the initial data
near the origin leads to an enhanced decay rate for the corresponding solution of
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(1.1). Indeed, his investigation encompassed a broad class of nonlinear, dispersive,
dissipative evolution equations of the type exemplified by (1.1), and his work very
clearly points the way to the theory contained herein. In fact, it appears that if the
initial data has the property that its Fourier transform vanishes at the origin like
ly|*, 0 <a <1, say, a8y — 0, then for p > 1, the decay rate of the corresponding
solutions of (1.1) and (1.2) will increase by 5 over what can be expected of solutions
corresponding to generic initial data. This result is particularly interesting when
0 < a < 1 and p = 1. Like the decay of solutions of (1.1) and (1.2) with higher-order
nonlinearity (p > 1), the asymptotic form of the solution when 0 < a < landp=1
consists exactly of the solution of the linear equation plus a term that vanishes
at higher order as t becomes unboundedly large. As a corollary, if o > %, then
golutions of (1.1) and (1.2) lie in the space La(R x Rt). While the decay results
for norms of solutions obtained for (1.1) in case p > 2 are already contained in
the previously mentioned work of Dix, the method of proof implied in our sketch is
different and perhaps more transparent, though it doesn’t have the scope evinced in
[13]. Going beyond the lowest order of the decay, some details of the higher-order,
large-time asymptotics are also provided by our theory.

An interesting consequence of the higher-order expansion obtains for any p > 1
when a = 1 so the Fourier transform of the initial data vanishes at the origin
like [y|. It transpires in this case that the Ls-norms of solutions of (1.1) and (1.2)
have long-time asymptotic form Ct—% where C? = limy— oo t¥ [, u%(z,t)dz. The
constant C may be computed explicitly (see (1.14)-(1.15) below) to depend on the
first moment of the initial data f and on the the double integral

/ooo [-0:0 uPtl(z, t)dzdt. (1.6)

It does not coincide with the constant associated in the same way to the linearized
initial-value problem. Furthermore, in this special case, the Lo-norm of the dif-
ference between solutions of (1.1) or (1.2) and the corresponding linear equation
also has large-time asymptotic form C't—1, where C' depends only on the double
integral in (1.6) (see (1.13) below) and is not equal to zero in general. This suggests
that if initial data has zero mass and its first few moments about the origin are
also zero, or more generally speaking if a > 1, then solutions of (1.1) and (1.2) only
decay like t—% in Lo-norm. However, with the same initial data, the Lo-norm of
solutions of the linear equations corresponding to (1.1) and (1.2) decays like =,
which is a faster decay than t—% when a > 1.

In their wide-ranging discussion [23], Naumkin & Shishmarev considered the
large-time asymptotics of solutions of the equation

wy + wf, + Wggr — Wez =0, 1.7

and other more general dissipative and dispersive equations with initial data in
H%(R). The decay of solutions of (1.7) in Leo (R)-norm is shown in [23] to have the
form Cmt”% as ¢ tends to +00. An explicit formula for the constant C is given
by a series whose summands depend only on the initial data. To obtain (1.7) from
(1.1) with p = 1, one simply integrates the evolution equation with respect to z. Of
course, entailed in this procedure and the fact that the initial data for (1.7) lies in
Ly(R) is the implicit, zero-mass presumption that f(v) = iyg(y) for some g € Ly (R),
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say. Indeed, in order to apply their perturbation arguments, additional restrictions
on g are needed (see [23, p.180 condition (1.6)]). Once this point is noted, the decay
rates obtained in [23] square with those reported elsewhere. The constant Cy has
in [23] a very complicated expression. However, without the additional conditions
imposed on g in [23], the constant Cy can also be obtained following the lines
developed here, although the dependence upon the initial data is implicit in tha
the quantity in (1.6) (with p =1) arises.

In addition to studying the temporal decay of solutions of (1.1) and (1.2), atten-
tion is also given to the spatial decay of solutions as z tends to +o00. Consideration
of spatial decay arises when one tries to devise error bounds for numerical approx-
imations of solutions of the initial-value problem posed on all of R and, recently,
in the study of the dispersive blow-up phenomenon (see (9]). The results obtained
here show an interesting interplay between spatial and temporal decay. Note that
when the interplay between spatial and temporal asymptotics is considered, it is
important to keep the linear convective term u, in (1.1) or (1.2) if the results are
to be of interest in laboratory settings. (This term can always be eliminated by
passing to a moving frame of reference, but in such a frame the spatial asymptotics
depend on time.) This point is telling in the analysis in [23] where the fact that
(1.7) has no linear term seems to be an important ingredient.

The script concentrates on the theory for equation (1.2). After some basic lemmas
which are established in Section 2, the main results of temporal decay for solutions
of equation (1.2) are stated and proved in Section 3. The theory about spatial
decay is worked out in Section 4. In the last section, the results for equation (1.1)
are stated and commentary is provided about their proof, and in particular, points
where the proofs differ from those provided for equation (1.2).

The notation to be used henceforth is mostly standard. The Ly(R)-norm of a
Lebesgue-measurable function f on R is denoted by |flpfor1<p<oo.Ifm >0
is an integer, W™ (RR) will be the Sobolev space consisting of those L,(R)-functions
whose first m generalized derivatives lie in L,(R), with the usual norm denoted
|f |W:.(R). The case p = 2 has the special notation H™(R). The norm of f in H™(R)
will be connoted || f||,n, and of course || - [|o = | - |2. When we discuss decay to zero
at infinity in the spatial variable, it will be convenient to use weighted I.,-norms
In particular, the spaces £5() and L} = Lp(R) will arise in our analysis. These
are the subspaces of L,(f?) and L,(R) consisting of those functions f such that

Iflenemy = (/(1 +z2)’2"|f(m)|1’da:) ’l’, or
Q

= ( [ eris@pas)’,

R
is finite. The weighted Sobolev space HZ(R2) consisting of those L£F(f2)-functions
whose first m generalized derivatives lie in L3(82) is equipped with the norm

m 3
ooy = (X217
k=0

For smooth functions f with compact support in R, define the Fourier transform of
f to be f(k) = 7%; J2o, €72 f(z)dz; this definition is extended in the usual way
to the set of all tempered distributions on IR.



DECAY OF NONLINEAR WAVES 155

In Sections 3 and 4, the primary goal is to prove the following results about
solutions of (1.2).

Theorem. Let f € H2(R) N W#(R) and suppose p > 1 and v > 0. If w is the
solution of the initial-value problem obtained from (1.2) by dropping the nonlinear
term but maintaining the same initial data and u is the solution of (1.2)-(1.8), then
|u(,t)|2 and |w(:,t)|2 both decay like t-%. Ifp>2, then for1=0,1,

; ! [ : 1
Jim 1 HOLu(, 0 = lim ¢ H0Lw(, 0l

1 % 2
- ot ( /_ fa)iz)

Moreover, if ff’w f(z) = 0 and the Fourier transform f of f satisfies the inequal-

ity A
|F )| < Clyl*, (1.9)

for small values of y, where 0 < <1 and C is a positive constant, then there are
constants C' and C" such that the solution u of (1.2) withp > 1 has the properties

(1.8)

lu(, t)lz < C'(1+ )% ond  |us(H )z < C(L+1)FEE, (110)

fort > 0. If0 < a < 1, then there exist constants C}, 1 = 0,1, which depend only
on the solution w such that

tim 25 ol 0 = im TG, 0B =0 (D)

t—+

In addition, if f(y) = y*§(y) for some g € Ly (R), then

N 1i2!l+a! 1 - 142{14a 1
Jim ¢ ou(, )3 = lim ¢ 1 |Ozw(, bl

Ma+1+3) (/0; g(m)dm)z1

- 21r(2v)°‘+'+§ L

(1.12)

where T' connotes the Gamma function. If o =1, then one has

) 5 . B . 2 _ 1 o0 poO o+l 2
t3§wti|u( ,t) — w(-, t)|3 4u(8v1r)‘§(;p+1)2(/o /_wu d:vdt) . (1.13)

If f(y) = iyd(y) for some g € L1(R), then

o0 00 poo ,pil 2
L ESRL : / _/ /oo“ f’:t) o
tl‘_ﬂ{‘ % |u(-, t)z BEm)] ( g(z)dx A T+p dwdt) (1.14)

—00

In particular, if of(z) € L1(R) and L g(x) = f(z) with zg(z) — 0 as x — oo, it
follows that

i el ) = s [ P w@Y g (115
Jim o0 = e p ([ at@es [ [ S5 Re) . 19
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If fe WH(R) NHE(R), p > 1 and v > 0, then for any T > 0, equation (1.2)
has a unique solution u € Lo, (0,T; H2(R)) corresponding to the initial data f. Pur-
thermore, the solution u has the properties that ||uz(-, llcyw) and ||uu(-,t)|]C%(R)
lie in Ly(RY). Specifically, if initial data f satisfies (1.9) and o > 1, then u €
La(R x R*) N Co(R*; HE(R)), and u, € Ly(RF; H2(R)).

In Section 5, similar results are obtained for solutions of (1.1).

2. Some Preliminary Results. Henceforth, it will be taken for granted that
the generalized KdV-B equation (1.1) and the generalized RLW-B equation (1.2)
with the initial condition (1.3) are well-posed in certain function spaces. Indeed,
Proposition 3.1 and 3.2 in [6] suffice for the discussion here. For the nonce, attention
will be focussed upon the decay properties of solutions of (1.2).

The linearized RLW-Burgers equation

Wt + Wg — VWgg — Wegt = 0, (2.18,)

w(z,0) = f(z) (2.1b)

has been discussed in [2]. The initial-value problem (2.1) can be solved by formally
taking the Fourier transform of equation (2.1a) with respect to the spatial variable
z. It is thereby seen that for any f € L,,

—vy?t — iyt

"-D(y’t) = €xp ( 1+ yg )'lf)(:l/, 0)’ (2'2)
and consequently
1 o2 —vytt—iyt .,
w(z,t) = Wor /_oo exp (—l_l_—yg— +dyz) f (y)dy. (2.3)

Here are cited the principal results about the decay of solutions of (2.1).

Lemma 2.1. If f €e H" N L,, wherer > 1 and
If@) < Clyl* (24)

for small values of y, where & > 0 and C is a positive constant, then

00
sup tetiti [0Lw(z, t)]?dz < oo, (2.5)
0<t<0 —0

Jor 0 <1 <r. In particular, if

1£ @)l = ly|*l5)| (2.6)
for some g € L;(R), then
p [ Dla+l+3)/ [ 2
Jim gt /_ _[u(e, ) ds = %(E”T:)“%f_z( /_ ) 9(a)dz) 2.7)
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where T' connotes, as before, the Gamma function. Thus if we have

o
[ tebiselds <o, for 0Si<k and
—00

= (2.8)
gtif(z) -0 asx — too, with / # f(z)dz =0,
—o0

for0<j<k-1, then for 0 <1<,

_ L [ 135 kD1 [ 2
tl}lllootk'}'“'f /—oo[aiw(x,t)]zdm = Gom) () (/_oo mkf(:v)da:)
(2.9)

Proof. A special case of (2.9) is proved in [2]. Here, more general results are
established that will find use presently.

We start proving (2.5) by multiplying (2.1a) by 2w and then integrating the
result over R and integrating by parts to obtain the exact relation

%(lw(-,tn% + lwa (1)) + 2vlwa(-,8)l3 = 0. (2.10)

The use of (2.10) shows that for ¢ > Lte

%(t1+a[|w(-,t)|% + |wa (-, )13])

= (L + e, D + (1 @) — 2wl (1))

o [ (@ ayeirar sl

Wyt | 2, \j2
<o / exp (- 224) | (w)Pdy
W<y e ( 1+y2) (2.11)
2wyt
< Ct"‘/ y**exp (- )dy
i< it 14y

(1 +a) 2a+1 1
3 2
£Ct (\/ 2ut—(1+a]) S

where Parseval’s theorem, the representation (2.3) for w, and assumption (2.4)
on the initial data f have been used in the first, the second and the third step,
respectively. Integrate (2.11) once to obtain

4 (-, B2 + [wa(- )E] < C1+19),

whence
et Hw(, ) < C.

Similarly, differentiate (2.1a) once and then multiply the result by 2w, . Integrate
the latter result over R to reach the exact relation

4 (6. () + Ieu(-,F) + 2102, 0l =0. (2:12)
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By using (2.12), Parseval’s theorem, the representation (2.3) and assumption (2.4),
it then follows that for ¢ > 2te

2 (= l0ew(- O3 + 02, D)

= 4 (2 + a)leu(, O + (2 + @) - 2t 62u(., )

+oo
<ttt [T (@4 a)+ (24 ) - 2t )iy, Oy

<pive | exp (— 20y ) Py
B i<y el 1+y? (2.13)
2a+2dy

< Ct1+a/ y
WISy sttit=

1raf [ (2+@) 2043 ~1
=Ct ( 21/t—(2+a)) <Ct7s.

Integrate (2.13) once to obtain
¥ 18 w(, t)ff + B7w(-, )] < C(1 +¢1),
from whence it follows that
tH0.u(, )} < C.

Continuing in this vein, it is deduced that if the initial data f satisfies condition
(2.4), the Ly-norm of 8w is bounded in the form (2.5) for any integer I > 0.

In particular, the use of Parseval’s theorem, the representation (2.3), assumption
(2.4) and the dominated convergence theorem shows that for 0 <l<w,

[o0]

lim 1t H oL, 0ff = im et [ koG, opay
t—+o00 0

t—+o00

== _ 2wy
= Jim getd [ gy em i | fy) Py
-0

) -
= lim ¢ttt} / ly(2e+De =357 |5(y) Pdy

t—+o00 —o0

1 : °° 2atl) = b T 1Al S \j2
= — 1494 f20t [ d.
g dm, [ e 9P

= _[M_ N s2(a+l)e—32ds
(2,,)a:-l—l+% -

I (/[ ()] Y R
T ()t g by

_Tle+i+d) . o Tle+l+d), > 2
= o)t |3(0)* = om(20) (/_oo !J(:v)dx) :

(2.14)

In particular, if f = di:,,-g where g € L, say, then f = (—iy)*§, so that o can be
taken at least as large as k in (2.4).
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If f satisfies properties (2.8), then f e C* and s fs oo f*) are bounded and
continuous. Moreover, f(0) = flo)y=---= f=1)(0) = 0 because of the second set
of relations in (2.8). Hence Taylor’s theorem with remainder implies (2.6) to hold
with o = k and § such that

|9(0)| = |\/% /_ °:° :ckf(m)dml.

The result (2.9) follows from the use of this information in (2.14) and the lemma is
proved. 0O

When the case p = 1 is studied in Sections 3 and 5, use will be made of the well
known Cole-Hopf transformation

W = —-vlogV. (2.15)

While it does not lead to the same level of simplification that obtains when it is
applied to Burgers equation, this transformation nevertheless proved to be effective
when it was used in [2] on nonlinear, dispersive, dissipative evolution equations.
It turns out here also to be useful as a preliminary step to apply the Cole-Hopf
transformation to the linear equation (2.1).

If w solves (2.1), let @(x,t) = Sw(z +1,1), so that

Wy — Vgg + Wrag — Wazt = 0. (2.16)

From Lemma 2.1, one easily sees that @ € Cy(R*; L1 (R)). Then the function W(z, )
defined by

Wizt = [ " oy, )y, (2.17)

—00

is uniformly bounded on R x R* and satisfies
Wi, t) — ¥Waa(@,1) - %wu(m +4,8)=0. (2.18)
Defining V via the transformation (2.15), a short computation shows that
V, — vV, = RV =G(z,t), (2.19)

where R(z,t) = ~1W2 — L wqi(z + t,t). Because V(z,t) = exp(—v~W(zx,t)), W
is bounded and v > 0, one has

0 < inf inf V(z,t) < supsup V(z,t) < oo. (2.20)
t>0z€R >0 z€R

Let Y = V, and remark that Y satisfies the initial-value problem

Y; = vy, + Gg, (z,t) e Rx RY, (2.21a)
f(=) 1 [f?
Y(z,0) = o exp(—; f(z)dz) = F(z), zeR. (2.21b)
[o o]
Note that from (2.15) and (2.17), one has the relation
-l-'w =w=W;= —uYi = —VK. (2.22)

2 |4 |4
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Corollary 2.2. Let f € H N W, and suppose |f(y)| < Cly|* for small values of
y, where o > 0 and C is a positive constant. There exists Bo > 0 such that if vy is
a fized positive constant, then for t > ~,

[ (-2 B )Py < 1+ E9 oot D), (223)
E<VES

as t — 400, where F is defined in (2.21b) and C; is independent of t.

Proof. . Take the Fourier transform of (2.21a) with respect to the spatial variable
z and solve the resulting ordinary differential equation to reach the integral equation

Y(y,t) = exp(—vy*t)F(y) + iy /0 exp(—vyi(t — 7))G(y, T)dr

= exp(—vy*t)F(y)
1

t . BS FRTA 2 _
__/e—Vyz(t—T)[iy[WgV(y,T)_MT_)]__th(y,T)]dT,
o, 2 2

(2.24)

Elementary inequalities applied to (2.24) lead to estimate

N 5 2 ) gy 2
exp(~20y*t)| F)* < 47 (0,0 + 2 ( /0 exp(—vy*(t = 7))wiVa(y, 7)ldr )

4t t —
+ 21 [ ep(-2m (e~ r)ind u,r)Par
7 b (2.25)

+ 2 ( / exp(—vy?(t — 7)) [WEV (y, 7)ldr )

First note that by using the relations in (2.22) and Lemma 2.1, one obtains

r ~ 1
S ¥ @OPdy SIYC0 < Clu(, ) < G4+, (2.26)
i

t

for large ¢. The use of the relations (2.22), the property (2.20) of V and Lemma 2.1
shows that

Vel < Loy, < cput, < 0@+ 9% 22
By using equation (2.1a) and Lemma 2.1, one sees immediately that
we(-, D)2 < Chug (1)l < C(1+)~ 5%, (2.28)

Applying (2.27) and (2.28), it is then shown that

—— 1 1 _
lweVa(y,7)] < \/—z—wlthz(';’F)ll S =t Dl2lVa( 7)l2 < C(1+1) (1+a),
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Hence for t > v, the use of the above inequality gives

/|y|5\/?y2 ( /ot exp(—vy?(t — T))lm(y, ‘r)|d'r)2dy

t o dr 2
< s 2 2.29
s C(‘/0 (1 +T)1+a) ‘/hllS\/?{-y dy ( )
<o)’ =0t

Similarly, by using (2.28) and the property (2.20) of V, there obtains the estimate
t —— 2
[t [ exsl-2me—rlwV @) drdy
RSVES 0

D[ feyslo¥ o
SCt(\/:) { Iulsﬂ|th(y’T)l dydr

) t (2.30)
<ctt / lweV (-, 7)[2dr < Ot / o, 7)Bdr

t
<Ct™? / (1+7)~G+9dr = ot
0
Finally, since W, = w, (2.20) may be used again to show

Jyet" ([ ettt DT @ ir) < (/I ([ wt.er)

t 2
<ort( [ a+m o)
0

Ct—t-2e, if o < 3, (2.31)
<{ Ctilogt+1))?, ifa=3,
ct %, ifa> 1.

Choosing fo = min{a, 1}, it follows from (2.26), (2.29), (2.30) and (2.31) that
/ exp(—2yy2t)|ﬁ'(y)|2dy < Ct—(Bot+¥) 4 o(t“(ﬁ°+%)),
W<vF

as t — +oo0, for all t > . The lemma is thereby proved. O

Finally, results are recalled which were proved in [2, 6] for the nonlinear equation

(1.2).

Theorem 2.3. Let fe HEAWZ, p > 1 and v > 0 be given. Then the solution u
of (1.2) corresponding to the initial data f satisfies

(Bl < CAL+072, Ju( Bl < CA+ ) F ua(t)la S CL+)7F  (2.32)
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for all t > 0, where the constants C depend only on norms of f, and are therefore
independent of t. Moreover, we have that

Uty Uzgy Uzt € La(R X RY) and |u(,t)|; € Lo (RY). (2.33)

3. The Temporal Decay of Solutions of the GRLW-B Equation. In this
section further results on the temporal decay of solutions of (1.2) are obtained. For
a generic class of initial data, various optimal decay results have been obtained in
2, 4, 6, 12, 13, 28]. Guided by the observations in [2, 13], we here concentrate on
results that obtain for more restricted initial data. In particular, the assumption
that the initial data has zero added mass is essential in all that is accomplished in
this section. It is worth comment that many disturbances on the surface of water
in both laboratory and field settings are initiated by processes that exactly or very
closely conform to this assumption. As in previous studies, the so-called ‘balanced’
case p = 1 is handled differently from the case p > 1 of asymptotically weak
nonlinearity. The results in the first part of this section rely on the presumption
that p > 1 whilst the somewhat more challenging case p = 1 is reserved for the
remainder of the section.

The first result is a helpful technical lemma.

Lemma 3.1. Letp > 2, f € H2NW} and suppose that

If(y)| < Cly|* (3.1)

for small values of y, where 0 < a < 1 and C is a positive constant. Then for any
fized v > 0, the solution u of (1.2) corresponding to the initial data f satisfies

Cyt~lats) f0<ac<l,

[Cf + Cn(log(1 + t))2] t=%, fa=1, (3.2)

/ms w0 s{

for allt > v, where both Cy and Cy are independent of t. The constant Cy depends
only on the initial data f while Cy depends on p.

Remark 3.2. Since fe L;, f€C} and so if (3.1) holds for |y| < 6, say, by suitably
enlarging the constant C it may be supposed that (3.1) holds for all values of y.

Proof.. Take the Fourier transform of (1.2) with respect to the spatial variable z
and solve the resulting ordinary differential equation to reach the integral equation

2 .
- —vy“t —iyt, ;
i(y,t) = exp (W)ﬂy)
i i —vy? —1i —
T p+1 /o 1 -11-/y2 exp ( 1y+ 7 Y- ))urtl(y, 7)dr.  (3.3)
It follows readily from (3.3) that
. —2Y*t\ 2 o
[, O < 2 exp (777)If@)
2* i —vy? . 2
+ (p+ 1)2(1 + y2)2 (A €xp (———1 +y2 (t == T)) |u”+1(y,1')|d1') ; (3.4)
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Note that for large ¢, it is apparent that

= i T o —2u1%t
p (Y )If(y)lzdySCZ/ |y]2* exp (=) dy
ESVE)

ex —_—
/msﬂ 1+9? 1492
< cp~tE, (3.5)

because of hypothesis (3.1). Note also that for ¢ > 1, one obtains

2y? t —vy? — ]
AﬁJﬂrﬂﬁu+wv(ﬁ“WQ+¢@—ﬂHu+mﬂwﬁdy

2 t 2
<c Yy dg; ' (/ dr )
m<yE A+922\Jo (1+7)F (3.6)
t 2 Cyt—% if p>
<o 1)3(/ 9 ar) s{ s A,
t’ \Jyg (1+7)% Cnt~2(log(t +1))%, ifp=2,
where we have used that
lupt(y, 7)| < \/—2—;111”“(-#)11 < ﬁlu("T)lgolu("T)ll (3.7)
and the fact, garnered from the previous theory (e.g. [6, Corollary 5.2]) that
fu(, oo < C(L+)7E. (38)

Combining (3.4), (3.5) and (3.6) shows that

. 1 - B
/ li(y, t)*dy < Cpt=(e+h) + O, H0sa<h (39
wsvE = | ¢4t~ + On(logl + )%t~ %, ifa=1,

where C; and Cy are independent of ¢. The constant C; depends only on the initial
2 . A

data f, or more precisely on the term w(y,t) = exp (_—”{i_—l_%?ﬂ) f(y). This proves

the lemma. O

With Lemma 3.1 in hand, it will be shown that the decay rate of solutions of
(1.2) in Ly-norm increases by order § if the initial data f satisfies condition (3.1)
with 0 < a < 1. In preparation, the following lemma is established for a in the
range 0 < a < 1.

Lemma 3.3. Let p > 2 and f € H2 NW{ be such that

If ()| < Clyl*
for small values of y, where 0 < a <1 and C is a positive constant. Then the
solution u of (1.2) satisfies

lu(, )|z < Ct= 5= +o(t™%%) and

o 5420 (3.10)
o+ )2 < Cpt™ 5= + ot~ 55,
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as t — +00, where Cy 1s a constant which depends only on the solution of (2.1 )
with initial data f.

Proof. If (1.2) is multiplied by the combination u; + u; + Lugs + bu?Pt! for a
constant b to be specified presently, and the result integrated over R, there appears
after suitable integrations by parts the relation

v 1.d b d
(5 + E)EIM(‘J)@ + malu(':t)lgzﬁ + luge (-, )3

+ (2p + Dbv|uP (-, )ug (-, )13 + |ue(-, ) + ug (-, t)[2

= 1
= —/ [('ut +ug + ;uzt)upuz +(2p+ 1)bu2”u,,uth dz

o0

(3.11)

1
< Iut('at) + um(')”l% + §|uzt('at)|§

N =

(g + 2+ o+ DIl O N O, O,

where Young’s inequality has been brought to bear. First, choose b large enough
that 1 1
>(—+ = 1. .
2pbv > (41/2 + 2) + (3.12)

Then choose T such that for ¢t > T,
(2p + 1)°?[u(-, )}, < 1. (3.13)

For ¢t > T, it is then assured that

drv 1 b

% [(5 + E)lum(',t)ﬁ + mlu(-,t)lﬁﬁiﬁ] + bvuP (-, thug (-, t)|3 < 0. (3.14)
If (1.2) is multiplied by u,, and the result integrated over R, it follows that

OO

=" d
[ 20Pustzads = 2 (O + luza (-, O) + 20luaa (- )3
—00
< V|um(-,t)|§ + %lup(,’ t)uz('a t)lg (315)

Finally, multiplying (3.14) by an appropriate constant and then adding the result
and (3.15) yields the differential inequality

%(qu(-,t)lﬁ + [uza (-, )3 + Ju(, t)5p13) < —Alusa(-, )3 — BluP(, tyua( )13,
(3.16)
which is valid for ¢ > T, where A and B are suitably chosen, positive constants and
T is as above. The differential inequality (3.16) implies that

d
(4 [ OB + luaa(, OB + u(,DE2E]) < 8422+ a3

tA
— 5 lues () + 2+ @)ful DTS — tBIP(, Ous(, O], (317)
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if t > T = max(T, ?Lﬁ'—“l) By using Parseval’s theorem, the first term on the
right-hand side of (3.17) can be estimated as

¥ (2 4+ e)lus( OfF - e huea,0B) < 842 [

|yl </ 222

2(2 + o) 2/ .
< e g=——nt la(y, t)|*dy
( At ) i< y/ 225 (3.18)
< Cst~ + Ont~ 39,

y2|a(y, t)|°dy

where Lemma 3.1 has been applied in the last inequality in (3.18) under the restric-
tion 0 < & < 1 and Cy is independent of t.

Tf one defines v(z,t) = uP*1(z,t), then vy = (p + 1)uPu,. Using Parseval’s theo-
rem again, this time to estimate the second term on the right-hand side of (3.17),
it is seen that

t1+0! [(2 + a)|u(-, t)lg:ig - tB|“p(‘,t)uz(-,t)|§]
6(y, £)|2dy < Oyt~ (P1mot), (3.19)

< t1+a/
- +1)vIFa
I‘UISL%—

since
[9(- )]0 < —',—/ lu(z, t)|P Yz < —|u(-.t)|B fu(-t)|1 < Ct™ 7.
) o0 = 2 ’ - f—2 00 ) i

The use of (3.18) and (3.19) reduces (3.17) to

d _1 (23—
(= a0 + lusa, OFF + uC 03 T3]) < CptH + O™,

from which it follows immediately that for 0 < a <1,
s (D)2 + [taa (-, D3 + (-, D23 < Cpt~(e+D) 4 op=(2+ D)), (3.20)

Multiply equation (1.2) by 2u and integrate the result over R. After integrations
by parts, there appears the exact relation

d
= (1, OB + lus(, D) + 201wl 05 = O (3:21)
The use of equation (3.21) and Parseval’s formula yields

4 (4= {1uC, O + oo, DB]) = (1 + )= (o) + lua D) — 208+, B

= t*((1+ Qla(, )} - 20 /_ " la, £)[2dy) + (1 + @)t |us(-, )3
=a® / li(y, £)[2dy + (1 + @)t%fua (-, )3 (3.22)
o</ T2

l |< vi
< Cft_% + CNt_(%—a) + (1 + a)tamx('at)lg'
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Again Lemma 3.1 has been applied in the last inequality in (3.22).
By integrating (3.22) with respect to t over the interval (7, t), there appears

t
e )2 < C + Cptt/2 + / ug (-, 7)|2dr- (3.23)
T

Because of (3.20) one has t*|u,(-,t)|2 € L, (Rt). Hence (3.23) yields

Iu("t)|2 < Cft_#‘ + o(t—kif_ﬂ)’

as t — +o00. O

It will be shown in the next lemma that for a = 1, the decay of solutions of (1.2)
in the Lo-norm goes as t~1 rather than log(1 + t)t“i'. However, unlike the results
for the case 0 < o < 1, the asymptotic nature of solutions of (1.2) for o = 1 is not
the same as that of solutions of the corresponding linear equation. Indeed, suppose
u and w are solutions of (1.2) and (2.1), respectively, both corresponding to initial
data f satisfying (3.1) with o = 1. Then |u(-,t)|2 and |w(:,t)|2 both decay at the
rate t"%, but

lim ITL(',£)|2
t—:k00 |w('! t)iﬂ

£1

in general.

Lemma 3.4. Let p > 2, f € H> N W2 and suppose that (3.1) holds. Then the
solution of (1.2) with initial data f satisfies

[u(-,t)|2 < Cét‘ttf—" +o(t™%) and

o Taon (3'24)
Jue (- )l < C2~ 2% 4 ot~ )
as t — 400, where CL and C2 have the form
( Cy, fo<a<i, ”e
Cf+CN, if a=1. (8+25)

Corollary 3.5. If p > 2 and f satisfies the conditions in Lemma 3.4, then the
corresponding solution of (1.2) satisfies

(-, )]oo < Cat™ 3% + o(t— %), (3.26)
as t = 400, for a suitable constant C, of the form described in (3.25).
Proof. The inequality (3.26) follows immediately from those in (3.24) because
lu(-, )% < |u(-t)|2luz(- )|z < Call +t)~(+e), 0

Proof of Lemma 3.4. If 0 < a < 1, the advertised result is already in Lemma
3.3. Consider now the case oo = 1. Then (3.24) holds for any oy within the interval
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(0,1), say ap = L, and therefore (3.26) holds for & = ag = 3. Consequently, there
is a constant C > 0 such that the solution u of (1.2) with initial data f satisfies

u(-, oo < CL+1)7%, (3.27)
for all t > 0. The decay estimate (3.27) shows that
— 1 3
furti(y,t)| < —ﬁIU(-,t)I&IU(-,t)Il <o(+6)"% (3.28)
Hence for ¢t > v where v > 0 is fixed, one has
2?}'2 /t —yy2 — 2
: , t— p+i(y,7){d7) d
Jysyrmrorarem Uy o Gt =D mlan) d
2d todr 2
<C / _g%( / —__:5,-:)
sy A+¥)? Vo (147)3 (3.29)

<o) ([ gisg) sont

For o: = 1 and the same value of 4, it follows at once that

2wyt 2 (1o
/Msﬂexp( @) dy

1442
Sy (3.30)
<C 2 exp (= dySC’t_%.
vz Plive) !
Combining (3.3), (3.29) and (3.30) leads to the conclusion
/ la(y, )P dy < Cyt~% + Cnt~% < Cut~ 1. (3.31)
vISVF
If one chooses v = %, then (3.31) implies that
2 g tA 2 2 200 2
£? (Blux (- 8)f — Fluaa(,1)lz) <t v la(y, 1) °dy
lvi<v/ 45
(3.32)

] i2/ 7 2dy < C. t~%
St( At) Msﬁl'ﬂ(y,t)l dy < Cot™%.

Making use of (3.27) again, it is seen that
3 1 [® p+1 1 P -
[9(-s )0 < /o lu(z, )P de < mlu('at)lmlu('at)ll <Ct™+, (8.33)
—0Q

where v(z,t) = uP*1(z,t). It transpires because of Parseval’s theorem and (3.33)
that

3(p—1
£ (3lu(-, t)3515 — tBlu”(, hua (-, t)[3) < ¢ /| g (s, t)|2dy < Ct= 7.
viZ 38!

(3.34)



168 JERRY L. BONA AND LAIHAN LUO

Using (3.32) and (3.34), the differential inequality (3.17) in Lemma 3.3 may be seen
to imply that

d 3(p—1)
Et- (t3 [I’“’::('at)lg + |uzz(',t)lg + |u(,t)|§zig ) < Cat_% + Ct™ : 3 (335)
whence ,

s (-, D)3 + luza (5 1)1 + Ju(-, 1)3015 < C2t™2 + Ct 3, (3.36)

where C2 takes the form Cy + Cy.
Finally, following the line of argument leading to (3.21), (3.22) and (3.23), but
using (3.31) and (3.36), it is concluded at once that if & = 1, then

lu(,t)l3 < C+ Cat'’?,

for all ¢t and suitable constants C' and C}, where C. takes the form in (3.25). The
last inequality and (3.36) imply the estimates in (3.24), and the lemma is proved.
O

One can see from Lemma 3.4 that for p > 2 and 0 < «a < 1, the nonlinear
term decays faster than the terms related to initial data f as ¢t — +o0o0. Hence
the decay behavior of solutions of (1.2) as t — +o0 is exactly the same as that of
the corresponding linear equation which was determined already in Section 2. The
resulting state of affairs is summarized in the following theorem.

Theorem 3.6. Letp > 2, f € H2 N W} and suppose

IF ()] < Cly|*,

for small values of y, where 0 < a <1 and C is a fized constant. Then the solution
u of (1.2) corresponding to the initial date f has the properties

~~
[¥5]
w
3
g

for 1 = 0,1. In particular, if 0 < a < 1, then there exists a constant C} which
depends only on the solution of (2.1) with the same initial data, such that forl = 0,1,

[o <]
lim tetit+d /_ [6Lu(z, t))2dz = Cf. (3.38)

t—+oo
If 1f ()] = ly|*|3(y)| for some g € L1(R), then

c = %‘(’2_;%%( /_ i o(z)dz) . (3.39)

In case a =0, for | =0,1. we have

. % [s o] . 1 o0 2
Jim ¢ / lBbun P = ( /_ s fa)dz) (3.40)
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Remark 3.7. Equations (3.37) and (3.38) follow directly from the estimates in
Lemma 3.3 and Lemma 3.4. The precise values shown in (3.39) and (3.40) can
be obtained by further calculations. These will appear at the end of this section
together with the results for equation (1.2) in case p= 1.

If p = 1, the decay rate of the difference v —w in Ls-norm is the same as that
of the individual components u and w (see [2]) and the limit of u — w in the sense
of limy 40 t1|(u — w)(-,t)|2 is not equal to zero in general. But if initial data f
satisfies condition (3.1) for some positive c, then the decay rate of the difference
w—w in Lo-norm is higher than that of the individual components u and w. In other
words, it might be expected in this case that the decay behavior of solutions of (1.2)
is the same as that of solutions of the associated linear equation (2.1). Proving this
to be the case is our next task, after which we show that the conclusions of Theorem
3.6 also hold when p = 1. In case a = 1, the decay result appears already in [2], but
with a somewhat less transparent proof.

Let p = 1 in the equation (1.2) and set 4(z,t) = Lu(z +t,t). Then % satisfies the
equation

Uy + ity — Vg + Tggs — Uzet = 0. (3.41)
It follows from (2.33) in Theorem 2.3 that @ € Cy(R*; Ly (R)), so the function
U(z,t) defined by .
Ula,t) = / a(y, dy (3.42)
-0

is uniformly bounded on R x R* and satisfies
1
Us(z,t) + (Us(,1))* — vUss (2, 1) — Suae(z + 1, t)=0. (3.43)
Let U = —vlogwv so that
‘ vy — Vg = Rv = g(z,1t), (3.44)

where R(z,t) = — & ugi(z +1,t). Because U is bounded and v(z,t) = exp(—Z&:1),
it transpires that

aEs < . .
0< %1212 égav(a:,t) < ilzllg ilégv(:c,t) < o0 (3.45)
If Y = v;, a computation shows that
Y; = vYzz + 9z, (z,t) e Rx RT, (3.46a)
f(=z) 1f®
Y(z,0) = = exp(—; f(z)dz) = F(z), zeR. (3.46b)
o0

The next step is to show that if o > 0, there is a B > 0 such that
1
92 a(, )l = 5t (DR <6,

for all £ > 0, where C is independent of t. Because of the relation

N v (2, t) Y(z,t)

- = — = —y—2 4
a(z,8) = Us(e,t) = —vr 5 =~V (3.47)
and the property (3.45) of v, it suffices to establish the result

Y (, ) < C. (3.48)

The next lemma corresponds to Lemma 3.1, but for the transformed equation
(3.46a).
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Lemma 3.8. Let f € H* N W{ and suppose that |f(y)| satisfies (8.1). Then for
any fized v > 0, the solution u of (1.2) with p =1 corresponding to the initial data
[ satisfies
[ Pprdy < gprerb (3.49
lvI<y/T
for allt > vy, where Cp is independent of t and 8 = min{a, 3t

Proof. Take the Fourier transform of (3.46a) with respect to the spatial variable
z and solve the resulting ordinary differential equation to obtain

t
P (1) = (v 0F ) +iy [ 400, 7)dr = exp(-0)F(0)
1
+ 35 [ (e - ) [ ) + Py, n)]dr. (350)
0
Elementary estimates applied to (3.50) give
O 2 a2 L U t 2 )
17,7 <2 exp(-2*01F W + L ([ exp(-wa(e ~ r)azme o, mlar)
y4t t
+ 7/ exp(—2vy(t — 1))|@o(y, 7)|2dr. (3.51)
0
Note that by Corollary 2.2, if By = min{a, 1} > 0, then for large ¢,
/ exp(—2vy%t)|F(y)|*dy < Ct~(3+F0), (8.52)
ly|<v/F

By using property (3.45) of v, the relation (3.47) and Theorem 2.3, one has

|’U(‘,t)|°°
v

o~ AN —

1=/ Nl = £ and .~ 1
etz > Ljuls, i)z = GL+1) 4.

las 7. 4\
192\" ¢)]2

IN

By using equation (1.2) with p = 1, one sees that
(-, )|z < Clus(-,t)|2 < C(1+ 1) %, (3.53)
whence
o= 1 1 _
oz (y, 7)] < \/T—lezut(-,r)h < \/T_lez(-,r)lzlut(-,r)h <O+t (3.54)

The decay rate (3.54) leads one to conclude that for ¢ > «,

‘ T & todr N2
/MS\/‘I?/Z(/O' exp(—yyz(t ot T))Ivzut(y,T)ldT) dy < C(/O. m) »/I.yls\/—{z yidy
<C (\/g)a(log(t +1))? = Ct~ ¥ (log(1 + t))2. (3.55)
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Similarly, by using property (3.45) of v and (3.53), one can show

t
' [ exp(-2(t = ) |@(y, ) dry
0

7\ [ — 2
SCt(\/;) /0/Iyls\/¥|utv(y,7')| dydr

t 1
<ot / fugo(-, 7)2dr < Gt / fue - 7) 2
0 0

/Iuls\/-".’-_

(3.56)

t
<ct! / (1+7)"%dr=Ct.
0
Choosing g = fp = min{e, 1}, it follows from (3.52), (3.55) and (3.56) that

¥ (y, )2 dy < Cpt~P+H)
/IVIS\/I ’

1

for all t > v, and the lemma, is proved. a

Lemma 3.9. Let f satisfy the conditions in Lemma 3.8. Then, there are posilive
numbers B and Cp, independent of t such that the solution u of (1.2) corresponding
to initial data f satisfies

u(-, )3 < Cp(1 + 1)~ (3.57)
for allt > 0.

Proof.. Because of (3.45) and the relation (3.47), It is only necessary to show that
Y (-,t)2 < Co(1 + t)“(%"'ﬁ) for some positive number 8. jFrom (3.46a), one can
derive p .
L1 (0B + 2%l D = —2/ Y (2, )g(z, t)dz,
—o0

from which it follows that

LY (0B +YC, 0 < 1o, . (3.59)
Note that by Corollary 5.3 in [2], one has
luse(,8)l3 < C(L+1)7E. (3.59)
Let 8 = min{e, %} so that 8 < % The use of equation (1.2) and (3.59) yields
t 4P (-, ) < Ct P lugs (- 1)1 < O, (3.60)

while the relation (3.58) implies
L (E+91v (,)B) < [+ OIY (OB - v%a, D] + Ot +lg( O
<t / " [+ B) - vtyIP (3, Py + CEH (-, uae(-, )3
-
< [P0+ 08 lua( 0 (361)
i<

vt

<cttiyot,
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where (3.49) and (3.60) are used in the last inequality. It follows immediately from
(3.61) that
[V (-, )|} < Ct=E+A),

with S as above one has
— X ':t 2 ~(L
[0 = 4laC 0 = 47| 723 < O, 0 < Cot=14,

by again using (3.45) and (3.47). O

With Lemmas 3.8 and 3.9 in hand, we are ready to show that the decay rate of
solutions of (1.2) in case p = 1 and & > 0 is the same as that of solutions of the
corresponding linear equation (2.1).

Theorem 3.10. Letp=1, f € H2NW} and suppose

If )l < Clyl,

for small values of y, where 0 < a < 1 and C is a positive constant. Then the
solution u of (1.2) corresponding to the initial data f has the properties

[o 0]
sup t“+’+%/ [BLu(z,t)]%dz < oo, (3.62)
0<t<o0 —00

for 1 =0,1. In particular, if 0 < a < 1, there exist constants C} which depend only
on the solution of the linear equation (2.1) associated with (1.2) with the initial data
f, such that for 1 = 0,1,

o0
lim o+ / 04u(z, )2z = Ct. (3.63)

t—400 —o0
In particular, if |f(y)| = |y|*|g(y)| for some g € L1(R), then

Dla+i+3) o [*
ar(2v)e i \ 7

—~~
SJD
[+2]
=Y

~—

l
~r

Proof. In case a = 0, the estimate (3.62) is in [2]. Suppose 0 < a < 1. From
Lemma, 3.9, there is a number 3 > 0 and a constant Cg such that, for ¢ > 0,

|u(-, B)[2 < Cpt=3+A),

We show that 8 can be chosen to be a and that Cz depends only on the solution
of the linear equation (2.1) if0 <a < 1.

Let p = 1 in (1.2) and take the Fourier transform of the equation with respect
to the spatial variable z, then solve the resulting ordinary differential equation to
come to

—vytt —ayt, ;
1772 )f®)

ity —vy? — iy -
—5/0 1_i_y,“,exp( 1+ (t — 7))u(y, 7)dr.

a(y,t) = exp (
(3.65)
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This equation leads at once to the inequality

i <2 exp (T2 )P
7 t _uy? . ,
+‘2(1—ﬂ72)*2(/0 exp (;z =) (y,7)|dr) . (3:66)

Note that for ¢t > 2—}, we have

1T PRI 9 B —2vy®t —l2e
ex fy)|‘dy<C / y|** e < Cyt
/ms\/% Pl 1) ||s\/§|| Al
(3.67)

because of hypothesis (3.1). Note also that by using Lemma 3.9, one obtains

)—(%+ﬁ)’

Ty 1 1
7l < o=t = o) < O +¢

for 8 = min{a, 3} > 0. The use of the last inequality shows that for ¢t > 2—},

2

/Iyls\/wI_‘zﬁ‘-!:—yTP(/ot exP (%(t— ) [y, )dr) dy

2d t dr 2
sC |y|<\/_(1+yy) (/o (1+7-)-L+ﬁ)

g { C(/325) % < o), if a < 3,

C(V vi— 'y) (]‘og(l +t)) _%(log(l + t))z, if 2 %,

(3.68)

because 8 < 7. Using the estimates (3.67) and (3.68), one can conclude from (3.66)
that
Cpt=(4+e) 4 Oyt— (3420, fa<i,

3.69
C’ft‘(’f"f"‘) +Cnt~3(log(1 +1))?, ifa> N (369

/MS \/}Tm(y,m%ys{

It is easily seen from equation (3.21) that for ¢ large enough,

%t“"(lu(-,t)lﬁ + luz (-, )) = 12 (1 + @) {fuC, OB + e, 3] - vilua( D))
=t /—°° [(1+ @)(1 + %) — viy?)laly, t)|*dy

< / la(y, £)dy
i</t (3.70)

Cst~t + Ont—(h+), if o <3,
<
Cst~t + Ont~G-9(log(1 +1))?, ifa>1,
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where Parseval’s formula has been used in the second equality and (3.69) has been

used in the last inequality with vy = 1+ . It follows from (3.70) that the asymptotic
behavior of the solution of (1.2) in Ly-norm is given in the form

[u(-,t)|2 < Cpt~ 3+ 4 o(¢=(3+2))  agt— 400, f0<a<l—¢ (3.71)

where 0 < € < 1, say, and Cy depends only on the solution of (2.1) with initial data.
f. Further if @ > 1 — € with, say, € = %, then (3.71) yields

u(-, 8 < Ct~%. (3.72)

With this new estimate in hand, it follows that for ¢ > 27:1,

2

/IUIS\/:—‘I_:,‘?U:UT”’)E(/O exp(1+ 2(t_7' |U2(y,T)]dT)

2dy o odr 2
C
: Wi<y/72m (1+y2)2(/0 (1+7)5) (3.73)

< )’ <ctt,

vt — 7y

where we have used
u/a(y,'r) < wl(, ) = % 2<01+t)4.
| | < J—I()I JJ( )l

Taking account of (3.67) and (3.73), one concludes from (3.66) that

/l | |a(y, t)Pdy < Cpt~(+e) 4 Oyt 5. (3.74)
VIS

vi—vy

Then (3.70) can be estimated as
d - —(3-
£ (a8 + el 0B]) S Cpt 4O, @75)

by using the new inequality (3.74). It follows immediately that when 1—¢ < a <1,
then as t — +o0,

Cyt—(3+a) 4 o(t—(3+0)), ifl-e<a<l,
Ju(, B < { ! {8-76)

(Cy +ON)t_%, ifa=1.

Combining (3.71) and (3.76), the asymptotic behavior of the solution of (1.2) in
the Ly-norm is given in the form

t—(h+a) 4 o(g—(h+e)), ifa<l,
fu(- t)|%<{ T S O, ifa (3.77)

Cot~ %, fa=1,
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as t — +oo, where Cy and C, are constant, Cy depends only on the solution of
(2.1) with initial data f and Co depends on the norm of nonlinear term and the
initial data f.

Next, remark that the assumption p > 2 in Lemma 3.3 was not used in deriving
(3.16). It follows, therefore, that

d
gt-(luz(-,t)lﬁ + ez (o O3 + (- B)I4) < —Aluea (-, 8)5 — Blu(, tus(t)[3, (3.78)
for t > T, where A, B and T are suitably chosen, positive constants. The relation
(8.78) implies that

9 (242 [lug (D + funal, O + lu, D]

dt
<ttt sl O - luse 0 (57
+ @2+ a)lul, )lf — tBluC, tus(, ],

if t > T = max{T, 2—(2;1"—“)-} By using Parseval’s theorem, the first term on the
right-hand side of (3.79) can be estimated as follows:

tA
14+o : 2 _ . 2 1+a 215 2
e ((2 + o) us (-, t)3 5 [ugz (-, t)|3) <t /MS o v’ iy, t)|*dy

2(2+ a)

At ly|<y/ 232

<Oyt~ 4+ Ot (79,

< ghte |a(y, t)[>dy (3.60)

where (3.74) has been applied in the last inequality, and Cy is a constant which is
independent of t. To estimate the second term on the right-hand side of (3.79), let
v(z,t) = u?(z,t). Using Parseval’s theorem again, one has

e (@raful, l{—tBluC Oua, OB) S 84 [ (ol OPdy < Ot
fyl< 275

(3.81)
because

1 /OO 2 —(1
(e, oo € —= w(z, t)[Pdz < Ct~(3+%),
I(’)loo_\/z—ﬂ_ _°o|( I

Inequalities (3.80) and (3.81) permit the reduction of (3.79) to

d .
Ez(t2+a [‘ux("t)lg + |'u':na:('at)|% + |’U;(,t)|ﬂ)
< Cpt~t + On(t= o) 41739,
from which it follows immediately that
lua (-, )3 + laa (- )13 + [u( )4
Cpt=e+d) 4 Oy (=312 44~ ifa <3,
<< Cpt72+ Cnt~%logt, if o =1, (3.82)
Cpt=(+d) 4 O (¢~ G+ +1F), ifl<a<l
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Hence the asymptotic behavior of 4, in the Ly-norm is given by

Cpt=(3+a) o(t—(3+)) jfq <1,

3.83
Cot™% + ot %), ifa=1, BE)

lus (-, 813 < {

where Cy depends only on the solution of (2.1) with initial data f and C, is a
constant depending on the norm of the nonlinear term and on the initial data f.
d

Next, we compute the precise values of the constants O} appearing in Theorem
3.6 and Theorem 3.10. The results hold for all p > 1. The following Corollary will
be useful in this endeavor.

Corollary 3.11. Letp>1, f € H*NW} and suppose

If@)] < Cly)®

for small values of y, where 0 < a < 1 and C is a positive constant. Then the
solution w of (1.2) and the solution w of (2.1) corresponding to the initial data f
have the properties that for 1 = 0,1,

|05 (u — w)(-, )3

Ct—(§+ fp=23orp=2,a#00rp=1a>1,
<{ Ct=(E+)(log(1+1))?, ifp=2,a=0,orp=1,a= a8 (3.84)
Ct—(3+2a+l) ifp=1aenda<i.

Proof. Note first that from (2.2) and (3.3), @ — 7 has the representation

i t 9 .
s 2 _ Y —vyT —y i
w(y,t) — i(y,t) = e /0 T4 42 exp ( ey (t — 7))urtl(y, 7)dr. (3.85)

Note also that, by Theorem 3.6 if p > 1 and Theorem 3.10 if p = 1, one has
[u(-, )2 < Ct=G+® and |ug(-,8)2 < Ct— 3+, (3.86)
Straightforward interpolation then implies
|u(,8)|oo < Ct~ 4%, (3.87)

Hence, by using (3.85), (3.86) and (3.87), one shows that
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/ [ (y,t) - a(y, t)*dy < C v( f exp (22 (¢ - )Gy rydr) dy
W<vF ’ = gy Mo 1492 ’
t 2
<of  yay( [ tunsuc,n)ar)
lyl<v/T 0
t ¥ 2
<ctt (/ (1 )~ Chet S50, )
0
ct—#, if 14q+ L=l 5
<< Ct¥(log(1 +1))2, if L4a4 Fel) g (3.88)
Ct—(3+2e+(+a)(p-1) i 14 o4 (redel) o9
Ct-3, A ifp23;orp=2,a760;orp=1,a>%,
=4 Ct~H(log(1+1))?, ifp=2,a=0orp=1,a=4%,
Ct—i+2e ifp=1landa<i,

= Ot~ (3+etd),

where § is defined as
5_{1——01, ifp23;orp=2,a760;orp=1,a>%,
B a, ifp:l,a<%,

while in the other cases § = §(¢) is almost equal to 1 when p =2, @ =0, and is

almost equal to 1 when p =1, a = ;. That is to say, 6 is defined in such a way

that t—(5+a+6) = t~%(log(1 + t))? in the latter cases.
The differential inequality

3 1w = w) 1) + 180w = ), D]+ 10u (= ) B < S 1P (DB (3.89)

is easily derived from (1.2) and (2.1). Inequality (3.89) is equivalent to

2 ([l — ), B + 102 = w)(- O] ) < 551+ + )| — w)(- 3

1
+102(u — w)(- )] — 1+ (1|8a (u — w)(, )l — P+ (,)[3)(3-90)
and the right-hand side of (3.90) is bounded above by

(& — B)(y, t)*dy + Cat* >+ lu(:, ) Flu(-, )28

Clta+6 /
W<y 52555

< Clt_% + Czt—(%+1’—1+pa—6).

The estimate (3.88) and (3.86) have been used in the last inequality of (3.90). Note
that p — 1 + pa — § > 0 by the definition of 6. It follows immediately from (3.90)
that

thte|(w - w)(, )} < C.
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Again, direc¢ appeal to (1.2) and (2.1) leads to
d 1
-d—tllaz(u—W)(-,t)lﬁ+I33(u—w)(',t)|§]+V|35(U—W)(-,t)|§ < S[uPug (1[5, (3.91)

which is equivalent to

4 (05 g, 0 — w)(, 08 + 102w - w)(, D))

dt
< (2 + o+ 8)[10(u — w)(, ) + 182w — w)(, D]
2+a+b (3.92)

t
— 12448192 (y — w)(+, )3 + [wPug (-, t)|3.

v

By using (3.88), the first two terms on the right-hand side of (3.92) can be bounded
above by

142 0(2 + 0 + 8)[|0 (u — w)(, 1)} + 62 (u — w)(, )] = 242+ w| 8] (u — w) (-, B)|3

<Ct1+°‘+6/ 2\(4 — B)(y, t)|2dy < C1t™ 3.
e 1 Ivls ,w_z?%i"f?j y |( )(y )l y —_ 1 (3.93)

Then, using (3.86) and (3.87), the last term on the right-hand side of (3.92) can be
bounded as follows:

t2+:+6 [uPug (-, 1) < Cat®*olug (-, ) Flul-, )28 < Cat=(3+p=1+r=0)  (3.94)

Applying (3.93) and (3.94) reduces (3.92) to the simple inequality
(B 02w W) + 182w — ), D]) < CutE 4 Oyt~ hrpmraresd)
Since p — 1 + pa — & > 0, (3.95) yields 99
i3+2+016, (u — w)(, i3 < C, (3.56)

and the corollary is established. O

Corollary 3.12. Let p > 1 and suppose f to satisfy the conditions specified in
Corollary 8.11. Then the solution u of (1.2) and the solution w of (2.1) corre-
sponding to the initial data f have the properties

. 1
Jim ¢k, ) - 18w(, O
[0, if 0<a<landp=1liorp>landl<La<l (3.97)
“\CY, if a=0endp=1;ora=1andp>1, '
where CY, is a constant and [ =0,1.
Proof. From Corollary 3.11, it follows that
sup ¢3+HeH019] (u — w)(,1)[F < oo, (3.98)

0<t< o0
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where § is not equal to zero when p=1, 0 < a < 1, and when p > ,0<a<
Because of the triangle inequality,

|64 u(:, )2 — Bhw(-, )3| < 165 (u — w)(-,1)|2105(w + w)(:, t)la
< 16t (u — w)(, D010k, 2 + [Bhw(-, ). (3.99)
Note also that from Theorem 3.6 if p > 2 and Theorem 3.10 if p = 1, respectively,
one has ria(ibe
. _1§x+nwt—44—l|a;u(-,t)|2 =6 (3.100)

for some non-negative constant C. It follows from (3.99) that for [ = 0,1,

+i+a

. 1
lim 2
t— 400

8Ll )3 — 6ku(, )]

< Jim_ 50w = w)(, D (¢ 10kl ) + 1050, O]

_{0, if 0<a<landp=1lijorp>land0<a<l,
“ 10k, if a=0andp=1jora=1landp21,

by using (3.98) and (3.100), and the Corollary is proved. O

Remark 3.13. Corollary 3.12 shows that the asymptotic behavior of the solution
of (1.2) is exactly the same as that of the solution of (2.1) in case either (1.2) has
higher-order nonlinearity (p > 1) or the initial data has zero mass.

When o = 1, the Le-norm of the solution u of (1.2) and the solution w of (2.1)
both decay like t‘%, but it turns out their asymptotic states lim;—. 400 t%| - |5 are
different. In the penultimate result of Section 3, we compute the weighted limits
of 4 — w and w in Ly-norm when o = 1. The results imply that further decay of
solutions of equation (1.2) depends on the nonlinear term.

Corollary 3.14. Let f satisfy the conditions in Corollary 3.11 and suppose a = 1.
Then the difference between the solution u of (1.2) for p > 1 and the solution w of
(2.1), both with initial value f, has the property

i % . _ . 2 1 °° °° p+1 2. .
t_l}rfwt lu(-,t) — w(-,t)l3 D@ p 1) (/o /_oou dwdt) (3.101)

If f(y) = iyg(y) for some g € L1(R), then

im = ——( [ 77 e )’ 302
t']‘.}glwt Iu(’t)|2 4U(8Vﬁ')%(/oog(w)dx /0 ./—-oo p+1 Idt) (3 10)

In particular, if zf(z) € L1(R) and £ 9(z) = f(x) with zg(z) > 0 as z — 00,
one has

+1 2
3 3000, 2 = 1 /°° /-oo /oo uP (E,t) .
tl}glwt lu(-, t)|3 _—_4:/(8:!11)'1’ ( o zf(z)dz + ) 1 da:dt)
(3.103)
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Proof. Since a =1, Theorem 3.6 for p > 2 and Theorem 3.10 for p =1 show that
;) CA+H71, and  fua( )2 < C(1+1)7
for t > 0. Hence for p > 1, one has
P10 < Jul 1 Tl )3 < 01 +)7E,
In consequence, the right-hand side of (3.101) is a finite number. Note that

t vu24i oy i
|/& e~ 1h? (t_T)uPum(y,T)d'rl 5/% [wPug (-, 7)|1dT
to—e 13—

t
< c/%_ (1+7)%dr <CQ+t-92 <ope1, (3.104)

where € is a small positive number that will be determined momentarily, and the
inequality
[wPug (-, )1 < fu, T)[BSH ul ) laolus (-, 7)|2 < C(1+ 7) 72 (3.105)

has been used at the second step in (3.104).
With this information in hand, one determines that

'—'V'I'

.3 — iy

Jm o] | T e o (t = 7)) (y, )|,

3 Hbi (i)
: 2¢—1
< t—lg-nooCt L I/}— (1+ y2)? T1xa22 ¢ “z(%’")d”'l
exp (— Ui (t — 1)) (3.106)

+2 1+y

< _lg_nooCtz 6/5_. (1+42)? l [wPug(:, 7)|1dr

t
1 1
: $+2¢ Py (- < i 7H2ep2e—1 _
< t_lgp Ct /t%“ [uPug (-, 7)|1dT < t_l}moo Cta7m°¢¢ 0,

if € > 0 is chosen small enough, say 0 < € < s’ where the estimate (3.104) has been
t the firet step, while

used

ex (4 — 1
| p (= (e~ 1) | < (3.107)
(1+9?)? 1
and (3.105) have been used at the third and the last step, respectively.
One can also compute that
rd-e 2 _
im ¢ VY - P I
t_l}?oot I/ T y2 xp ( 147 2 (t 7)) wPug (y, 7)dr
’ th—e
_ 3 y vy iy, Fi(y. 1)d
t—l}gloot p+1/ 1+y exp( 1+y (¢ T))uP (:7) 7-I

g, narla
=t / (p+1)2(1+y / s (:7) T| 4

Co 20 H—a ft / val i =, 8 2
=1 R —=, T)dr| ds
m [ T (o]
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hence we have

e
] - — 1
lim t7|/ 1+y 2exp( 1+ B y(t_"'))“p“z(yy"')d"'l

t—+00
o0 a= va 12yl
= lim / s’e_ T f 5 |/ :+-"£"ul’+1(—s—,7)dr|2ds

1450 |_oo (p+ 1)2(1+ £)? vi

1 . 2 —2vs? / p+1 :
=—0 dr| d
(p+1)2/ s’e A w10, 1) 1'| s
1 2 —2us p+1 e (3108)
(p+1)2/ ds \/2_7;/ / wPt (z, 'r)dxd'r)
/ ste "ds / / uPti(z, 1) da:d'r)
21r{p+1 2n(p+ 1)2(20) ¥
= Pl dzd
BE TP / / uPT (z, 7)dx T) ,

because

e ) (3.109)

exp T 52

as t — +oo for any fixed s and 7 € [O,t%“]. The substitution s = y+/t has been
used at the third step in (3.108).

"Y_‘E,n TEL" ——
The use of (3.106) and (3.108) shows that if 8(y,t,7) = 1+y T (t—r)uz’um(y, T),

then

t_l}mooﬂl/ Re( / G(y,t,'r)d‘r)(/t;_g 0(y,t,r)d1’))dy|

th—e t ‘
< lim t%|/0 O(y,t,r)d’rlzl/t;_g 0(y,t,T)dr|2=0,

t—+00

(3.110)

where Re stands for the real part of its argument.
Apply Parseval’s Theorem to (3.85), and then use (3.106), (3.108) and (3.110)
to obtain

Jim tFlu(,0) —w(, 0 = lim ey, 1) - 00,0

t—+o00 1+y

o0 th-e t 2. 2
= 1i %/ _L_ / / _v+‘(t—7')/p'\ d
i [~ gl ([ [y )

t 2
: 1 =y == — 2
= lim t%I/(; T exp ( 5 y(t—r))ul’u,(y,r)d'z"z
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) 3
_1.12100 tf|u(-, t) - W(',t)lg
13-

[o.] ‘ vy24iy S 2
= lim t%/ (],-}-;yz)zl e— 14y (t‘-T)'u,p'U:z(yaT)dTl d?/

+ lim t%/ |/ gl T)u”uz(y ’r)d‘rlzdy
0 i, (1+y2)2 - )

5 00 t% t
+t_lj_1|§1°°t2/ 2Re((/ 9(y,t,r)d'r)(/£_ H(y,t,T)dT))dy
s ) i (3.111)
o0 FETLITY 2 ——
=t_l,iE‘°°/ 20Tk l/ us +isv/1 )UP+I(%,T)dT|2ds

(p+ 1)2(1+ £) Ct+s?
1 Do 2 ,—2vs? / p+1
= 0,7)dr| d
(p+1)2-/;mse i uP+1(0,7) 'r| S

1 o i1
4v(8ur)i(p+ 1) (/0 /_oo" * (Z:T)dfvd’r) .

If f(y) = iyg(y) for some g € L;(R), then by using the representation (3.3) for
a solution u of (1.2) and following the line of argument laid out from (3.104) to
(3.111), one obtains

. 3 . 34
Jim 0 = lim_e}aC, o)

. t e 1 H._‘t!l{t =) 2
= lim t? u‘)(y,t)——/ —— 'u,z(y,7')d7'|2
0

t—+o00 1+y?
s th-e —H (1) 9
= li v 7y
t_l}gootz fy)e” gvia / /i-‘ 1142 — uam(y,7')d7')|2

vyldiv sy

. 44 "‘ .a 1+I}2 )
= lim t% iyg(y)e _ﬁ:’“—/ L (y,'r)d'r|
0

oo 1+p)(1 Hf)/\ ? (3.112)
- th-e eT;—L:’ﬁTuP‘H( =T) 2
= lim s%e” Thd |g(—) / s dr| ds
t—+4o00 J_ o 0 (1 +p)(1+ 32/t)

00 0 .p
2 —2vs> A (O!T) e
ds|g(0) — —--————d
/;oos ¢ 3|g( ) 0 (_P+1) T|

4_____'_v(811rr) (/ g(z)dz — / / ni’+l (z, t)d dt)z,

where again we have used that e "’ T, 1 as t — 400, for any fixed s and
T € [0,857¢].

Furthermore, if zf(z) € L;(R) and £ g(z) = f(z) with zg(z) — 0 as z — o0,
then

/ : s@)is =~ [ zf(ais,
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and so (3.112) becomes

1 20 [0 yptl(g t) 2
lim ¢3 -,t2=*1/ d +/ / = drdt) .
Jim ¥ ju(, 6)1 4»(&,@!( [ ef@er | [ S Sdedt)

The Corollary is proved. O

Remark 3.15. If the initial data f satisfies |f(y)| < Cly|® for small values of
y, where a@ > 1 and C is a positive constant, then the decay of solution of (1.2)
depends only on uP*! because, by Lemma 2.1, the solution w of (2.1) decays in
Ly-norm faster than 1.

This section is concluded with another corollary which will find use in Section 4.

Corollary 3.16. Let f satisfy the conditions in Lemma 3.1. If a > 3, then the
solution u(z,t) of (1.2) for p > 1 is in Lo(R x Rt).

4. Decay in the Spatial Variable. In this section, consideration is given to
the decay of solutions of (1.1) or (1.2) in the spatial variable x. Such decay results
are interesting in their own right, and they often prove useful in the analysis of
detailed aspects of solutions (cf. [9]). Spatial decay is conveniently enunciated in
terms of weighted-norm spaces, and this point of view leads to the development of
a theory for the initial-value problem for (1.1) or (1.2) concluded in such spaces.
Some theory for equation (1.1) has already appeared, for example in [1] and in
the just-cited paper of [9]. We intend to add to these results in Section 5. In
the present section, attention is focussed on the initial-value problem for (1.2) set
in the weighted Sobolev class H* = H*(R) introduced in Section 1 of functions
f : R — R such that its 5** derivative f(*) is square-integrable with respect to the
measure (1 + z2)2dz for 0 < i < m.

Lemma 4.1. Let f be given in H2(R) and p > 1. Then corresponding to f, equation
(1.2) has a unique solution u which lies in Lo (0, T; H:(R)) for arbitrary T > 0.

The local existence and uniqueness for such solution can be obtained by following
the line of argument in [3]. To guarantee that the local solution can be continued for-
ward indefinitely in time while maintaining membership in H2(R), a priori bounds
are needed. The following lemma is useful in this regard. Its proof is the same as
that of [3] for the case p =1 and v = 0, and so is omitted.

Lemma 4.2. Let f € CF(R) where k > 2 and let a positive integer n be given.
Suppose " f(™(z) = 0 as £ — £oo for 0 < m < k. Then if the solution u of (1.2)
for p > 1 exists on the temporal interval [0,T], it has the property

8.8 u(z,t) = 0 as x — oo, (4.1)

for0<i<m,0<j<k.

Proof of Lemma 4.1. Multiply (1.2) by 2|z|u(z,t) and then integrate the result
over R x [0,]. Integration by parts, and using Lemma 4.2 to conclude the boundary
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terms vanish, leads to
t
(s )R + [ (- )[E 3 + 20 /0 o (-, T)B 17

t poo
2
=Bt Bat [ [ sen@){ut+ 5t ey~ 2vun Ydadr
0 J—~o0

t 4.2
< C(lIfllaw) +C/0 [y ) + lua(, I3 + luge(-, 7) 3] dr “2)

< Cllfllrzry, T)

(see (1.6) for the definition of the norm). Next, multiply (1.2) by 2|z|uzs(x,t) and
integrate the result over R x [0,t]. Integration by parts as above and use of the fact
that uz and u; lie in Ly(R x R*) (see Thm. 2.3) gives

t
s O + e O + 20 [ uea, B adr
t poo
:|f’|§,1+|f”|'§’,1—// {sgn(z)(2ugus +u2 ) —2|z|u s uPu, Ydrdr
0 J—o0
t
< C(”f”?'lf(R)) + C/O [luzm("T)IZ,lluz('aT)|2,1|u('7 T)'ﬁo]dT (4:3)

t 1
< C(“f”H%(R))‘*‘V/O Ium(~,f)|§,1df+0/0 lua (-, 7) 3,01, )28 dr.

By using the bound (4.2) in (4.3), there obtains

t
|um('at)|g,1 +/(; |'U,M(-,T)|g'1d7‘ < C(Ilf‘lH%(R)aT)’

for any T > 0. With a priori bounds in hand, the local H2-solution can be extended
to any time interval [0,T]. This proves the lemma. O

Continuing to argue in the same vein proves the following extension of Lemma
4.1.

Corollary 4.3. Let initial data f € HE(R) be given and suppose p > 1. Then
corresponding to f, equation (1.2) has a unique solution u € Lo (0,T;HE) for
arbitrary T > 0.

The next step in our development is to obtain combined spatial and temporal
decay results, and thereby bounds on weighted norms of solutions that are indepen-
dent of T.

Lemma 4.4. Let there be given initial data f € H3(R) and suppose p > 1. Let u
be the solution of (1.2) associated to f. Then |ugt(-t)|2,1, |Usz(:,t)l2n1 € L2(RY),
and [ug (82,1, |u(,t)l4,1 € Loo(RY).

Proof. In light of Lemma 4.1, It is only necessary to obtain bounds on spatial norms
of u(-,t) for large values of t. First note that

o]
| [ 2lolucsuPusda] < viusa(, 0,1 + Clu e ) Balul M.
—00
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Preceding as in the derivation of (4.3) except integrating over R x [T',t], and using
the last estimate gives the inequalities

t
s BB + luza(o ) + ¥ /T luze (> 7)1
1
< Olful, Dl +C /T (s PYua (e ) B lu( DRP D (44)

t
< Oy, T) + € /T (e, Yus ()R 1, ) EPVdr.

Next, multiply (1.2) by |zju®(z,t) and integrate the result over R x [T,t]. After
integration by parts and using Lemma 4.1, one has

1 t 1 v [t
Zlu(-,)l40 +3V/ u(, Tug (-, T3 1d7 = Zlu(, T)lg, + —/ u(0,7)dr

2 [+
14 3 L p+a 2 4.5
+/T /_w{sgn(w)(4u U uzt+p+4u ) — 3|z|u gy dadT. (4.5)
Because of the temporal decay results in Theorem 2.3, it is adduced that
t t
[ weniiat e < [ orsirar < e
T T

and
1 t 1
/ u(0, 7)|*dr < / u(, )| dr < / Cr3/2dr < C(T).
T T T

Lemma 4.2, Theorem 2.3 and the above estimates combine to show that all terms
on the right-hand side of (4.5) except the last one can be bounded above in a simple
way:

uP)dzdr

ll'u,( T)|4 + v /t u4(0 T)dT + l /t/w Sgn(x)(}-u4 — uwdug + -
A ’ TJ-0 4 *Tp+4

SC(Ifl%,l,T)+/;C[Iu(-,f)lﬁolu(',f)l§+|u(-,T)|’;§’2|u(-,T)I§

4.6
+ |uzt(':T)|2|u(',1‘)|§o|“(',f)|2] dr (4.6)

< CUAllrzwy T)-
By Young’s inequality, the last term in (4.5) can be bounded as follows:

t poo 14
[ [ stetvtsatandadr| < [/ [Slutc et 00t bl o
T J—o0 T 2
(4.7)
The inequalities (4.5), (4.6) and (4.7) lead to
1 v [t
ol + 3 [ madr
4 (4.8)

i
< C(llfllray,T) + /T C* )y 7)o gt (7B 1 -
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Finally, multiply (1.2) by the combination |z|(u; + %z + Zu,:) and integrate the
result over R x [T,t]. After simplification, there appears the inequality

G5+ g lusC s+ [ [mt(-,r)@,l+|ut(-,r>+uz<-,r)|%,1]dr
= (5 + 3l D + [ 320+ 3 [ sgn(@) i@, T) - k(e )] o

— 00

i [e 4]
1 4 1 5 L)
+/T [/_oo (sgn(m)[z—yut - 2_1/u” - Eu“’ - uutu,,]

1
— || [(wg + vz + ;uzt)upuz])dm] dr (4.9)

4! 1
< C(”f“n{(n),T) +/T I:Elut('a”') +uz(',"')|§,1 + §|uu(-,r)|%,1

1 1 =
+ (5 + 5,2) 80 DBVl P (DB L + Ol 713

+ e ) + |uzt(-,r)|%)]dr,

where the elementary relation

lue (-, )20 < [ue(-t)l2luat(-, Bz,
has been used to estimate the boundary term.
Multiply (4.8) by a suitable constant b then add the result, (4.4) and (4.9) to-
gether to come to the inequality

(U4 5 + el + Boaso Dl + SOt + [ [t 7t
 Uhtaa 1) + e )+ e 7) + o)
<C(I|f||H2(R>’T)+/ [0(v)|u(,r)|2<"-1>|u( s (> (410)

+bO*(vnu(-,T)lzowu(-,r)|%,1]dr-

Since |u(+,t)|o is bounded and |u(-,t)|oo — 0 as t — +o0, it is possible to choose
b large enough so that % > C(V)|u(-,t)|§5,p b, Next, choose T large enough that
2C*(v)blu(-, t)|2 < 1. With these choices of b and T, (4.10) gives the bound

t
(14 2 a0+ usa 0+ a0l + [ [molute s,

+ v|uge (- T)lg,l + '§|uzt('a T)Ig,l + | (-, 7) + ua (-, T)l%,l] dr (4.11)
< C(lIfllrzmy, T),
valid for any ¢ > T'. The lemma is thereby proved. 0

The last result in this section connects spatial decay as * — *oo to temporal
decay as t — +o00. Spatial decay can be linked to whether or not a solution u lies
in Ly(R x R*). This in turn may be related to temporal decay via Corollary 3.16.
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Lemma 4.5. Let the initial data f € H3(R) be such that |f(y)| < Cly|*, for small
values of y, where a > % and C is a positive constant. Then the solution u(z,t) of
(1.2) with p > 1 corresponding to f lies in Cp(RT; H2(R)) and u, € Lo(RY; H}(R)).

Proof. First note that because of Theorem 2.3 and Corollary 3.16, 4, 4g; and u
are in the space Ly(R x R*). In consequence, (4.2) can be rewritten as

¢
lu(, )31 + lua(-t)[5,0 + 2V/0 lug (-, 7)[3,1d7 = |f15,1 + 1 f'3.
i oo 2
+ / / sgn(x) [u2 + ——uPt? _ Quug, — 2uuuz]dmd'r
0 J-oo p+2 (4.12)
t
< “f”?H}(n) + C/o [luC, 75 + lua(, )3 + luze(, T3] dr < C(”f”gﬂ(n)),

and (4.3) can be estimated as

1
lua ()31 + luaz(- 83,0 + 2"/0 [vas (-, 73007 = |51+ |f']51
1 o0
- / / [sgn(z)(2usus + u2) — 2|T|uceuPus]dzdr
0 —00
t
sCmmmmﬂ+CAHwﬂnhﬂwhﬂh@hﬂ&wf (4.18)
1
< C‘(IIfII»Hg(m)H/0 [V|es (731 + Clus(- 713 1 |u(-, 7) 28] dr.

Using (4.12) in (4.13) shows that

i
lua ()31 + luas ()34 + V/O ltea(, 72,147 < C(If @) (4.14)

for any t > 0. Inequalities (4.12) and (4.14) give the required results, and the lemma
is proved. a

5. Decay Results for GKdV-B Equation. In [2] and [6] it was shown that
there are many similarities with regard to decay between solutions of the GKdV-
Burgers equation and solutions of the GRLW-Burgers equation. The present section
is devoted to deriving results analogous to those appearing in Section 3 and 4 for
the GKdV-Burgers equation (1.1). Because the theory closely resembles that for
(1.2), we content ourselves with a sketch that emphasizes the points of departure
from the development for (1.2).

The solution u for (1.1) has the form

um0=£;[:&m—mWﬂw@

i N Sl ey (5.1)
_m/o /; e“’“d’l(y,"'_t)u”"'l(y,r)dyd—r,
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obtained by taking the Fourier transform of (1.1) with respect to the spatial variable
x, where

bo(y, ) = exp ((Vy2 +iy - iys)r),¢31(y,T) = yexp ((Vy2 +iy — iy")r)- (5.2)

The linearized GKdV-B equation has the same property, stated in Lemma 2.1,
as the linearized GRLW-B equation. The function R(z,t) appearing in (2.19) is
replaced by R(z,t) = W2 — Lwgq(z +t,t). One may then follow the earlier line
of argument to obtain results for (1.1) corresponding to Corollary 2.2. The results
proved in [2, 6] for (1.1) can be stated as Theorem 2.3 in Section 2, but there are
two main differences. One is that there are certain restrictions on the nonlinear
term and initial data for a t-independent bound on the H'(R)-norm of a solution
of (1.1). One needs either that p < 4 or that ||f||; is not too large in case p > 4
(see [5, 17]). The other is that the solution of (1.1) has the property uzqz € Lao(RT)
instead of ugzs € Lo(RY). Similarly, after applying the Cole-Hopf transformation to
the linearized GKdV-B equation, the transformed initial data has the same decay
as (2.32).

Following the development in Section 3, it is straightforward to derive Lemma
3.1 for (1.1) by using the representation (5.1). To obtain Lemma 3.3 for (1.1),
note that the main inequality which the solution of (1.1) satisfies is obtained by
multiplying (1.1) by s + s — Lugs + bu??! and by Ugsas, and then integrating
over R x [0,¢]. With these lemmas in hand, one is ready to establish analogues of
Lemma 3.4 and Theorem 3.6 for (1.1). By using the Cole-Hopf transformation on
(1.1) with p = 1, one can obtain the results for (1.1) corresponding to those for
(1.2) in Lemma, 3.8. Note that the function g in Lemma 3.8 is in this case equal to
— =gy (z+t, t)v(z, t). Following the argument put forth in Lemma 3.9 and Theorem

2
3.10 for (1.2), one shows that the decay of solutions of (1.1) in Lp-norm has the

form ¢t~ for any 0 < a < 1. The decay of the difference between solutions of
(1.1) and the corresponding linear equation, in Lo-norm, is the same in this case as
in Corollary 3.12. There is a little difference in the proof of Corollary 3.14 for (1.1).
Because of the difference in the kernels in the integral representation of solutions,
it is useful to estimate the last two inequalities in (3.106) in the following way:

t
Ji-

t
C
—yn2_; i3V (1 — P . - R
exp ((—vy? —iy+iy®)(t—1)) |, luPus (-, 7)1dr < /ti“ —a _H_)Bd'r

1

C t
S PR SR
= (1 + th—e)3/2 /:i-= (t—7)1+7) ! (5.3)
1
—§+=¥/ L dr<oiity,
s Ct o /(1 =7)r rsC

because the analogue of (3.107) can be estimated as

C

t—1

lexp ((—vy? — iy +iy®)(t — 7)), < (5.4)

Hence if € > 0 is chosen smaller than that in (3.106) for equation (1.2) (for instance,
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0 < € < 1), one still obtains

: —— 2
t_ligloo t%| /&_¢ exp ((—vy® — iy + i)t - 'r))ul’uz(y,'r)d‘r|2

t
< lim Ct%tze'l‘ /% exp (- vy® —iy+ i)t - T))'lﬁ’u\,,(y,r)d'rll
t5-¢

t—+o00
< tim ottt [ Jexp (v — iy +it¥)(E = )y [wPua(,7)] dr (525)
— t—+00 t%—c Y y y 1 T 1

< lLim Ctit2¥-1 =y,
t—+o00
so that (3.106) is valid for solutions of equation (1.1). The other estimates follow
the line set forth in Corollary 3.14, but replacing exp ( - %%?(t -7))/1+ y? with
exp ( — (vy? +iy —iy®)(t - 7).

Lemma 4.1, Lemma 4.2 and Corollary 4.3 are the same for (1.1) as for (1.2). As
mentioned above, either p is restricted to be less than 4 for equation (1.1), or else the
initial data must be suitably small in H'-norm. A new version of Lemma 4.4 is that
|u-’ﬂft(': t)h.la |uﬂ:mz('at)|2‘l € L2(R+) and |uz(':t)12'|-‘ lﬂ'(',t)l‘t,l € LOO{R+) The
important inequality (4.9) is obtained by multiplying (1.1) by |z|(u¢ +us — %u”)
After integrating over R and simplifying the result, one has

v 1.d 1 1
ot o)l + gl t) + el Oy + Sluaa (Ol

< C1 () (Juzss (- )31 + [, DEPlu, Tua( 7)13,1)

5.6
+C(Iut('7t)|% +Ium('at)lg+I”xa:('>t)|%)' ( )

Multiply (1.1) by |z|u® and then integrate the result over R. After integration by
parts and simplifying, there obtains

1d v
7ol Ol + S, Oua (oDl

< o) ) o luaa( OB+ CUul )l + lual )3 + laa( B)[2). (57)

To make progress, another inequality is needed to control |tgzz(+,t)]2,1. Differentiate
(1.1) once and multiply the result by 2|z{uzsz. Then integrate the result over R.
After integration by parts, one comes to

d
-d_tlu"(.’ t)g,l + 2v|ugzs (" t)l%,l

o o]
= / [2|a:|'u,zu (uPuu + pup—lui) — sgn(x) (Zuz,,uxt +ul, + uim)] dz
oo

< V|“zm('at)|%,1 + CS(”)'”('at)'%ﬁluzz(’at)lg,l (5.8)
+ Cs()ul(, )2 |uz (-, )3 lua (- t)f2.1
+ C(luzz(':t)lg + luzzz('st”g + qut('vt)lg)‘
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Multiply (5.7) and (5.8) by a suitable constant b, then add the results and (5.6)
together to yield

G+ o0+ SIu 01+ blusa ]
+ gl OB+ S, s, + bolaaa O,
< CL0)tae s Ol + G DD, TYua (oI
+5[Ca(w) + G, OB (e 1) o - ), (5.9)
+ G (Bl 1) lua - O fua - D,
+ Ol 1+ fusC, O + naC O + luzea( OFF + uee( O ).

Choose b large enough that

21+G0)  amd 2> G, OV,

Then for this fixed b, choose T large enough that for ¢ > T,

1

b[Catw) + Caw)luC, OB V] ut ) < 3.

With such values of b and 7', (5.9) implies
drv 1 b
3G+ o s + IOy + bluaa(, 01, ]
1
+ Zluu("t)lg,l + b’llu("t)urz(',t)lg,l + [teza(: t)l%,l
< O (W)blu( )15 Dlue( )2 lua (-, )13, (5.10)
+ O ([t OF + a0 + [t (OB + e, OFF + fsae(- D)),
for t > T. Note that
1
luw('at)lz < |“=('at)l2|uzw("t)|2 < 5 [qu‘(':t)lg + quz(',t)lg]; (5'11)

and since |ug(+,t)|3 and |ugq(:,t)[3 lie in Li(RY), it follows that |ug (- 8)[2, is in
L1 (R*). Further, note that [u(-,t)[3, |tzz0(:,t)|3 and |tg(-, t)|2 lie in L, (R*). With
these facts in hand, an application of Gronwall’s lemma, to (5.10) gives

v 1. . b
(G + 5)ua 0080 + 1 O + blua - OB,

i1
+ [ [Gleas B+ B0l a7 + eI -

t
< Gl T)exp (C [ fua, i) < Ol lgear T,

fort >T.

If the initial data f satisfies the condition in Lemma, 4.5, then the solution u of
(1.1) is in Cy(R*; HZ(R)) N Ly(R x R*) and u, € Ly(R*; HZ(R)). The preceding
discussion of (1.1) is summarized in the following theorem.
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Theorem 5.1. Let f € H*(R) N WZ(R) and suppose p > 1 and v > 0. Further
suppose that if p > 4, the initial data f is suitably small in H'-norm. If w is
the solution of the evolution equation obtained from (1.1) by dropping the nonlinear
term but maintaining the same initial data and u is the solution of (1.1)-(1.3), then
|u(-,t)|2 and |w(-,t)|2 both decay like t=%. If p> 2, then

] i ; 1
Jim 0k, 0 = lim ok,

= —(SW); @) ( /_ : f(z)dz)z (5.13)

forl=0,1. A
Moreover, if ff°°° f(z) = 0, and the Fourier transform f of f satisfies the in-
equality .
|Fw)| < Clyl (5.14)

for small y, where 0 < a < 1 and C is a positive constant, then the solution u of
(1.1) corresponding to f has the properties

(O <CA+H)™  and  |uo(t)la SCA+H)™F,  (5.15)

fort > 0. If 0 < a < 1, there exist some non-negative constants C} which depend
only on the initial data f such that

lim ¢4 g, O = lim £ Sw(, ) =C),  (5.16)

t—+4o00

for L =0,1. In addition, if f(y) = y*3(y) for some g € Li(R), then
Jim 0 0 = lim 0w, 0
T ]+ 1 00 2 (5.17)
= ﬂ_izl(/ g(a:)da:) _
—o00

2 (2v)>tHith
Ifa=1, then
im tHu( ) — wie, ) = 1 /00/00 PHgpat)’.  (5.18
Jm ) w6 = sy ([ ) etdsd) . (1)

If f(y) = iyd(y) for some g € L1(R), then

t_léglootglu(-,t)l';’ T;w)—‘( / g(z)dz — / / :ﬂ+1(m t)d dt) (5.19)

In particular, if zf(z) € Li(R) and Lg(z) = f(z) with zg(z) — 0 as z — oo,
one has

Jim tHu(,t)[f = 3—1)?(/ a:f(a:)d:v+/ / Ll t e i dt) . (5.20)
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If feWZ(R)NHE(R), p> 1 and v > 0, then for any T > 0, equation (1.1) has
a unique solution u € Lo, (0,T; H2(R)) corresponding to the initial data f. Further-
more, the solution u has the properties that |[tsx(: )|l cym) ond |[uzea(:, t)]|cyr)
lie in Ly(R*). Specifically, if initial data f satisfies (5.14) and @ > L, then u €
Ly(R x RY) N Cy(RT; HE(R)), and u, € Lo(RT; HZ(R)).

6. Conclusion. We have studied the long-time temporal and the spatial decay
of solutions of the initial-value problem for the KdV-B equation and the RLW-B
equation (which are (1.1) and (1.2) with p = 1, respectively) as well as the same
properties of their generalized versions with p > 1. For the two ranges of nonlinearity
(p =1 and p > 1) the study is carried out in different ways. The value of p together
with the value of a specifying at what rate, if any, the Fourier transform of the
initial data vanishes at the origin are the two aspects that determine the long-time
asymptotics of solutions. Our results, combined with the earlier theory in [2] (p =1
and a = 0), provide explicit decay structures of solutions of these equations.

It has been shown that for 0 < a < 1, the Ls-norm of solutions of these equations
decays like t~1% ast — +oo if the Fourier transform of the initial data vanishes at
the origin at order a.. The decay of the difference between solutions of the nonlinear
equation and the corresponding linear equation in Ly-norm is =55 for an
appropriately defined 6. This latter result implies that when either p > 1 or a >
0, the decay behavior of solutions of (1.1) and (1.2) is the same as that of the
corresponding linear equations in that § > 0. Moreover, if the Fourier transform of
the initial data vanishes at the origin at order o > % and p > 1, the corresponding
solution lies in the space Ly (RxR*). In consequence of this fact, weighted H2-norms
(with the weight (1 + z2)%) of solutions of these equations are bounded uniformly
in t. This interaction between spatial and temporal decay seems interesting.

When a = 1 so the Fourier transform of initial data f has the form |f(y)| = Cly|
at the origin, the Ly-norm of solutions of the nonlinear equations has precisely the
asymptotic form Cnt—%. The constant Cy, which is obtained explicitly, depends
on the first moment of the initial data about origin and on the double integral of
uPt1l(z,t) over R x RT. It is also shown that the decay of the difference between
the soiution of (1.1) or (1.2) and the corresponding linear equation, in Lp-norm, has
the form Cyt~%. This result makes clear that although the Ly-norms of solutions
u of the nonlinear equations (1.1) or (1.2) and the solutions w of the corresponding
linear equations both decay like t‘%, the limits

P . 3
Jim tHu( )l and  Tm el ),

are different when o = 1.

It is thus concluded that nonlinear effects appear in the lowest order temporal
asymptotics of solutions of (1.1) and (1.2) when p =1 and, if p > 1 when o > 1.
Otherwise, the combined effect of dissipation and dispersion carry the clay at lowest
order and it is only in the higher-order aspects of the decay that nonlinearity is felt.
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