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Abstract. A model is proposed for the formation and evolution of three-dimensional
sedimentary structures such as longshore sand ridges on the continental shelf in water deeper
than that of the shoaling region. Owing to the striking similarity between the bar spacing and
the length scales in which interactions among the most energetic modes of shallow water waves
take place, we argue that these bars are formed slowly by flows in the turbulent boundary
layer generated by weakly nonlinear, dispersive waves. The model is based on the interaction
between surficial or internal, weakly nonlinear shallow water waves, having weak spanwise
spatial dependence, and the bottom topography. While such underwater structures are not the
result of a single formative agent, it is argued that the mechanism proposed in this study does
contribute significantly to their generation and evolution.

AMS classification scheme numbers: 86A0S, 76B15, 76B25

1. Introduction

The dynamics of sand ridges are not well understood. Sand ridges are underwater barlike
features of the continental shelf, composed of loose granular sediment. Hundreds of metres
long and up to a few metres high, sand ridges are usually found in groups, arranged in more
or less parallel rows separated from each other by hundreds of metres. They may be loosely
classified as either tidal ridges or longshore sand ridges. Tidal ridges are oriented more or
less parallel to the prevailing direction of the local ocean currents, whereas longshore sand
ridges are oriented normal to the direction in which the overlying water waves propagate.
In this study we propose a possible mechanism for the formation and evolution of longshore
sand ridges.

It deserves emphasis that the often-complex seabed structures appearing off many
continental coasts are likely to owe their existence to a multitude of causes. Here we
introduce a very simple, wave-generated mechanism that provides a dynamical model
of wave-bottom interaction leading to the formation of barlike structures in suitable
oceanographic environments. It is not suggested that the intentionally crude model can
account for everything we observe. The model is constructed in such a way, however, that
it can be implemented using data that is sometimes available from field studies, and without
introducing adjustable parameters.

The plan of this paper is as follows. In this introduction, a précis is provided of the
morphology of oceanic sedimentary structures; observational and laboratory research in this
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area is briefly reviewed, and various sedimentation and sandbar models are outlined. The
equations describing the evolution of the water waves are covered in section 2. Section 3
deals with the wave-driven boundary layer and with a consequent mass transport equation.
To give a qualitative idea of the behaviour of solutions to the model, we present in section 4
several numerical simulations. Section 5 reviews the preceding sections and lists open
questions worthy of future pursuit.

1.1. Morphology of oceanic sedimentary structures

Until recently, it was thought that sand ripples, such as those found in the beach zone, and
their larger cousins the sandbars and sand ridges were morphologically similar. We now
recognize a variety of different sedimentary structures, defining the categories by shape or
generating mechanism. Examples are sand ripples, ridge-runnel systems, tidal ridges, and
longshore sand ridges.

In the near-beach zone, including the breaker zone, small sand ripples occur on the
order of a few centimetres high, which come in a multitude of shapes and forms. Larger
structures, such as crescentic bars, occur as well. In this region the fluid flow is quite
complex, since there are both incident and reflected waves, tidal flow effects, and turbulence
and entrainment of air from wave breaking.

The ridge-runnel system, so common in the near-beach zones in the American Northeast
and in the Great Lakes [1], is composed of a large bump 3 to 15 metres away from the beach,
about 0.3 metres high and up to perhaps 7 to 10 metres in length, which is preceded by a
runnel. The runnel may or may not be scoured with small ripples. The system is thought
to be formed by storms eroding the beach and the dune fields and/or by tidal currents [1].
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Figure 1. Submerged ridge field from Long Island to Florida, from Swift [4].
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Davis et al [1] provide observational evidence for their claim that storms scem to play a
minor role in the evolution of these structures once they have formed.

Tidal ridges, which were noticed by Off [2], are rhythmic features oriented parallel to
the direction of tidal currents. They are 8 to 30 metres high, 7 to 60 kilometres long, and
spaced 1 to 10 kilometres apart. Allen [3] found that their height is roughly proportional
to the square root of their spacing and that they are composed of sand, silt, and mud. He
reported that they occur where tidal currents reach at least 2 to 7 km h™' and where there
is an ample supply of sediment. Tidal ridges are also prominent in the neighbourhood of
river deltas. Tidal ridges may have a fairly flat dome, suggesting to some researchers that
erosion effects play a very minor role.

Sandbars are distributed in complicated patterns on the continental shelf, and it is
sometimes difficult to discern which is a tidal ridge and which is a longshore sand ridge,
the object of attention in this study. For example, figure 1 taken from a paper by Swift
[4] shows the relative orientation of different types of ridges. Note that some bars fan out
around river deltas, while some are oriented parallel to or almost normal to the coast.

Longshore sand ridges are common features of the continental shelf in water deeper
than the surf zone, from the near-shore region to the farthest reaches of the shelf. The
better-known ridge fields are those found in the shallowest end of this range, primarily
because they are readily seen, as illustrated in figure 2, which shows the bar system off
central Harrison County, Mississippi. Other near-shore systems are found along the coasts
of the Carolinas, Florida, the northern coast of Alaska, the Black Sea, the Baltic Sea, and
even large lakes such as Lake Michigan. McBride and Moslow [5] trace the origins of
many of the sand ridge fields on the inner shelf of eastern North America to ebb and flow
delta deposition and the ensuing erosion from tidal flows.

Longshore sand ridges can also be found in the farthest reaches of the shelf hugging
every continent around the world. These are the sand ridges of interest to us. Observations
suggest that a mean slope in the neighbourhood of 0.02 to 0.05 favours the formation of
longshore sand ridges {6]. Such ridges are composed mostly of fine sand and silt, sometimes
of mud. The mean sediment particle size ranges between 0.1 and 0.5 millimetres. Groups
of up to 12 ridges have been found that are more or less parallel to each other. Some ridge
fields are observed to change position over time. Their migration rates vary from place to
place; for instance, the ridges on Sable Island Bank have been estimated to move at rates
ranging from 0.5 metres per year, in water 60 metres deep, to 5 metres per year, in 30
metre depths [7]. Ridge fields are routinely found in regions where the water depth is small
compared with the wavelength of an overlying internal wave environment with frequencies
in the infragravity range [8].

It is clear that the formation and maintenance of these sedimentary structures are
connected with the ambient hydrodynamics. One possibility is that ridges are generated
by major events such as storms, while another prospect is that they come about as a result
of systematic aspects of the surrounding fluid flows. Lau and Travis [6] found that sandbars
beyond the breaker zone do not disappear but simply change location after a severe storm.
Short, in his field observations in northern Alaska [8], found that severe storms seem
to rework the bars, but that some sandbars photographed in 1949 and 1955 were still
identifiable after approximately thirty years. Preliminary data from the so-called Super
Duck [9] experiments show this bar ‘reworking’ as a consequence of major storms. Other
evidence points in the same direction and inclines one to the view that systematic aspects of
the hydrodynamic environment play a decisive role in ridge generation. A related question
is whether wave breaking is an essential ingredient in the generative processes leading to
sand ridges. While categorical evidence does not present itself, sand ripples do form in
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Figure 2. Sand ridges in shallow
water, Harrison County, Mississippi.

a laboratory flume under the action of waves; moreover, sand ridges appear in regions
where there is no apparent breaking. Both these points will figure in the mathematical
conceptualization of the situation presented in this paper.

Several significant differences exist in the near and far ends of the continental shelf
insofar as the fluid environment is concerned. First, in the near-shore zone, strong incident
and reflected components to the wave field may be identified. Second, the effect of wind
stresses on the boundary layer flows is quite significant in the near shore. Third, while
significant asymmetry exists in the velocity field in both areas, quite pronounced asymmetry
can occur in the acceleration field in the near-shore case. Bijker et al [10] made laboratory
measurements of acceleration and velocity fields for water waves with fairly high Stokes
numbers, in the range of 12-57. They found the net transport to be in the direction of
the wave, particularly if the wave was very nonlinear. Smaller particles seemed to be
transported mostly by the Stokes flow, whereas larger particles responded in the main to
the ‘acceleration’ field. Hallermeier [11] analysed a large experimental data set and found
an empirical rule for the prediction of ripple characteristics based on the acceleration field,
which suggests that this field may be an important sand-transport mechanism in the near-
beach zone. Elgar et al [12] made measurements in the shoaling region, in water depths
in the range of 1-6 metres, over a topography with mean slope of 5%, and confirmed in
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the field the existence of the velocity and acceleration field asymmetry. They found that
the acceleration asymmetry becomes increasingly significant with decreasing water depth.
These investigations suggest that the acceleration field becomes ever more important as the
distance to the beach decreases; our model would not apply in this area, since the adopted
transport equation does not include acceleration effects.

1.2. Sediment-transport models

Much of the work on sedimentation has been aimed at understanding how the sediment
particles move, rather than how they form large-scale patterns. Most researchers working
on sediment transport assume an outer fluid flow at the edge of a boundary layer and attempt
to model sediment motion on the bed and in the boundary layer. Sleath [13] presents a
good review of the subject, and we therefore content ourselves with a cursory summary of
the various sedimentation models.

A model developed by Bagnold [14] and used by Bailard and Inman [15] assumed
that wave-induced oscillatory water motion causes sediment to move back and forth with
a net expenditure of energy. Although no net transport results in such an oscillatory flow,
the energy dissipation acts to keep the sediment in suspension. Once in suspension, any
steady current superimposed on this oscillatory flow will then cause a net transport of the
suspended sediment in the direction of the instantaneous total bottom stress. Originally a
bed-load model, Bagnold’s model has also been applied to suspended-load transport for
low Froude number flows. A threshold of motion parameter called the Shield’s parameter
is incorporated into the model to reflect the fact that a critical amount of energy must be
imparted on the bed before transport can occur. Smith [16] and Fredsce [17] applied this
model to the ocean environment. They assumed a constant eddy viscosity and obtained
criteria for the onset of instability and ripple formation. Richards [18] used instead a
turbulent scale that increases linearly in height from the bed, thus obtaining two modes of
instability that yield small- and large-scale ripples, respectively. Bagnold’s model has also
been used with some success in the near-shore zone, in a version that includes the effect
of wind on sediment transport rate [19]. However, Bailard and Inman [15] found that the
model did not perform adequately when the waves are not normally incident to the beach.

Another sedimentation model by Raudkivi [20] and by Williams and Kemp [21]
attributes the formation of ripples to a chance piling of sediment. This deformation then
causes the flow to separate, with subsequent building up of the ripple downstream. They
attribute the initial small deformation to the random action of highly turbulent velocities, or
‘bursts,” close to the bed.

Last, we mention the model in the Longuett-Higgins paper [22]. In this study he showed
how a second-order drift velocity, which was first noted by Stokes [23], develops in the
boundary layer from an outer linear oscillatory flow or in the bulk of the fluid through
the action of nonlinear waves. This drift velocity is capable of transporting sediment,
particularly suspended sediment. A number of people have studied this mechanism; of note
are Johns [24], who developed explicit expressions appropriate for the ocean environment
and studied the character of the drift velocity and its stability, and Blondeaux [25] and
Vittori and Blondeaux {26], who looked at the stability and formation for Froude numbers
at which flow separation does not occur. They determined adequate height, spacing, and
onset thresholds, by comparison with laboratory experiments. The second of these papers
introduced more structure and made a case for the inclusion of nonlinear effects in the flow
immediately outside of the boundary layer.
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1.3. Sedimentary bar models

Among the researchers who have coupled a sedimentation transport model to an oceanic
wave field to look at the process of bar formation in the oceanic environment are Holman
and Bowen [27]. They use the fully three-dimensional, linearized water wave equations
to compute the drift velocity, which in turn they couple to Bagnold’s transport model for
suspended load. In particular, they examine the edge-wave case in an effort to compute
the formation of crescentic bars in the shoaling region. Bowen [28] has also examined the
performance of this model in predicting the spacing of longshore ridges and reports good
qualitative agreement with field observations.

Laboratory and field observations indicate that standing wave patterns display a Bragg
resonance process with an underlying wavy bottom [29, 30]. In a steady-state situation, the
ripples develop a spacing that is roughly half the local average length of the water waves.
This first-order theory [29, 31-33] is applicable, in principle, to the near-shore environment,
because it relies on the scouring effect of a standing wave pattern. It has been widely studied
since it is easily implemented in the laboratory; at one or another time, various researchers
have implicated this mechanism as the general reason we observe stable sandbars in the
near-shore area.

The ridge and runnel system have been modelled with a variant of Bagnold’s transport
formula by Dean [19] and deVriend [34]. The extent of the model’s success is somewhat
difficult to discern, however. Since the undertow and the local bed slope are significant and
since the effect of the wind in generating stresses on the surface of the ocean must be taken
into account, modelling the formation of runnels is very difficult. Russell and Osorio [35]
and Bijker ef al (36] found that on a sloping beach, the mass transport velocity near the bed
was onshore before breaking and offshore after. This effect, which seems to be independent
of wave reflection from the beach, may explain why these bar systems are usually found
close to the plunge line of breakers.

Huthnance [37] developed a theory for the formation of tidal ridges based on an
instability triggered by a small protuberance on the shelf. The ensuing boundary layer
develops a bar that is fed by bedload. The resulting steady-state bar is finite in extent and
parallel to the assumed, always-present currents. Equilibrium is reached when the supply
of sand is exhausted. Huthnance noted that the tops of these ridges are flat rather than
rounded, which he claimed dismisses erosion as being the source for the generation of these
structures. Huthnance’s study does not address the periodic nature of these bars, nor does
it suggest a relation between their height and spacing.

Among the first to suggest that infragravity waves may be responsible for longshore
sand ridge formation was Suhaida [38]. He did so at a time when few people saw anything
fundamentally different about near-shore sandbars where a strong standing-wave field may
be present, and bars or ridges far from the beach where little or no standing wave pattern is to
be found. Short [8], in field measurements of sand ridges in Alaska, found a loose correlation
between the ridge spacing and the average peak infragravity component wavelength.

Lau and Travis [6] derived a drift velocity from a Stokes water-wave field for a bed
with constant slope. Their model yields the spacing and the number of ridges from the
periodicity of the drift velocity. They made use of the SRIT (slightly resonant interacting
triads) approximation developed by Lau and Barcilon [39] and Mei and Umliiata {31] for
weakly nonlinear shallow-water waves to solve approximately for the wave motion.

Boczar-Karakiewicz conducted a number of interesting field and laboratory studies
(29, 40]. In the analysis of her findings [41], she combined the hydrodynamic approximation
of Lau and Barcilon with the boundary-layer theory of Longuett-Higgins [22]. Exploiting
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the large discrepancy between the time-scales relevant to wave propagation and sediment
dynamics, these mvestigators formulated the first evolutionary model for sand ridge
formation, A variant of the original model was informally tested against field data [42]
yielding encouraging results. As a result of these field data comparisons, it became clear
that the original model had to be extended to reflect the fact that the sedimentary features
were not always oriented perpendicularly to the prevailing direction of the progressive waves
travelling overhead and that the original model was in some sense more difficult to test in
the field because, in the vast spans of the ocean, the wave field data showed significant
directional information. Parcntheiically, the prevalence of the oblique orientation of the
bars has also been documented in [5] for the inner shelf. This study presents this extension
to the original model to three dimensions. Tt also clarifies several key issues that were
not covered in the original presentation, and it shows how realistic wave spectra can be
incorporated in the form of wavepackets [43].

Referring to figure 3, we envision infragravity waves coming into the purview of the
model at the line x = 0, which is determined in relatively deep water as the location where
the waves begin to be significantly influenced by the bottom topography. The x-direction
increases as the wave travels shoreward. The spanwise direction, which is the y-coordinate
in our reference frame is approximately parallel to the line of constant phase of the incoming
waves. The waves propagate shoreward, possibly at an angle with respect to the prevailing
direction of maximum gradient of the bottom topography. 1In the deeper reaches of the
shelf, the drift velocity is produced by waves supported by the picnocline, while in the
shallower end of the ocean where the water column is more isotropic, the drift velocity is
a boundary layer manifestation of the waves on the ocean surface. The extent of the model
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Figure 3. Plan view of the problem.
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the model’s purview. Taking advantage of this assumption, we then decouple the problem:
starting with some initial bottom configuration, we obtain the hydrodynamics of the water
surface, which evolves on a time-scale ¢, say. This in turn yields the drift velocity in the
boundary layer; the resultant drift velocity is then used in a transport equation to update the
bottom topography, which is evolving on a time scale T that is considerably longer than ¢.

A few comments should be made about the general mechanism for longshore ripple
and sand ridge formation. If a standing-wave pattern exists in the surface waves, whether
it be a result of linear or nonlinear effects, the scouring effect of the waves presumably
generates ripples obeying a Bragg scattering mechanism (see [29]). This is a first-order
phenomenon whose effectiveness in influencing the shape of the bottom topography relies
on the existence of both a reflected and an incident wave. Generally, the reflected component
becomes weaker and weaker the further it travels seaward. Yet, far from the shore there
are abundant fields of large-scale bars. In this deeper region it is suggested that the Bragg
mechanism gives way to the second-order, strictly nonlinear theory presented in this study.
Thus, we envision that both mechanisms operate along the continental shelf; but in the
very near-shore reaches, the first-order theory is prevalent, while in the deeper reaches, the
second-order theory prevails.

The second-order drift velocity is not exclusively the result of progressive waves incident
on the shore. Reflected waves may also contribute. For very mild slopes and relatively large
distances from the shore, however, the reflected component is sometimes quite weak. It is
worth emphasizing that the boundary layer drift velocity, which we propose is responsible
for sediment movement, is not strictly a result of nonlinear surface waves. However, we
believe that both nonlinear and dispersive effects in the water waves influence the features
of the sedimentary topography below.

2. Hydrodynamics of the water-wave problem

We believe that striking similarities exists between the typical bar spacing and orientation
and the characteristics of the most energetic water long waves. These waves are nonlinear
and dispersive. The goal in the present section is to develop a crude but useful model for the
important aspects of the overlying hydrodynamics on the surface and in the body of the fluid.
This simple model will retain what we think is the bare minimum phenomenology required
to test our conjecture both analytically and experimentally. To make the connection clear
between the full problem and the crude model, we dedicate this section to the formulation
of the simple hydrodynamic model.

Figure 4 is an illustration of the hydrodynamic problem. The free surface is given
by z = n(r,t) and the bottom by z = —H(r, T), where the notation r — (x,y)
is used to denote the transverse coordinates. A thin boundary layer of thickness &
hugs the bottom topography. The spatial domain for the hydrodynamic problem is
Qr = R> x [-H(T) + 8, n(1)] ~ R? x [—H(T), n(®)], since § « |H|. The T is used
to remind us that the scale of time evolution of the bottom is different from that of the
fluid environment; hence, it appears here as a parameter. The fluid is subjected solely to
gravitational forcing.

The following introduces the notation to be used throughout this study. The velocity
field is given by (u, w), where the first entry is the transverse velocity (u, v) and w is
the vertical velocity. Position is represented by the vector (r,z). The standard three-
component gradient operator is split explicitly into its transverse and vertical coordinates,
so that V3 = V + 73,. The same convention is followed for the Laplacian operator Aj.
Incompressibility and irrotationality are assumed to hold in the bulk of the fluid, and its
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Figure 4. Side view, surface wave problem.

viscosity is assumed negligible in Qr. The bottom is taken to be impermeable. This
condition, which together with no-slip conditions for the fluid/bottom interface, leads to

¢, =—VH-V¢ atz=—H 0y

where
(u, w) = V3¢. 2

Because of the continuity equation, the velocity potential @ is harmonic in the flow domain.
Al the air—water interface, conservation of momentum requires the pressure to be
continuous. The assumed constant value of the pressure immediately above the water
is set to zero. Hence, the pressure at the interface when the surface is quiescent is zero.
Furthermore, a kinematic condition on the interface leads to ¢, = p, + V¢ -Vnpatz=n.

The two-fluid internal wave problem is illustrated in figure 5. The domain is described
by Q; &~ R* x [-H, n] and €, = R? x [n, D]. The lower layer (1) has a uniform density
P1, and the upper layer (2) a density p < p;. The velocity field is now given in each
layer by (u, w);, where the subscript refers to layer 1 or 2. The interface between the two
fluids is given by z = n(r, t) and the bottom by z = —H(r, T). The transverse variable
r = (x,y), where x increases shoreward and y is the spanwise coordinate. The fluid is
assumed incompressible and irrotational in each layer. In terms of a scalar potential, the
velocity is given by (w, w); = Vag;. From conservation of mass, the equations of motion
within the fluid are As¢; = 0, in 2. At the interface, the pressure is continuous; hence the
dynamical boundary condition is b = —% |V3ghi | — gpin, at z = 1.

The bottom, which is assumed impermeable, has a normal velocity that agrees with that
of the fluid. Thus ¢, = —VH - V¢, at z = —H. The kinematic condition on the interface
is ﬂffi)- =0,0r¢;, =n+Ve, *Vn at z = 1. Finally, we make the simplifying ‘rigid-lid’
assumption

$2.=0 atz=2D 3

the constant air—water interface,
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Figure 5. Side view, internal wave problem.

2.1. Hamiltonian formulation of the hydrodynamic problem

In this subsection, a useful Hamiltonian formulation of the hydrodynamic problem is
presented. This aspect relies heavily on ideas developed by Zakharov and Shabhat [44],
Miles [45], Bowman [46], and especially Benjamin [47] and Benjamin and Olver [48].

To begin, we note that the motion of the entire fluid body can be determined once the
free surface motion is known. Specifically, if the function n that describes the free surface,
and the velocity potential at the free surface, ® = é(r,z = n,1t), are known, then Q7 is
determined by 1 and ¢ is determined by the condition ¢ = @ at the free surface, together
with the boundary condition at the bottom, the fact that ¢ is harmonic in Qr, and the
asymptotic condition |V3¢| — 0 as |r| — oo.

Consider the Hamiltonian E = E(n, ®). The choice of the label E reflects the fact that
the Hamiltonian for this problem is conserved and is numerically equal to the sum of the
potential energy V and the the kinetic energy K. As shown by Benjamin and Olver [48],
the evolution of the free surface is given by the Hamiltonian system

SE 8FE

M 5D t an )

where E is the Hamiltonian.

We specialize equation (4) for the case of weakly nonlinear shallow-water waves. Define
the parameters @ « 1 and B < 1, where « is characteristic of the size of the nonlinearities
and B? characteristic of the degree of dispersiveness of the surface waves. In terms of
physically relevant parameters, @ = a/ho and B = hg/A, where a is the typical wave
height, h¢ is the characteristic of the fluid column size, and A is the typical length of the
water waves. Further, it is assumed that O(a) ~ O(ﬂz). The Stokes number S, which is a
measure of the balance between nonlinear to dispersive effects, is defined as the ratio o /B2.
For § < 1, nonlinear effects are weak, and only a small portion of energy transfer occurs
on moderate space~time scales, so that O(1) nonlinear effects are possible only after very
large scales. For S ~ 1, inertial effects are of the same order as dispersive effects. In view
of this fact, we take n = O(e), ® = O(w), and the differentiations 3., 3,,V=0(8). We
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note that the Boussinesq system that we are developing is not formally valid for very long
evolution distances and is strictly valid for § = O(1), but is quite robust [49]. In this study,
the value of S is in the range of 10 to 30, hence the inconsistent appearance of the B? term
at lowest order. We defer the description of the bottom topography to a later stage, but for
now assume that H = O(1), VH = O(a),

An approximation to ¢, which satisfies the boundary value problem, is

$(r,z,1) = O(r, 1) — 32°V?O(r, 1) =2V - (HV (7, 1))
O()  O(ap?) O(aB?)

which can be easily derived by using Rayleigh’s trick [50]. The gradient of the above
expression

Ur,z,t) = u(r, 1) — 2VIV - (Hu(r, )] + 32°V(V - u(r, 1))} 5)

gives the velocity anywhere in the inviscid domain of the fluid.
The potential energy is exactly

14 =/ &r 3gn*. (6)
R?
The kinetic energy is calculated by using the approximation developed above for the velocity
potential, equation (5):

K= f &r{3(H +n)(V®)* + ;H(VH - Vo)’ — LH}(V2e)?} N
R?
which is an expression of O(a®2) and O(a?B%).
Thus, in terms of the velocity at the surface u = V® and the displacement, the energy

is E=V +Ko+aK;+--, and V is as before. Substituting E in equation (4), to lowest
order, yields the wave equation. To the next order,

ne+V - [(H+mu]+ V- [uV(H?) - VH+ {V(HV-u)] =0 ®)
w+(u-Viu+gVn=0 &)

a version of a Boussinesq system [51]. The Boussinesq system (BSS) is a shallow-water,
long-wavelength, weakly nonlinear approximation to the Euler equation which admits
bi-directional waves as solutions. The version given by (8) and (9), however, has a
couple of troublesome characteristics from the standpoint of modelling a physical situation.
Specifically, the system is linearly unstable and rather poor at conveying accurately the full
dispersion relation [52]. The instability can be shown by the substitution of plane wave
solutions into the linearized version of (8) and (9), and the degree to which the equation’s
dispersion relation differs appreciably from the full-water wave dispersion is most apparent
for the higher wavenuinbers. By making changes in the dispersive term (i.e. regularizing),
it is possible to overcome the instability problem and improve the agreement between the
full dispersion relation and the long-wave limit.

The BSS is regularized by exploiting the specific form of the bottom topography. Using
the wave equation obtained for lowest order, and the fact that VH = O(x), we approximate

V. [uV(H?)  VH + IVEHV -w)] = =}V - [V(H* )]+ 0@).  (10)

Thus, the regularized system (RB) aaopted in this study, as an approximate model for the
water waves, is

n+ V- [(H+nu] - 3V - [V(H* )] =0 (11)
u, + (u-Viu+gvn=0. (12)
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Since the velocity is in terms of the surface values, rather than in terms of averaged-depth
velocity, say, the irrotational condition, with u and v being, respectively, the shoreward and
spanwise velocily components, remains in the simple form

Uy = v, (13)

which is quite convenient in the development of three-dimensional problems. We could
use RB as the working model for the hydrodynamics. However, there are good reasons to
simplify the problem further: (i) RB is an initial value problem, requiring that both n and
u be known at some time #,. This is obviously problematic in an ocean setting; (ii) rRB
(or any of its variants for that matter) is not thoroughly understood from a mathematical
standpoint; and (iii) a far simpler description of the water wave problem, which is to be
presented below, could still be adequate o test the conjecture.
Using the convention in what follows (hat new <« scale x old, we adopt the scaling

gh H
te——gt ue—@u n<—2 h < — r e = (14)
A J&a a ho A

where hq is a characteristic depth of the water column.

In addition, the spanwise dependence is scaled to reflect the fact that waves are
propagating primarily in the shoreward direction. To do so, we assume that there is a
constant £ < 1 such that

O(% - K|) =& x O(5 - K) (15)

for which a consistent uniform expansion of the RB exists and that is physically relevant, If
nonlinear, dispersive, and weak Yy variation effects are to balance, the size of the constant
must be of the order of @!/2. Proceeding,

y <&y you<&jy-u (16)
which will alter the regularized system but will not affect the irrotational condition,
equation (13). This scaling is known as the ‘parabolic approximation’ [53].

For the internal wave problem, with conjugate variables nand U = p,V¢, — p, Vg,

the Hamiltonian system that yields the description of the dynamics of the internal waves
takes the form

SE SE
m=-V. (W) U, = ‘V(E> (17)

where the Hamiltonian E is numerically equal to the sum of the potential and the kinetic
energy for this problem.
The potential energy is simply

V= / d’r 3e(o1 — o). (18)
RZ
The total kinetic energy is the sum of contributions from both layers; thus
n D
K=n [ar [ Vi de + oo [ dr [ 419,z = Ky 4 K. (19)
R? —H R? -1

Define the parameters o < 1, and B < 1. Assume that O(«) ~ O(B?), and take H = o(1),
VH =0(a), n = O(), ® = O(w). Further, consider the differentiations a,, 8,, V = O(A).

Referring to equation (7), we calculate the kinetic energy in the lower layer using an
approximation for the velocity potential,
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17,2, 0) = O (1, 1) = 322V2D (1, 1) — 2V - (HY D (r, 1))
O@)  O(p?) O(ap?)

so that

K| =p, / dr{3(H + nve)? + 1H(VH . V&) - gfﬂ(vzcbl)z} (20)
R)
which is an expression of O(a??) and O(x?8%).
The boundary condition given by (3) can be exploited to find K as a surface integral.

Using Green’s theorem and assuming that the gradients of the potential tend to zero as
7| = o0, we have

K, = —,02/ d’rvo,vo,. 1)
R?
Define the pseudo-differential operator G = —k coth(HkD). Its precise structure is

a result of satisfying the boundary conditions on the interface and on the ocean surface.
Adding the expressions for K; and K, using the definition of U, and the operator G, we
obtain as the total kinetic energy
1 H? H
K = %/ dzr[—(H+n)U2+ f2U-GU+ ”2—2
4 P P

(VH - U)Z} +0('8%) (22)
RZ
or rearranging

1 H? H? H
K = %f dzrl—[(H + n)—T’(’%]U2 +—2U. MU +2 vy . U)2]+O(a3ﬂ2)
A P1 piD Pj Py
(23)

where M = é +G = % — k coth(HkD).
Depending on the size of D/A, there are three physically distinct possibilities:

e IfD/A K1, then U -MU = O(*D/A?), and M ~ 1/D — 1DV2. For this case, the
terms nU - U and U - MU balance if «2D/A2 ~ 1. A Boussinesq system is obtained.

e If D/A~ 1, then U - MU = O(a?/)). For this case, if @A?2/D ~ 1, the result is the
intermediate long-wave equation. -

e If D/A>» 1,thenU - MU = O(@?/A), and M =~ [k|. If @d ~ 1, the outcome is the
Benjamin-Ono equation.

Note that this last case corresponds to a very deep upper layer, lying over a thinner lower
layer, and hence is not considered relevant in this study. In the ocean setting the density
stratification is most appropriately described by a continuous function with respect to depth.
However, if a two-fluid approximation is adequate, the case relevant to the problem at hand
among those presented above is the first one.

By substituting the expressions for the potential and kinetic energy, equations (18) and
(23), into (17), the general equation for the dynamics of the internal wave field is obtained:

1 H*p, 02 2 2
me==V | —(H+n—-—=U~=5V AHVH)U + H*MU)
o1 mD P

(24)

1
U =-V. {—2U-U+(m —pz)gn}-
2p;
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The result from linear theory may be recovered by neglecting second- and higher-order
terms in (24). The solutions proportional to exp{i(kx — wt)) satisfy

1 2 H HM
wn = (__p_;_ L2 > )kHU
P1 P D P (25)
wU = k(o — p2)gn.
Thus,
2_ @ glpr—p) P2
=== ————'[l — —Hk coth(kD)} . (26)
k i g1
The relevant case in this study is the first one:
1
n=-v. {—(H + n)U] - "_iv {H(VH)U + 1H*DVV . U}
14 P @7)

1
U=-V. {—2U-U+(p1 —pz)gn]-
2p5

Equation (24) is linearly unstable [55]. To circumvent this problem, we carry out the
ad hoc procedure that ‘regularizes’ the equation. The lowest-order relations

1
m=-v. {EHU U = —V{(o1 - p2)gn) 28)

are used to modify the troublesome parts of the dispersive terms to obtain the regularized
model for the hydrodynamics relevant in this study, namely,

1 D
no=—V- [p—<H+ n)U] + 3—”§v - [V(Hn,)]
) " 29
U = —V[—ZU U+ (01 — p2)gn ] ;
207

Lety = LL"—"IM be the Boussinesq parameter, and let the typical thickness of the lower
layer be hy. The scaling adopted here is

te—ghot UemU '7‘-2
X pi/za a
(30)
h « ul d « D re L
ho ho A

where the convention new <« scale x old is being used. Equation (29) is, in scaled variables,

1 P2
V.l—(h Ut —dB*-=V.[V(hn)] =0
n+ {pn( +an) } B 3o [V(hn)] 31)
U;+V{%U-U+yn}=0.

Additionally, the spanwise variables are scaled to reflect the weak spanwise dependence of
the waves.
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2.2. Description of the bottom topography and the wavepacket description of the water
waves

Laboratory data [29] suggests that there are several time-scales in this problem: a fast
time-scale ¢, and slower time-scale T = O(wt), which measure the evolution of the fluid
quantities. There is yet another slow time-scale T = O(«'t), where o’ = = O(@) and is
assumed to be fixed by the minimal time-scale T > ¢ in which appreciable changes occur
in the forcing of the infragravity waves at x = 0. This slow time-scale is characteristic of the
evolution of the bottom topography. For the sake of simplicity and clarity of presentation,
we shall set &’ = & here. Some brief comments on this important issue of time-scales will
be made in the last section of this paper.

In addition, the data suggests that the typical height and slopes of. the longshore
sand ridges are such that ¢ = O(V"h) = O(a). Such a restriction is consistent with
the approximations made in the RB. Furthermore, the type of longshore sand ridge under
consideration is such that the measure of longshore spatial variation is larger than the spatial
variations of the fluid quantities. It is suggested that the sand ridge shoreward variation be
X = ax. Hence, two scales of shoreward variation exist, so that

9y = 3y +ady (32)

9, —> 9, +ad,. (33)
Thus, in scaled variables the bottom, is

h(X,y, TY=14+¢f(X,y, T) (34)

where the function f = O(1).

Let us consider the surface wave problem in detail. By substituting an expansion of the
form

n=fotod i+l frt--
u=go+a'gi+alg+-- (35)

into equations (11)—(13), and matching order by order, it is possible to solve for the surface
quantities to lowest orders in . Our interest here is limited to the lowest-order theory. We
refer the interested reader to [56] for the details of the higher-order theory.

At the first two orders we obtain the relations, with G(X,y, T) = ﬂa-"ﬁ

o Lng =0
, . (36)
o' Lm = Gi(no, uo, v, G; x, X, y,1)
where
L= By — Ox 3[3 Oxxss 37
and L is a linear operator that shows up at every order. The inhomogeneous term Gy is
Gi = (1+ 281 /30y + G(L+ 282311 /3)oxe + 2(1 + B2841/3)n0xx
+H(ug/2x ~ (ono)xs — (1 = 28232x /3o (38)
We assume that the shoreward velocity is

2
ulx, X, v, 1) = Z[a](x’ y) + O(a)]ei(ij—w,l) +cc
j=1

2
+ 15X, y) + O(@)e k= 4 cc (39)

j=1

RGN 1,
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where CC stands for the complex conjugate of the expression immediately preceding
its appearance. The a’s and b’s are the complex incident and reflected wavepackets,
respectively. These wavepackets are centred at k; and have support Akj < k;. The reality
of the physical variables implies that a—j =aj and b_; = b;. The spanwise velocity at the
surface must then be
2 .

v, X,y 0= “ki[aj.r(X, ») + O(a)Je!® =9 4 cc

j=t N

2 .
1 .
22— 15X, ) + @) 4 (40)
j=t 1
in order to satisfy (13). Since, to lowest order, ug, + no, = 0, an expression for the
surface amplitude is readily available: the replacement of the lowest-order velocity into the
momentum equation yields
2
M= Y Zla(X, y) + 0@ &0 4 cc
= ki

2
+ 3 26 (X, ) + O@)leitbom 4 cc. “1)
j=1 %

The appropriateness of making use of a small number of packets comes from field data.
Figure 6 suggests that most of the energy in the waves is found in the first few packets
[57]. The figure also shows the shifting of energy from lower frequencies to higher ones
as the wave travels shoreward over a decreasing water column depth.

The ansatz in (39) implies that nor = 0 is satisfied. The conditions required for the
omission of such a term as well as its implications are the subject of a concurrent study
[58]. This form of the solution is extremely convenient because it turns the initial value
problem into a boundary value problem.

(@ ¢

=%

700r

Figure 6. Energy for shallow water waves in
the Southern Baltic Sea: ( Yho = 6.0m,
= ~—ho = 2.0m. From Druet ef al [57].
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A solution of the form given by (39)—(41) is valid provided that the following relation
holds between the frequency and the wavenumber:
k2
2 J
w; —————=0 (42)
J 1 522
1+ 38%;
which gives the dispersion relation for the jth carrier, the positive root k; corresponding to
the shoreward-directed wave, and the negative to the seaward wave.

The solution must also satisfy a compatibility condition. Since the dispersion relation
for gravity water waves is such that o'(x) > 0 and w”(x) < 0, perfect resonance is not
possible. At most we expect what we refer to as ‘slight resonance.” With k, = 2k) — 4,
w; = 2w, where the detuning parameter § < 0, the compatibility condition is

_jk_l Xo+2m/jk

e MY (G + G dx =0 where j=1,2 (43)
2 X

starred quantities are conjugated.

Application of the compatibility condition to the lowest-order terms in (38) yields, after
some algebra, the evolution equations for the packet centres in (39) and (41):

ax +ief D Eja; — ik Flal)-). + idD]S]C_iaxa;Cb =0
ay + ief DyEyay — i€ anz'\»_‘- + iozD2S2e+i5Xa12 =0

. . . : (44)
b|x = lEfD]Elbl + l!;'F]bl” = 101D|S|e+' xb:bz =0
by — ief DyEaby + i€ Fabyyy — i Dy Se™ b2 = 0
having substituted back X = ax. The constants are
. 1
D; = [2(1 - 38%¢})] E; = k(1 - ) Fj = =~
2k; @5)
ky — k K+ 2w?
S = S ky —k; + w ﬂ-i-ﬂ 52=2———(I a),)_
wi ki k o)

Equation (44), along with appropriate boundary conditions, determines in an
approximate way the ocean surface. The incident and reflected waves are decoupled owing
to the assumptions and restrictions on the spatial variation of the bottom topography. If
the spatial scales of variation in the bottom topography in the shoreward direction are of
the same order as those of the surface waves, then scattering plays an important role in the
encrgetics of these surface waves; hence the reflected component must be included even if

the backwash is negligible. If, on the other hand, the longshore sand ridges being considered
were

h(x,X,y, T)=1+¢ef(x,X,y,T) (46)
the resulting surface equations, to lowest order, would be

aix —ief D1Eyyian + ief D\Eypuy by — i€ Fiayy +ia Dy Sie " aja, = 0
ag; — i6f Dy Egyaay + ief Dy Eapiy bre™ — i& Faayy, + ie D2 Se™*a} = 0
bix + icf D1Exyiby — ief DyEyufay + i€ Fibyyy — ia Dy S1et ¥ biby = 0
by + ief Dy Eaby — ief Dy Ese ™% uf ay + i€ Fybyyy — i Dy Sre ™% b% = 0

47
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to O(8/X), with

jkl 2n/jki ) :
vi=5- ' (fax +2ik; fx — kj f)dx
jkl 21/ jki B
ur = (fox 4 2ikj fr — k7 f)e™2h% dx (48)
J 2 Jo J
+ Jjki el : 2 +2ijkix
2% =?7; (fxx+21kjfx_kjf)e dx .

The most striking differences between the way (44) and (47) describe the surface are that,
in the latter case, the terms involving the bottom topography, which attenuate and modulate
the waves as they propagate, involve the bottom topography, its slope, and its curvature; and
the energy in the reflected wave does not depend exclusively on the boundary conditions.

The same procedure applied to the internal wave problem yields the same system of
equations as in (44) and (47), but the constants are defined as

2,2 9 2.2
Bl 2p:8%w] 1
Dj=1/2(1—d b f) E,-=k,~(y—d—ms—f> F=-—
P 3m 2kj
ko —k 2 €2
S = 2 L kz—k1+9l(ﬂ+g) S2=—k12+2wf'
) y ki k w2
The dispersion relation for the internal wavepackets is
k2
@} — ————= =0. (50)
y + dﬂZPLL

3
For three-wavepacket weak resonance, the relation among the frequency and
wavenumbers w; = jwi, k2 = 2k; — 4, and k3 = 3k; — A is given by the dispersion
relation. The procedure is the same as for the two-wave group case and yields

aiyx +ief D1Evay —i& Frayyy + i Dy Sznc_i“a;az + iaDngzleiA"agag =0
Aoy + iEszEgaz - IE anz)-)- + i(!DzSzC—Haxalz + iaD2S312eiAxa;'a3 =0 (51)
as; + ief D3 Esas — ik Faazyy + iozD3S3e_iA"a1a2 =0

to O(8/X). The constants are, with subscripts 1,2 or 3,

dpfw? 2dp 2w’
D-=121—-—-’—) E-=k-( ———")
! /( 3p) =S 3p1
1 k2 + Ky 3w w1 wn
Fj=— Si=——— b+l + —| —+— 52
i 2% 3 o~ {2+ 1+ 5 ~\k1+k2)] (52)
2 ki —k; lw (wi ;)
Sy = —k? + 2w? Sin=—dki—kj+——+-)t.
z w7 l+ @i ijt lw, ' d i Y k,' + kj

We will concentrate on the two-wavepacket case in this study.

3. The mass transport problem

The drift velocity is the second-order steady-state flow that is created by the passage
of overlying water waves in the sediment-laden boundary layer that hugs the bottom
topography. The boundary layer is assumed to have a characteristic thickness 8,; < ho. The
sediment in the boundary layer is assumed, without loss of generality, to move from place
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to place at a rate equal to the drift velocity. To compute the drift velocity, we must find
the fluid velocity immediately outside of the sediment-laden boundary layer. This can be
determined for both the internal and surficial wave case simultaneously: in what follows,
y = =2 for the internal wave problem and y = 1 for the surface wave case. From
equation (5) in scaled variables, the shoreward velocity is explicitly
Up=yx-U(r,—h,t)

= yu(r, t)_yﬂz{_h[(huxx(r’ I))+§(hvx).(r, t))]‘}‘%hz(uxx(ru t)+€l)x)-(7', t))} (53)
and the spanwise velocity
Vo=yy-U(r, —h,t)

= yu(r, t)_yﬂ2{_h[(huxy(7', t))+§(hvyy(7'r ’))]+%h2(MX)'(T, t)+§v,-).('r, N} (54)
in the neighbourhood of the boundary layer. If we neglect the reflected component, the
bottom velocities are, to lowest order

Uob = yuo + 3¥B*h toxs
2
=Y Cjg;j(X, y)e'®*9" 4 cc

j=1
(55)
Vo = yvo + 3¥B (%) yuox + SyB*h uoxy

2
. 1 ) .
= =i} = [Ciapy (X, y) + 5iyBk; (W, ] 4 " + cc
j=1"
where C; = y(1 — %'szjzhz).

3.1. Hydrodynamics of the boundary layer

In the boundary layer the transverse momentum, vertical momentum, and the continuity
equations are, respectively,

1
u +u-Vu+wu, = —;Vp+vAu+vuzz

. s - - (56)
w,+u-Vw+wwz-——;pz+g+vAw+ku

Veu4+w,=0

where v is the assumed isotropic eddy viscosity. Across the boundary layer the flow
velocity changes from zero at the bottom boundary to some finite value characteristic of the
exterior inviscid fluid. The derivatives with respect to z of any flow quantity are thus, in
general, much greater than those with respect to x or y. Hence, within the boundary layer,
|Vu| < |u4,], |V2u| < |ug|, etc. We conclude that the transverse momentum in (56) is
well approximated by

1
u,+u-Vu+u')uz=—;Vp+vuu. D
The velocity w must also be small. The continuity statement in (56) suggests that the
boundary layer and w are of equal order of smallness. Therefore, none of the terms on the
left-hand side of (57) can be neglected. If \/ghy is representative of the magnitude of the
velocity w and A represents a distance in the transverse direction over which u changes
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appreciably, then (/gho)?/A = O(u-Vu). Since &, is the boundary layer thickness,
vy/gho/8% is a measure of vu,,. Thus,

Vghoh
-

The dimensionless constant R is the Reynolds number. We assume that the boundary tayer

does not change significantly as a function of wave frequency. Thus, A can be replaced by

ho in R, so that R = \/ghoho/v. We arrive, then, at a working definition for the boundary
layer thickness:

S = v/ ho(gho)'/? (59)

which is non-dimensionalized by dividing by h¢. In this scaling, it is implied that the size of
the Reynolds number and the boundary layer thickness are controlled mostly by the viscous
effects (i.e. the size of v).

To estimate the size of w, we conclude from the continuity condition in (56) that

W = O(By/ghoR™'?). (60)

With equation (60) in hand, we can infer from the vertical momentum balance that
Pz = O(8y); that is, the pressure is approximately constant throughout the layer.

For high Reynolds number flow, with 8yn = z 4+ h, where 7 = R'/?z and w = R'?w,
the equations for the boundary layer are

O@ZR/AY) =1 whereR = (58)

Bu, + afluu, + ovu,l + cwu, = -gpx + Uun

Bu, + afuvy + avyy] + qwv, = —gp). + Vpn (61

Pn = O@8p1) Bux +avy) +w, =0
having invoked the scaling that reflects weak y dependence of the flow as well. A locally

flat bed has been assumed. In contrast, suppose that the bed had some finite curvature K,
say. This would change the vertical momentum balance in (61) to

pn = KO(u?) (62)
but the pressure change across the layer is still of O(8p), so we are justified in the assumption
that the bed is locally flat.

The following boundary data is used to solve (61):
u=v=w=0 at n=0 (63)
and

u— U, v— V, n— 0o. (64)

The velocity (Up, Vp) immediately outside of the layer gives rise to the following pressure
gradients:

—pr = BUp + af(UpUpx + aVpUpy)
o

8 (65)

== BVp +aB(UpVpy +aVp V).

We thus have all the required information to solve for the velocities in the boundary layer.
Performing the usual expansion

u=ﬁo+ou§1---
D= Bk s (66)
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we obtain as the lowest-order equations

Bito, — tons = BUok BUor — Vonn = B Vo

- - (67)
pon =0 Bliox + wo, = 0.
A solution of (67) of the form
2
i =) o' Px, y, me 0 4 o (68)

j=1

subject to the boundary conditions given by (63) and (64), is found by integrating (67). The
same procedure is used to obtain §. The result is

2
ﬁo - Z Cjaj(l _ e—nAj)ei(ij—w/I) +cc
j=1
2 .
do = i) ki(B7(h?),a;/2 ~ Ciajs/KF)(1 — ™™™ )el x4 cc 69)

wo =18 ijc_,'aj(l - nAj - e_"A/)/Ajei(k/"'_“’.l') + cc
j=1

where A; = (1 —1i),/Bw;/2. The vertical velocity @ is found by integrating the continuity
equation.

With the expressions for the velocity in the boundary layer, we proceed to obtain the
drift velocity, the source of net movement of the suspended sedimentary particles. The drift
velocity is the time average displacement rate of a fluid particle. Define the time average
of the quantity A as

W 2 jw 1 1+t
(A) = —/ A(s)ds = —f A(s)ds. 70)
2r J, T J;

The drift velocity [22], is obtained to lowest order by substituting the expressions in (70)

mn
U = (u) +</ uodfu0x>+<f wodf"ug,,>
V= (Ul) +<‘/.ru()di'v()x>+<\[r wgdfvu,,>.

3.2. The mass transport equation

(71)

Since the mean slopes in the regions of principal interest here are very low, down-slope
gravitational transport, which is important in the coastal environment, plays a negligible role
in the formation of sand ridges. We assume that sediment movement in regions sufficiently
removed from the shoaling region is accomplished primarily by suspension. Hence, we
adopt results from the Longuett-Higgins theory to characterize the effect of the water waves
on the fluid motion in the boundary layer. Furthermore, since the ratio of bar height to
separation is significantly below the critical value of 0.1 (which has been identified by
Sleath [13] as the value over which flow in the boundary layer separates behind the crests
of the bars and vortex formation takes place), the flow in the boundary layer is adequately
characterized by the lowest-order dynamical quantities. In what follows, the fluid wave
field is assumed to be entirely represented by the incident wave. Further, we assume that
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the viscous boundary layer is sediment-laden, composed of cohesionless, rarely interacting
sand particles.

The sediment concentration p in coastal environments has a very weak influence on
the fluid flow [59]. Typical values for the concentration are p ~ 107*~10~* ppm, and this
situation is assumed thoughout the shelf. Chapalain [59] and Boczar-Karakiewicz et al [60]
concluded that time-independent and vertically uniform parameters of eddy viscosity and
eddy diffusivity provide satisfactory accuracy for sediment morphology models on the shelf.
In this study we adopt a very simple model for the sediment concentration [13].

An equation of continuity for the sediment concentration is the advection—diffusion
equation

P+ V. (up)+[(w—vf)pl, =0 (72)

where vy is the sediment ‘fall velocity’ and n = (z+h(X, y, T))/8n. For simplicity assume
that, apart from random fluctuations, u and p do not vary much over small transverse spatial
scales, so that the second term of the above equation may be neglected. In light of this, the
sediment concentration changes at a rate 8p/dn proportional to the vertical flux. Hence,

WP = —yYPn (73)

where y is the diffusivity constant.

The flux, which is the product of the concentration and the velocity, can be split into a
time-dependent part C* and a time-independent part C™. Boczar-Karakiewicz et al [7] found
that in the sand ridge areas, the ratio C!/C™ = O(10~2) for the off-shore case. This situation
is assumed to apply throughout the shelf, so that the sediment concentration is represented
solely by its time-independent part. Employing this assumption and substituting (73) into
(72), we have as the equation for sediment concentration

Yon+vpp =0. (74)
The boundary condition may be taken as
ad
L2 =P 75)
vy On

where P(r) has the flavour of Svendsen’s [61] empirical ‘pick-up function’, which
incorporates such effects as the degree of wave asymmetry and skewness of sediment flux,
and a Shield’s parameter, which sets a threshold fluid velocity at which sediment will be
picked up, based on the sediment particles’ buoyancy and geometry and on the fluid’s
velocity field and viscocity.

Solving equation (74), we obtain as the sediment concentration

p=P(r)e " (76)

where 0 = vy/y. The fall velocity vy is species-dependent. It is either measured or
estimated by calculating the balance of drag to buoyant forces for a particle falling freely
into a static fluid. The diffusivity constant y is hard to estimate: sedimentologists usually
measure its value in the field.

For the sake of clarity, the mass transport equation is derived by assuming transverse
dependence in the x direction only. The generalization to variations in y follow in a
straightforward manner. Let T € [0, 00) and Ty € R! x[A(T), ¢], where ¢ > h(T)+84, be
the boundary layer time—space domain, and consider a differential ‘volume’ element in such
a domain, as shown in figure 7, which is bounded on the bottom by the ocean topography and
on the top by a flat lid z’ = ¢. It is assumed that the sediment concentration p is entirely
negligible for z’ > ¢ and moves on fast time-scales. In what follows p: I3 +— RI.
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~ND
==

z=-h+ 6
)‘/
z =-h(x,T)

Figure 7. Volume element used in the
derivation of the mass trasport equation.

The sediment concentration and drift velocity are thought to be C!(I17), and the bottom
topography h € C 1(T), and piecewise linear in Il7.
The mass flux per unit length at x in a time interval [T, T 4+ AT] is given by

T+AT 4 T+AT 4
f dr f dz p(x, U, 2) = f dr f dz M(x,7). an
h(x,T) T h{x,t)

T

Consider a portion of the region, say [x,x + Ax], in a time interval [T, T + AT]. Since

mass cannot spontaneously vanish or be created, the net amount of sediment between point
v and x + Ax must be compensated for by a change in the concentration of the sediment

" or by a topographical change in the bottom surface. The flux difference in the space and

time intervals [x, x + Ax), [T, T + AT] is thus

T+AT I T+AT 4
f dr / d7 M(x + Ax,7') — / dr f dz M(x,7) (78)
h T h

T (x+Ax.T) (xr.7)
and the total mass in the given portion at time T is given by

x+Ax ¢
f dé 47 p(E, 7). (79)
x h(£.T)

The change in total mass in a time interval [T, T + AT] resulting from net accumulation
is given by

x+Ax ¢ x+Ax ¢
/ d¢ dzp(6,2) — f dé dz’ p(€,2) (80)
x h(¢. T+AT) x h(¢,T)

or equivalently,

x+4x h(§. T+AT)
/ 13 dz' p(6, 2. (81)
x h(¢.T)
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Equating (78) and (81), dividing by AxAT, and formally taking the limit as Ax and AT
go to zero, we obtain, on the right-hand side,

dg¢ dz’ p(&, 2

x+Ax h(¢. T+AT)
—/; h(¢.T)

lim
AT>0Ax—0 AXAT

1 x+Ax h(E. T)+AT LT
~ lim d dZ' p(&,7
AT—»lOAx—>0 AxAT /x E -/h‘ ¢ p(E i )

(£.T)
dh(x, T)
= px, h(x, T))—— (82)

and on the other side of the equation,

1 T+AT ; ! ' ; ! ’
lim / dr {f dz M(x+Ax,z)—f dz M(x,z)}
AT—08x—0 AxAT Jr h(x+Ax.T) h(x.1)
1

lim
AT—-0Ax—0 AxAT

T+AT I4 oM e
f [f dzl[M(xyz’)+Ax—(-xyzl)-'_"']— M(xyzl)}
T h . ax

(x+Ax.1) hix.t)
¢ oM
= lim Axf dZ’—'(X, Zl)
AT—>0Ax—>0 AxAT h(x.r)+Ax% ox
¢ M
= / dzZ' —(x,7). (83)
he Ty 00X
Hence, the mass transport equation is
h(x, T) K' 3 f‘ , LT
= s p(x, U, Z') dz (84)
aT plx, h(x, T)) 0x Jpi.my

where K’ is a constant of proportionality. Since the boundary layer is assumed to be very
thin, we may define the mass transport flux as

Bt 81
w= [ p(x, WU, 2)de v = / p(x, 2)V(x, 7) d7 (85)
0 0

so that the transport equation now reads
dh(x, TY K
3T o
The generalization of (86) to one more space dimension is

dhix,y, T) K
T = = () ®7)
ar Po

where 1 and v are the shoreward mass flux and the longshore mass flux, respectively. Note
that when weak y dependence scaling is adopted in (87), the longshore mass flux is O(x)
smaller than all other quantities in the equation.

In the remainder of this paper, we assume, for simplicity, that the sediment concentration
is constant and equal to gy in the boundary layer. In terms of (71), and upon use of (85),
the calculation of the mass flux components, to lowest order, is

2, 2k;Cllay|* 2, BkjCHa;?
3

/‘L=Z‘TIU+Z

j=1 = 9

Px - (86)

Izj + CC (88)
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where
Lij = 0jéw — 3Boj — 3 + 3(1 — Boj)e 2%
+e~% [cos 0,85 — sin 0;8p1[1 — Boj(0jdp + 1)]
and
Ipj = 3(3 — 0j8) + € 27% [4 — e~ [1 + 840;] cos 08y + 26 ¥ sino;
for the shoreward mass flux, and

2 iC%ata

C: :
=Y L7+ 0% +cc
j=1 19
for the longshore directed mass flux, with
T =0iép — 1 — %(1 — e_2"/5"’) + e~ %% (cos 08 — sin ojbpr)

+ BA[3(1 4 e72%) 4 e~ M (i8y0/2 — 1)] .

The quantities Zyy, I3, and J; are plotted parametrically in figures 8—10.

805

(89)

(90)

on

92)

Before proceeding, two important remarks are in order. First, we note that the bottom
need not be slightly perturbed to initiate the development of bars. Second, the time-
scale discrepancy may be estimated by examining the ratio of the magnitude of the time
rate of change of the bottom to the Eulerian velocity. Such a comparison leads in a
straightforward manner to the conclusion that /T = O(a)O(8)O0(p) ~ O(1077), assuming
that the boundary layer thickness is typically O(1072h¢) and the sediment concentration is

O(10~%) ppm.
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Figure 8. Variation of Z1, with 85y = 1.0 fixed.
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Figure 10. Parametric plot of 7;, with &y = 1.0 fixed.
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4. Qualitative features of the solutions to the full model

Some of the qualitative features of the full model are presented in this section, with examples
computed numerically with the fixed-point method, which is described in [62]. The main
points of the section are (i) to present the effects of different initial bottom configurations
and boundary conditions on the surface and on the eventual bottom topography after the
passage of many surface waves, and (ii) to show that the smaller reflected wave plays a
relatively minor role in determining the shape of the ocean surface and therefore of the sand
ridge topography when the bottom is assumed to be very mildly sloped.

To better discern the effects of different bottom topographies on the waves and on the
eventual bottom topography after the passage of many waves, we now turn to the case in
which the initial bottom configurations are strictly x-dependent and the boundary conditions
are constant. Briefly, in this case, a larger number of bars form when the gradient is slight,
the distance separating the bars increases seaward for the positively sloped case, and initial
bottom discontinuities in the x-direction tend to get ‘smoothed out’ after the passage of
many waves.

Figure 11 shows the bottom topography, which was

0.005x x > 180.0

. 93)
0 otherwise

fx,y,0)= [
at T = 0. The lighter curve represents the bottom profile at T = 20AT; the heavier
curve is the bottom at T = 80AT. The parameters are « = 0.1, £ = 0.2, 8 = 0.36 and
w; = 1.2. For the same range of parameters, figure 12 shows the effect on the surface and

on the eventual bottom of an initial topography that is approximately tuned to the interaction
length of the surface waves.

11 r

0 72 144 216 286 360
X, shoreward

Figure 11. Cross section of f(x,y, T). The bottom was initially sloped but featureless. The
heavier curve represents the bottom at T = 80AT, whereas the lighter curve represents the
bottom at T' = 20AT.
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Figure 12. Effect of a tuned bottom, f = 0.5 sin(0.412x) at T = 0, on the eventual topography
and ocean surface: light full curve. Bottom at T = 100AT: heavy full curve.

1.6

03 P -

00 L 1

0.0 40.0 80.0 120.0 160.0 200.0
position x

Figure 13. Ocean surface at T = 0. Bottom at T = 400, for f(x,y, T = 0) = 0.006x
ai(x =0)=0.5, aa(x = 0) = 0.01.

Waves at T = 0 that are travelling normal to the shore over topography (initially
described by f = 0.006x are displayed in figure 13. Superimposed, but not drawn to

scale, is the eventual bottom topography. Figure 14 shows the evolution of an initially
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T

1.4

depth

0.1 L i L 1 ]

0.0 20.0 40.0 60.9 ] 80.0 100.0
shoreward position

Figure 14. The fate of the topography which initially contained a step, shown at three different
times.

70 Figure 15. Refraction of a

spanwise 3 40 50 60 due to the bottom topography:
50 % 10 20 f(x,y) = —0.005y shown at
shoreward T=0

stepped bottom at three different times. For these figures « = 0.1,& = 0.2, 8 = 0.08, and
w) = 1.8.

A bottom, which initially had gradients in the y direction, bends the water waves,
affecting the eventual bottom topography by producing a series of bars with refractive
features. Consider, for example, the case in which the initial bottom topography is
f(x,y) = —0.005y, with all other parameters as before, except wy = 1.2. Figure 15 shows
a; at T = 0. A striking way in which refraction takes place can be seen in the case for which
the boundary conditions at x = Q are y-dependent. The case for which f(x, y)=0atT =0
and the boundary conditions are 4, = 0.5+0.001y and A, = 0.02-40.001y, corresponding
to an incoming gravity wave that has slightly higher amplitude at one end than at the other,
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Figure 19. Evolution of bottom
topography at T = 40AT. Shown
here is the difference between

¥, spanwisc o L) .shoreward the new bottom and the original
0 :

topography.

Figure 20. Evolution of bottom
topography. T = 100AT. Shown
here is the difference between
the new bottom and the original
topography.

¥, spanwise 0 o x,shoreward

is shown in figures 16 and 17 for a(T = 0) and (T = 100AT), respectively. The
eventual fate of a bottom that was initially smooth but sloped, f(x, y) = 0.0075x — 0.005y,
is illustrated in figures 18-20. Compare these with figure 15. The boundary conditions are
A; =0.5 and A, = 0.02.

Shown in figure 21 is the cross section of a;(x) and b, (x), and in figure 22 a comparison
of the eventual bottom with and without contributions from the reflected field. Both figures
were computed by using (44), with A4, = 0.5, 4, =0.01, B, =0.2 and By =0:e=02,
a = 0.1, 8 = 0.08. The bottom was f(x,y) = 0.006x at T = 0, The domain was 200
units long, .

As was discussed in section 2, the reflected and incident fields are completely decoupled,
owing to the assumptions made concerning the bottom topography. The deformations on the
bottom topography due to the reflected component are entirely determined by the amount of
energy in the boundary conditions. Hence, it is necessary to include the reflected component
when the seagoing wave backwash is not negligible.

Interesting configurations are achieved when the above-mentioned effects are combined.
Figure 23 illustrates the refraction pattern on one of the packet centres for which A =
0.5 -0.001y, 4, = 0.1 — 0.001y, and the bottom at T = 0 was f(x,y) =0.01y.
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Figure 21. Profile of a; and by, for f(x,y) =0.006x. A =05, B =0.2.
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Figure 22. Effect of a bi-directional surface wave field on the eventual bottom configuration. :

Initially, f(x,y,0) = 0.006x. The heavy full curve is the bottom resulting from a strictly
shoreward-directed wave.

Another curious change in pattern direction is illustrated in figure 24. In this case
A =05-0001y, 4, =0.1+ 0.001y, and the bottom at T = 0 is f(x, ¥) =0.01y. All
the parameters in figure 24 are the same as those in figure 23.
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5. Conclusions

This study presents the details of a model for the formation and evolution of three-
dimensional sedimentary structures on the continental shelf, based on the energetic
interactions of weakly nonlinear long waves with the shelf’s sedimentary topography. At
present, neither the dynamics of sedimentation nor those of water waves are fully understood.
If the conjecture is correct, the model will improve in predictive power as understanding of
sedimentation and wave dynamics improve. The more important functions played by the
model, however, is that its development yields clues to ways in which the conjecture itself
may be refined and tested.

The model in its inception was two dimensional. Based on encouraging comparisons
with actual field data, the three-dimensional version was developed. Briefly described,
the present model couples a mass transport equation, which controls the history of the
bottom topography, to a mathematical equation, which describes the evolution of the most
energetic wavepackets of surface weakly nonlinear dispersive shallow-water waves with
weak spanwise spatial dependence. To solve the coupled system, one relies on the discrepant



814 J M Restrepo and J L Bona

time-scales of the bottom evolution and of the water waves to effectively decouple their
interaction, making a solution by iteration possible.

The main conjecture of this study is that a significant, but by no means exclusive, agent
for the formation and evolution of longshore sand ridges on regions of the continental shelf
that are sufficiently removed from the shoaling area is the repeated action of the second-
order oscillatory drift velocity that results from the passage of weakly nonlinear dispersive
shallow-water waves. If this conjecture is correct, (i) close correlation exists between the
interbar spacing and the length in which significant energetic exchanges among the most
powerful components of the spectrum of the shallow water waves takes place; (ii) close
correlation exists between the evolutionary time-scales for the bars and the time required for
highly coherent nonlinear dispersive wave trains to impart sufficient energy into a boundary
layer to significantly transform a sediment-laden bottom topography; (iii) longshore sand
ridges may be found in areas in which an ample supply of sediment is available and in
which no wave breaking occurs and/or in which the reflected field is absent or negligible;
(iv) sand ridges with highly organized characteristics may be found in regions in which
energetic coherent weakly nonlinear dispersive waves exist; (v) the energy of these waves
is of the correct magnitude to significantly affect the topography of a sediment-laden bottom;
(vi) the spacing of the bars correlates with the degree of nonlinearity and dispersion of the
waves and their orientation is affected proportionally to & by the propagation direction of
the waves; and (vii) the bottom topography evolves in time-scales measured in T that are
much longer than the characteristic times of evolution and adjustment of the water waves,
which are in turn measured in ¢ and 7, respectively.

T is really a measure of the time-scales in which changes occur in the wave forcing.
In this study we assumed that for infragravity waves, the characteristic time t for their
evolution is always shorter than the time T required for appreciable changes to occur in the
oceanic forcing. This basic aspect of the model deserves further study. Evidence must be
collected in field studies to confirm that the time-scales for the changes in the morphology
of the bars are related to the changes in the infragravity forcing. Another basic assumption
of the model is that the bars will evolve in a smooth manner unless there are appreciable
changes in the oceanic forcing. This also needs to be confirmed in field studies.

Preliminary experimental evidence supports the claim that a relation may exist between
the features of the nonlinear long-waves and the bars. Boczar-Karakiewicz et al [40],
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in a series of laboratory experiments, observed a relationship between the frequency, the
amplitude, and the dispersion, in the waves and the bar spacing. As described in our model,
the interaction length is a nonlinear relation that depends on the frequency, the dispersion,
and the nonlinearity of the wave. For the two-dimensional case with a flat bottom, the
dependence of the interaction length as a function of the detuning parameter is portrayed in
figure 25. Figures 26 and 27 illustrate the dependence of the interaction length on the size
of the nonlinear parameter  and on the dispersion parameter 8. The relevant size of the
parameters « and 8 in the sand ridge case is as high as 0.15 for & and 0.005 < 8 < 0.15.
From the graphs it may be inferred that the interaction length is more sensitive to dispersion
than to nonlinearity for the above-mentioned ranges of o and 8 in qualitative agreement
with the aforementioned experiments.

In the future the wavepacket representation of the water waves will be replaced with
a better water-wave description. In the mean time, the wavepacket description enables
us to determine approximately the dependence of the bar morphology on the variability
in spectrum of the infra-gravity forcing. Bona and Saut [63] are studying the different
versions of the Boussinesq system in order to determine, among other things, which variant
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best models oceanic waves and which is well-posed as a boundary value problem. Another
aspect of the model that needs to be studied is the characterization of the net sediment
movement, loward the shore or away from it. The net movement is obtained by spatially
averaging over the domain the gradient of the drift velocity. In all the time-dependent
examples presented in this study, the net movement of the bars was shoreward. This aspect
of the model requires determining what characteristics of the infragravity forcing results in
net movement toward or away from the shore. An interesting question that has thus far
received little attention is the subject of steady-state bottom configurations. In numerical
simulations of the present model it has been observed that a common but by no means
exclusive long-time outcome for the evolution of the bottom topography is one in which the
structure of the wavepacket centres and that of the bottom have similar qualitative features.
It is also quite common in these numerical simulations for the bottom to reach its steady
state in a gradual fashion rather than in small spurts of high activity followed by relative
inactivity, a common observation in the formation of sand ripples [29]. Since little data
on the evolution process of actual sand ridges is available it is difficult at present to judge
whether the smooth temporal behaviour of the sand ridges created with the present model
matches natural bar evolution,

The sensible way to test the model is, of course, to examine oceanic field data.
Comparisons with oceanic field data can give an idea of the predictive powers of the
model; perhaps laboratory experiments would be most fruitful since the water waves are
better characterized and controlled in this setting. The task of making field observations,
particularly in the three-dimensional case, is a tedious, expensive, difficult enterprise, and
beyond the expertise of the authors.

Several aspects of the model can be tested in the laboratory. First, the drift velocity
created by shallow water waves of the type identified here as responsible for the formation
of longshore sand ridges could be observed and studied in a laboratory setting in a plume
with a fixed bottom, comparisons between the laboratory experiments and the drift velocity
measurements in sand ridge fields could prove very fruitful. Second, further experiments
aimed at tracking the motion of the sediment in the boundary layer under the action of
weakly nonlinear dispersive waves further our understanding of the connection between
the wave-generated drift velocity field and the velocity field of the sandy particles. Third,
laboratory observations are needed to determine how well the various Boussinesq systems
model the weakly nonlinear shallow-water waves.

Field observations are needed to (i) determine the importance of both the reflected wave
field and oceanic currents in determining the nature of the drift velocity in sand ridge areas;
(ii) correlate in some way the beginning and end of ridge fields and the physical location
at which water waves are created and eventually destroyed; (iii) track the relevant wave
spectra in order to see evidence of the predicted pattern in energetic interaction lengths
and its correlation to features of the bottom topography; (iv) determine what other essential
features of the sand ridge formation should be included in this crude model to make it more
robust; (v) measure and characterize the boundary layer velocities with the hope of gathering
evidence of a periodic structure in the drift velocity that can be correlated in some way to
the passing waves; (vi) measure the evolution of the spectra of internal waves in sand ridge
evolution time-scales, the aim being to discern how the waves change with morphological
changes in the bottom topography; and (vii) (by far the most difficult experiment) the
observation of the actual evolution of the bottom topography. If the working assumption is
that there may be a variety of agents contributing to the formation and maintenance of sand
ridges, we need to thoroughly understand the present model and/or improve upon it with
an eye toward developing a clearly verifiable experimental criterion that will enable us to

o e,
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differentiate this mechanism from any other, since a naive comparison between the present
model and field data will contribute little 1o the validation of the conjectured mechanism.
Perhaps the best place to test this model against field data would be in a setting in which
ridges are well defined which has an oceanic environment rich in internal interfacial waves,
Since interfacial internal waves of the sort relevant to the conjecture are, in some instances,
more readily identifiable in the ocean setting than are the surface waves; since they usually
develop as strictly progressive waves; and since the place at which they originate, say, a
large promontory or the edge of the continental shelf, and the location where the stratification
is no longer significant, can be fixed in the ocean setting, the model presented in this study
could conceivably be tested with some more confidence.

The geophysics community has expressed some doubts with regard to the role internal
waves play in the movement of sediment. Some studies do suggest that the internal waves
disappear at times in which significant sediment movement is observed. Beardsley er al [64]
have shown that in areas off the coast of the castern United States, the stratification required
to support the propagation of internal waves occurs only during summer, a period in which
less sedimentary movement has been observed. While data exists that shows a noticeable
increase of motion of sandy material during winter storms, these authors do not imply that
sediment movement is nonexistent at other times of the year over seasonal time-scales.
Furthermore, the appearance of winter storms does not explain the high degree of order in
the ridges. The conclusion that sand ridges cannot be formed by internal nonlinear long
waves, which may possess energy of the order of hundreds of thousands of watts-minutes,
would be correct if it was proven that storms were the only agent for flows strong enough to
produce sand movement. The truth is probably that there are many agents for the formation
of sand ridges. Among these agents we believe, could be the mechanism presented in this
study.

Another issue raised by some geoscientists is that sediment gets entrained most
significantly when wave breaking conditions are prevalent. While wave breaking is indeed
very effective in lifting sediment off the bottom, it is not a satisfactory explanation for the
high degree of order in the bars and does not explain the formation of bars away from the
breaking zone.

Finally, in a study by Elgar et al [49], it is suggested that the periodic structure of the
bars in this model is an artifact of the crude water-wave model based on only a couple of
modes. Elgar and his collaborators have examined the issue of the recurrence of solutions
to the modally truncated Boussinesq equation numerically in the Stokes parameter regime
of O(1). They found that the two-mode case displays recurrence-like solutions over a
great many wavelengths. They also found that as the number of modes is increased, the
recurrence is confined to fewer and fewer cycles and, further, that initially very narrow
spectra undergo more recurrence-like cycles, before the spectra flatten, than do initially
broad-banded spectra. Their conclusion is that recurrence-like solutions are an artifact of
a severely truncated modal expansion of the Boussinesq equation which, they state, puts
doubt on the validity of the conjecture made in this study. They assume, unfortunately, that
‘Fermi-Pasta—Ulam recurrence’ rather than locally high correlation is a necessary condition
for the formation of sand ridges by some forcing action. They also incorrectly assume that
their modal formulation for the surface waves and our formulation are analogous. These
objections are the subject of a forthcoming paper [58]. For now we remind the reader that the
observations of Elgar er al do not in any way weaken our conjecture that weakly nonlinear
shallow-water waves may be responsible for the formation and evolution of sand ridges,
since there is more than ample observational evidence that these nonlinear waves travel
coherently over very vast spans of ocean over regions where sand ridges are a prominent

SONTHETIRAS T 1y 15



818 J M Restrepo and J L Bona

feature of the ocean floor.

While comparisons between field data and the two-dimensional model are very
encouraging and this three-dimensional extension should therefore find applicability in the
real-world environment, any topographical chart of the continental shelf provides a good
reminder of the long path yet to travel toward a complete understanding and model of the
full problem. If this study has piqued the curiosity and compelled the reader to take a closer
look at sandbars, it will have succeeded.
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