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Abstract.  Considered herein are the generalized Korteweg~de Vries equations with a
homogeneous dissipative term appended. Solutions of these equations that start with finite
energy decay to zero as time tends toward infinity. We present an asymptotic form which
renders explicit the relative strengths of the dissipative, dispersive, and nonlinear effects in this
u‘ccaty,
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1. Introduction

The present work contributes to the discussion of how nonlinearity, dispersion and
dissipation interact in wave propagation. Our commentary will be based on the class of
one-dimensional model equations

Uy + Uy + g(u); — Ly + Mu =0 (1.1)

where u = u(x,t) represents the displacement of the medium of propagation from its
equilibrium position, x is proportional to distance in the direction of propagation and ¢ is
proportional to time. Here, subscripts denote partial differentiation, the function g:R—>R
is usually smooth, often a polynomial, and L and M are Fourier multiplier operators given
by

Lu(¢) = a(6)0() and Mu(E) = BEYDE).

The symbols « and B of L and M are typically real-valued, even, non-negative, functions
that increase at 00, and consequently L and M represent dispersive and dissipative effects,
respectively. This class of models has been discussed in several recent works (see Biler
1984, Dix 1992).

Model equations like those appearing in (1.1) arise when the weak effects of nonlinearity,
dispersion and dissipation are appended to a basic model u, + u, = O for uni-directional
wave propagation. Such effects often make their appearance at second order in some rational
scheme of approximation (see Albert and Bona 1991, Bona and Scialom 1995).

Perhaps the best-known example in the class (1.1) is the Korteweg-de Vries’equation

U+ Uy + Uy + Uy =0.
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Originally derived as a model for small-amplitude, long-wavelength, surface water waves
(Korteweg and de Vries 1895), this equation and its natural generalization

Uy +ux +upux +uxxx =0 (1.2)

where p is a positive integer, have found application in a wide variety of physically
interesting situations. In terms of the class depicted in (1.1), (1.2) has g(z) = z-"*"/p + 1,
o) = £* and B(E) = 0. The equations in (1.2) also arise as one of a number of
interesting and approachable classes to study in attempting to understand the way dispersion
and nonlinearity can interact (see the recent papers of Amick et al (1989), Bona and Luo
(1993), Dix (1992), and especially the monograph of Naumkin and Shishmarev (1994) that
describes a great deal of the work carried out over the last decade or s0).

Nonlinear, dispersive wave equations like those in (1.2) or those in (1.1) with M =0
have come to the fore in the last few decades not only because of the range of their
applications, but also because of their interesting and sometimes subtle mathematical
properties. Especially intriguing are the travelling-wave solutions called solitary waves
which often play a central role in the long-term evolution of initial data (see Albert ef
al 1987, Pego and Weinstein 1992). These aspects are a consequence of the fact, among
others. that only nonlinear and dispersive effects are retained in the model. Because of
this, equations (1.2), or (1.1) with M =0 comprise Hamiltonian systems that conserve the
functional

fw ul(x,t)dx. (1.3)

—00

That is, if « is a smooth solution of one of the just-mentioned evolution equations which
decays suitably as x — 00, then the quantity displayed in (1.3) is independent of 1.

In many practically important situations, dissipative mechanisms have the same general
strength as those of nonlinearity and dispersion. When dissipation is included in the model,
as when M # 0 in (1.1), most of the special properties just mentioned no longer hold
exactly. For example, the quantity in (1.3) typically tends to zcro as £ — +o00, rather than
being conserved by the evolution. In this circumstance, while the ghosts of solitary waves
still play a substantial role in the short term (see Bona and Soyeur 1994), the long-time
behavior may be dominated by the decay induced from the dissipation, seen clearly in the
fact that u(-,t) tends to zero as [ — 400, at least in Ly(R). It is our purpose here (0
explore in some detail the asymptotic structure that obtains for a class of model equations
of the form (1.1).

In the remainder of this paper we will study models which are a specialization of those
described in (1.1), namely equations having the form

u,+u”u,+u”x+Mﬂu=0 (1.4a)

where a shift has been made to a moving frame of reference to eliminate the wu, lerm,
p is a positive integer as before and My is the homogeneous dissipative operator with
symbol My(&) = [§ 2%, This particular class in which the dispersive term is fixed as the
Korteweg~de Vries dispersion a(§) = £2, the nonlinearity is a monomial and the dissipation
is homogeneous, albeit non-local, provides perhaps the simplest class of-models in which
to study the three effects. The dispersion is local and the strength of the nonlinearity is
determined by specifying the integer p. Because B = 0 is arbitrary, a wide range of relative
strengths of nonlinearity. dispersion and dissipation are encompassed by the class (1.3), but
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with the advantages that only one non-local operator and a very simple nonlinearity intervene
in the analysis. It is expected that the theory obtained for the equations (1.4) will guide us
to the correct conclusions for the broader class displayed in (1.1).

In the present report, attention will be given to the initial-value problem in which (1.4a)
is posed together with the starting configuration

u(-,0 = f() (1.4b)

and for the range % < B < 1and 28 < p. We intend to extend the previous studies
of the long-term behavior of (1.4) (see Dix 1992, Naumkin and Shishmarev 1994, Bona,
Promislow and Wayne 1994) to obtain higher-order asymptotics of the decay of solutions.
The earlier developments concluded that if the initial data f is smooth and small enough,
then the long-time behavior of u may be described via the associated function f* defined
to be

frx) = foo eitxe kM gg (15)

Indeed, it was shown that for any € > 0, there exist positive constants ¢; and ¢, depending
on f such that for all 1 > 1,

A0 e, 7.1/28 2
uC. 0 = 1 IO/ < Ems
4 2 (1.6)
_ 0w 1128 _Coo
u('at) fh{zﬂf (/t ) °o< !(ifﬂ—e)

where the norms are those of Ly(R) and L (R), respectively, and"Ag = ff°°° fx)dx is
the total mass of the initial data (a conserved quantity even when dissipation is present).
These results may be interpreted in the following way. Let v be the solution of the linear
initial-value problem

v, + Mﬂv = O
v(-, 0) = h()

and suppose h has the same total mass Ao as f. Then v and the solution « of (1.4)
with initial data f have the same asymptotic form as ¢ — 0. Thus at lowest order, the
asymptotic state of solutions of the initial-value problem (1.4) for p > 2 does not depend
upon the nonlinearity, the dispersion, nor indeed on the initial data save through its mass.

It will be seen presently that a more refined asymptotic analysis is needed to discern
the long-term effects of nonlinearity and dispersion. Consider the two-parameter family
[ = I'4 p of functions of (x, ) defined via their Fourier transform with respect to x to be

(1.7

Bk, 1) = Ta sk, 1) = Ae®™ 4 [—iAIK® + iBkle™ ™

ik f_lklz,,(,_x) A, - p+l .
+p+ff.° Fl\zmf (/") (k) ds (1.8)

where f* is as in (1.5) and F(h) denotes the Fourier transform of . Then for given initial
data f, there is a choice of the constants A and B so that for any € > 0, there exist constants
¢, and c,,, depending on f for which

|uC.1) = Ta gl 1), < ™0 5
4G, 1) = Ta (0|, < chot ™57 '
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and, if w(x) =1+ |x|, then

WO, ) — TaaC, 0l € ™7

. (1.10)

lw()ul, 1) — Tas D] < AU
for t > 0, where u is the solution of (1.4) corresponding to f and B is the parameter
defining the dissipative operator Mp. The dependence of the constant B on f will be made
precise in due course, but one can see immediately from comparison with the first order
asymptotics in (1.6) that A = Ag = [, flx)dx.

The estimates (1.9)—(1.10) showing I' to be a more accurate approximation to the
asymptotics of solutions of (1.4) comprise our principal goal. The paper is laid out as
follows. Section 2 provides the notation and mathematical structure used later. In particular,
we define a renormalization mapping that was introduced in another context by Bricmont et
al (1994), and which plays a central role in our analysis. The introductory material is then
followed by a technical section composed of preparatory estimates. This in turn is followed
by the statement and proof of our main results in section 4, namely, precise versions of
the inequalities (1.9) and (1.10). These are obtained via a contraction-mapping argument
in Fourier-transformed variables using the inequalities derived in section 3. The paper
concludes with a brief summary and a discussion of directions potentially worth further

inquiry.

2. Notation

Here, function classes are introduced, notational conventions set forth, and the
renormalization operators defined.

The norm of a function f in the standard class L, = L,(R) is denoted | f,, for
1 < p < co. The classes ck = C*(R), k = 0,1,2,- -+, comprise the functions which,
along with their first k derivatives, are continuous. Less standard are the Banach spaces B,
and B, defined as follows. A function f lies in By if its Fourier transform f lies in C' and
the norm

~ d ~
1, = sup {(1 + P F + (1 + 1) \&-f(k)H .1
is finite. Similarly, f lies in By if flies in C? and its By-norm

d? ~
Eﬁf(k)n (22)

~ d ~
Iflls, = sup [(1 + KDIF L+ (1 + ki) Zﬁf(k)\ + (1 + kD)

is finite.

The definition of the renormalization operator requires some preliminary notions. Let
u=u(x,t)bea real-valued function of (x, ) € R2. Forn=0,1,2,--+, B = Qand L > 1,
define a sequence {1y }5oq Of rescaled functions inductively by ug = and, forn 2 1,

up(x, 1) = Lup—1(Lx, L1y = L"u(L"x, L*"1). (2.3)

Later, L will be taken to be large so that 1/L becomes a small parameter. If the original
function u happens to satisfy the initial-value problem (1.4) and the in (2.3) is identified
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with the parameter 8 in the symbol of the dissipative operator M = My, then u, satisfies
the initial-value problem

n
Ottn + Mu, +0"33u, + py 3 (u*) =0

+1
fax) = un(x, 1) = L"u(L"x, L¥") (2.4),
forn =1,2,..., where @ = L%3 and y = L%~#+), For technical reasons (see the

comments following proposition 2) the renormalized initial-value problems are posed at
t =1, in particular fo(-) = u(-, 1) where u solves (1.4a, b). Note that both « and y are
small if L is large; indeed, o, y < L™! since B < 1 and 28 < p.

By applying the Fourier transform with regard to the spatial variable to (2.4), and
solving the resulting ordinary differential equation by the variation of constants formula, a
formal representation is discovered, namely

Un(k, ) = e~ +ia"R)-1) 2 )y

kY™ [ ki ia k=), P
+ m [ Up (k,S) ds. (25)
1

After taking the inverse Fourier transform of (2.5), we note that the first term on the right-
hand side of (2.5) is just the linear semigroup applied to f,, namely

Sn(t)fn (X) - '/'00 c_(|k|1ﬂ+i“"k3)('_l)_ikx}:(k) dk . (26)

-00

while the nonlinear term is N7, (u) where, for b > a,

il Rl b
F (N2 ) (k) = % f F (Sab—5)ul*") (k, 5) ds. @27

We will be interested in comparing (2.4), with the linear, dispersionless equation (1.7)
which results from the formal limit n — oo, and its associated semigroup

00
S () = [~ e Wik g g @8)
—00
The renormalization group operators R, are now defined. Forn =0, 1,2, ..., let v, be

the solution of (2.4), corresponding to given initial data f. Define R, f to be

(Raf)(x) = Lua(Lx, L), 2.9
Notice that (2.9) and the definition of Jfn imply that

Rofax) = Lup(Lx, L*¥)y = L™y (L™'x, LP04D) = £ (),

The linear and the linear dispersionless renormalization group operators will also appear
in the analysis in sections 3 and 4. They are denoted R? and R, respectively, and the
outcome of their application to a function f is

(RYF)(x) = L(S,(L*) f)(Lx)

(2.10)
(Roo f)(x) = L(Sao(L%) f)(Lx).
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There are several observations that, taken together, indicate the renormalization group
operators {R,}22,, {R%)22,, and R, are objects worthy of study in attempting to understand
the long-term behaviour of solutions of the initial-value problem (1.4). First, for L > 1,
the long-time asymptotics of the solution u of (1.4) with given initial data, turns out to be
related to fixed-point problems for these renormalization operators which can be set in the
Banach space B;. Secondly, as n grows, it is expected that R, — Reo. Finally, as solutions
decay, it is expected that the action of R, and RY on them will be nearly the same.

In consequence of these observations, we now turn to a study of the various
renormalization operators, their fixed points and the relations between them.

3. Technical estimates

The similarity function f* defined in (1.5) is a fixed point of the linear dispersionless
renormalization group Ry, so that

Roof* = f* @G.1)

and it is our goal to show that successive applications of the nonlinear renormalization group
R, drive one towards f*. That is, we intend to give a detailed analysis of the convergence

L'u(L"x, L") = Ry_y0---0 Rofo, = [ (3.2)
The remainder of this section is devoted to technical estimates required in the demonstration
of this convergence. From the formal representation (2.5), the nonlinear renormalization
group R, may be decomposed into linear and nonlinear parts, namely

Rufo = RYfa+ L NJ 2 (un) (Lx). (3.3)

The analysis begins with lemmas 1 and 2 below, which show that the linear map R
is contractive and that f* is close to being a fixed point of R? for n large. Lemma 3
demonstrates regularity properties of the linear semigroup while proposition 1 provides
technical estimates on the nonlinear term.

Lemma 1. Let the power B in the dissipative operator be larger than % Then there exist

positive constants Cy = C1(B) and Cy = C(B) such that for all g € B, satisfying 2(0) =0,
it follows that

IRgllz, < Ci(BL™"liglls, (3.4)
and if additionally g (0) = 0, then

IR g5, < C2(B)L™*ligll5,- (3.5)

Proof. From the definition (2.10) of R,? and the formula (2.6) for the semigroup S,, it
follows that .

— R o [k
ROg(k) = e~ (kPP HLIatk)(1-L7 (Z) .
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Since g(0) = 0 and g € C'(R), the Mean-Value Theorem implies that for any k, there is a
point & = & with |£| < |k|/L such that

LI
'()' ILI (5")|‘

In consequence, it follows that
— 1 .
sup {1+ KRR (M) | < 7 supl(1 + k)"0~ k) e
1 - -
<  Sup(C1 + e Dkl supl(1 + 1€ I €)1

1
< C(ﬂ)zllgllsz-

Similarly, we have

— k 1 : k
~ po - 261 W ES FVI-N il R~
dkRng(k) [(2ﬂlkl +3ia"tk )g(L)+ 78 (L)]

. e_(l“zﬁ +i an+|k3)(1 —L'”)

and bounding g (%) via the Mean-Value Theorem as above leads to the estimate

1 - -
< 75 {0+ IPIEBI + 3748 + Dk fsup )

1
< ZC(ﬁ)JIgIIBz‘

In the same vein, one discovers that

i ng<k>‘ { (1?72 4 "V k| + (k7" + 0"+ E%)?) ‘Ig (&)
1 [k 1 o k 28 24
2 k2ﬂ—| n+1k2 I o~ |z i) —k*(1-L%)
W+ ) {7 )+ [ ()| e
whence
— c(B)
Rog"®[} < S gl

and the result (3.4) follows. For the second inequality (3.5), it is assumed that g(0) =
2'(0) = 0, which implies via Taylor's Theorem and the definition of B,, that

~fk o . k?
g\7 < ﬁlg Gl £ 27"8"32

G <"|A"(s )< Xl
8 2 \Lg 2.k \Lng
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where £ x| < % for i = 1,2. Arguments similar to those provided above then yield the
desired result. 0

It will be usefu! presently to understand the action of R% on f*, as well as its action on
the function f;* defined by

frx) = f " ik emikre- I g (3.6)

—00

Lemma 2. Suppose that % < B < 1. Then there are constants Lo = Lo(B) and ¢ = c(B)
such that for any L > Lo, one has

IR f* = f*ls, < c LD (3.7)
and

IRS £y — %fl‘ lg, < L™0*D (3.8)
forn =1,2,3,--., where f* is defined in (1.5) and flisasin(3.6)
Proof. We begin with the demonstration of (3.8). Observe that from (2.10) and (2.6),

——— ot <= [k
Rgf]*(k) = e—(lklu-{-la Hh(1-L 2")fl« (_Z>

ik ~ k|2 e—ia"""k’(l —L-%6)

Consequently, one sees immediately that

— 1 o~ .k " )
RYfi (k) — 'Zfl*(k) = lze""'u(e—'“ HB1-L-) 1).

nJl L1
suppose that k, L and n are such that |k|> < a="* for some fixed positive u < 1, where
o = L%¥73 < 1. Then one sees at once that

We now estimate sup(1+ [k[?) which is accomplished in two steps. First

le—ia“'kl(l—r”) _ 1’ < ¢ -
~

and

3y Kl e |  <(B)
’(1+|k|)Le < 2

which together imply

sup { (1+ k)

1k]? <=

YT
(Rr(x]fl - er?f1>

If, on the other hand, |k|®> > a¢="# then

] < Ma(nﬂ)(l—u) .

‘e—ia"“k3(l—L"") _ l’ <2
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and so
_{ 2
sup {(1 +|k|3)ﬂc-”‘"’] < Lt ™) qup L+ prte i)
[k Za—m L L [k
V-2 fm
< c(pyLe )
L
1 n+2
< L)
«(8) ( L)

if L > Lo where Ly depends upon B and u but not on n. If p is restricted to lie in the
interval (0, i—:%%] then

1 n+1
L= — [ @B-HU-eH) (Z) .

As a consequence of the above inequalities, it is adduced that there exist constants C
and Lo depending only on B such that for L = Lo,

) 1 1 n+2
}-(Rnfl*_zfl*> (k)ch(—I;> :
Similar sets of inequalities show that
di 0 r* 1 * 1 ik
ﬁ }-(Rnfl - Zfl ) (k)“ £¢i (z)

for i = 1,2 and L large, where the ¢; depend only on B. The inequality (3.8) follows.
The derivation of (3.7) follows in the same vein except for the term

& (B~ 7) <k)”

d2 k28 i (=L
L ek (c"" a- )_1)

dk?

22_(k k) gr el
7%) k

Now k e~* is uniformly bounded in C? provided B > 1, and therefore

sup [(1 + k%)

sup [(1 + kP
k

sup {(1 + [kD)

1k} <a—n#

< sup [(1 + |k

k[P <a—m®

< sup ‘(l-l-lkl)

|k|1 <q—"n

e
= (RF-F) (k))} < (Bt

sup [(1+lk|) FT5)

kP <a—mn

The remaining estimates follow lines already indicated; the lemma is thereby established.
O

Lemma 3. Let T > 1 and % < B < 1 be given. Then there exists a constant Cr > O such
that forn =0, 1,2, -, the linear semigroup S, in (2.6) satisfies the estimates

1S (t)gllB, < crliglis, (3.9)
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for1 €t < T, forall g € By with total mass equal to zero.

Proof. By its definition, S,(t)g is given in Fourier-transformed variables as
Sa(Dg(k) = e W HRNDZ (k). (3.10)

To estimate || S, (t)g |5, consider first the term

sup{(l+|k|) S<r)g(k>“ <sup [(1+1kD [0 V7 w)|

pT%]
+ sup [(1 + kD) |2@ ()¢ — 1)e~®P-Vg (k)“
k
efip [+ kD[R = 1) + (@' () — )]
% —G)(k)(l—l)*(k)” @3.11)

where ®(k) = |k|? +ia"k®. Denoting the three terms on the right-hand side of (3.1) by
¥, I,, and I3, respectively, we see that

T < sup{(1+|k|>1?'<k)n lels, (3.12)
and
200 _ e KP0-D
T, < Sl:p [c(l + |kDk* (¢ — e e |k|zl Hglls,
< ot — 1) sup{(1 + 1kDe MY jigllp, < (@ - D + (0 - D %) gls,- (3.13)

To estimate T3, observe that ®"(k) has a singularity at k = 0, so it is natural to write
Ty € Ty + B3+ T3,3 where

T3 = sup {(1 + k) |@" ()t — 1)e"®®¢-N7(K)|}
lki<

5.2 = sup {(1 + [k |@" (0 (¢ — De @ Vg0)])
kiz1

Ts = sup {(1+ kD (@' () (¢ — 1))2e"0® g W)} .
k

Since 2(0) = ffooog(x) dx = 0, we have [g(k)] € k|2 loo < |K| IgliB,, and therefore

3 < c sup (K1# 72k} = Dliglls, < ¢t = Dliglls,. (3.14)
[{ES!

On the other hand,

T3z < Cig{(l + kDIkI(c = DIZWIN) < et = Dliglls, (3.15)

and, finally,

33 < csup‘(l+|k|)k4(t 1)2e kU= lnglls,

1+ |kf?
<ot =D+¢—17 ﬁ)Hgllsz- (3.16)
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Combining the estimates (3.12)<3.16) and recalling that g lies in the interval (12, 1], it is
readily deduced that

@2 —
sup {(1 + 1k) \Wsn(t)g(k)\} <cerligls:

Suitable estimates on sup, {(1 + lkﬁl%.@(k)l} and sup, {(1 + |k|3)|m(k)} are
similarly derived. The result (3.9) follows. -0

The remainder of this section is dedicated to development of estimates on the Fourier
transform of the nonlinear map N, defined in (2.7). For this purpose, we will make use
of the space-time norms

Wl Loo(a,b:B1) = SUP (i,

asi<h
3.17)
Nl @bBy = sup Nu®lls,.
a<i<b
Define also the Fourier multiplier operator Q with symbol g by
07 (k) = g k)
where ¢ € CY(R) and
k>2
gk)y=\k el <1 (3.18)
-1 k<2
and an associated quotient é with symbol g given by
- k/q(k) k#0
k) = l 3.19
4 1 k=0. G.19)

Note that (k)7 (k) = k and 7 € CX(R).
The following inequalities about Fourier transforms of products are used in the
following.

Lemma 4. Let p > 1 be an integer. Then there is a constant C depending only on p such
that for any [ € By, we have

YOS 1—+—Clmufu,’;,+‘ (3.20)
and
if/fm(k)\ < ——IfU5" @3.21)
dk STE R e -

If moreover h € B, and Qh € B, where Q is the operator defined in (3.18), then

& =
___2khp+l (k)

P < c(lhlls, + I @hls) Rl (3.22)
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Proof. The estimates (3.20) and (3.21) follow in a straightforward manner upon writing
FPi) = Fo-oox Flio) = T ) Fl) - k) by -

and

G0 = [ Tl ot k) Tk Pl .-

For (3.22), proceed by writing

d%L (k—ék;)ﬁ(k—ik,-)

@2 —~
d—kzkh"“(k) =(p+1)

xh(ki) ... B(ky) dk; - - - dk,|. (3.23)

Since h € B) and Qh € B, we use the relation
ERE)" = (qE)FERE)) +FE)
=7E@ORE®) +3E @®RE) +7E)

where g and g are defined in (3.18) and (3.19), and observe that |§(£)| < c(1 4+ |€]) and
Ig'(E)| < c to achieve the following bound on the second derivative:

IGREN"I < c(lklls, + 1 Qhlls,).

Returning to (3.23), bring the derivatives inside the integral, and use the estimate above
with &€ =k — 37  k; to bound the Lo-norm of the first term, thereby yielding

2 —~ 1 1
—=kh? (k)| < c(|h h ——— o ———|lhl|% dky... dk
Gk O] < el + 10kl | s T p b, d . ok,
S elllklis, + 1QANB) AN,
Thus (3.22) is proved and the lemma is complete. a

In the estimation of N ,(u), a bound on the kernel of the linear propagator is needed.
This is provided in the next lemma.

Lemma 5. Let % <B <1, and 0 < a < b be given. Then there are positive constants
Co, Cy and C, such that for all n with 0 < n < 1andallk,

b
(kI +ink®)(b—s) (b —a)
/; ) 9 < Cor ke (3.24a)
b .
d .
/ kae—(lkllﬁﬂnkl)(b—:) ds < Ci(b — a)z(] + |k|3_4ﬂ) (3.248)

ds < Co(1+ (b —a)’)(1 + 1k)°~%. (3.24¢)

b d2
/ (kc—<|k|”+ink’)<b—x>)
dk?
u
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Proof. These inequalities follow by computing the integrals in question. a

This section is concluded by demonstrating that the nonlinear map N7, takes
Loo(a, b; By) into B; and, in this setting, is bounded and Lipschitz on bounded sets.
Proposition 1. Let ‘5 < B < 1, let uy,ux € Loo(a, b; By) be given, and suppose
Qu;, Qus € Lo(a,b; B,) where Q is the Fourier multiplier introduced in (3.18). If
0 < a £ b, the following inequalities hold:

INZ ,(u)lls, Scy"(1+ (- )] a8, 1 QU Leota.biB) Netr I Lot b:81))
(3.25a)
NG ,(uy) — Ng pullls, S € Y"1+ (b —a))
% (11 Lo@b:Byy + N2l LopabiB) P11 Q81 — U)W Loota b:B2) (3.25b)
where y = L*¥~%*1 and ¢ is a constant.
Remark. Since [|Qfllz, < cllflls,. the results above imply bounds on the nonlinearity
+; when considered as a map from Loo(a, b; B3) into B.

Proof. From (2.2), we have

NG (@) ls, = sup [(1 + kYN GO (R

d —— 4?2 —
+(1 + 1k[%) &Nﬂ‘b(u)(k)' + (1 4+ {&D WNJ_;,(H)(’C)H (3.26)
where N‘:"b(y) is given by
— iky" f” == —
N ) k) = —— | e ®=0®yp+i(k, 5)ds
o () (k) o+, (k, )

with ©(k) = [k[* + ia"k® as in (2.7). Employing the relation (kf(k)gk))" =
(kf (k)" g(k)+2kf "(k)g' (k)+ (kg (k))" f (k) with f denoting the kernel and g the expression
on which f acts by convolution in the expression above, it transpires that

=l

Ny p(u)

1 kD |—
sgp[( + 1k | 7

b

<oy sup{a + kD) [/
k a

b

+2/

[l
a

& _-new
pT% (ke=¢=0®)

ds LIF-?! (k. -)l
Loo(a,b)

d
PR CERCID)
a©

ds ]u’F"(k; -)l
Leoo(a,b)

Lw(u.b)] ]

With the estimates afforded by lemmas 4 and 5, one deduces readily that

2
sup {(1 + kD) }
k
A+ kD s

2
— Ny (1)
n 2
<cy Sl;p[(1+|k|)[Cz(1+(b—a) )—————1+|k|3 Nl a8

dk?
1+ [k +1
+ (b — G)W"u"'zw(a.b:&)

42—
e Tk -
Skt k)

(b —a) »
+ 0T kPR (Nt a8y + 1 Q2| LentabiB) NN 0 iy | [
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Since 28 > 1, it follows that

d2
wf(N:‘b(u)(k)”

ey (4 0 —a))ullf_ @ pisy N8l Loy + 1Qu1 Lo b:8)-

sup l(l + kD)
k

The other two terms on the right-hand-side of (3.26) are estimated similarly, and (3.25a)
results. The Lipschitz estimate (3.25b) follows from identical arguments applied to
N p(uy) — N ,(u3) after the relation

+1 +1
Juf* = ug*| = < cluy =l [P + fual”)

p

—i i
Z(“' — up)ui
i=0

has been employed. O

4. The renormalization group maps

With the technical tools developed in section 3, we turn to the task of determining the
asymptotic behaviour of solutions of (1.4a,b). This is accomplished in two steps. First,
the well-posedness of the equations 24),,n=0,1,2,---,is established in the B;-norm
via contraction-mapping arguments based upon the Lipschitz properties of the nonlinear
term. Second, an inductive argument relying on the contractive properties of the linear
renormalization group RY is used to show the convergence of u to the asymptotic form I'
introduced in (1.8).

4.1. Well-posedness in B,

The leading term f* of the asymptotic form T is not an element of the Banach space B,
as defined in (2.2). However, the difference

A
vix,t) = ulx,t) — Wf*(x/z‘/lﬂ)

is an element of B,, has zero total mass, and depends continuously on the initial data.

Proposition 2. Let 1 < B < land p > 1 be given. For L > 0, let T = L* and let
u, denote the solution of the initial-value problem (2.4)n, n = 0,1,2,---. Then there exist

positive constants Ct and €y which are independent of n such that for all initial data f. of
(2.4), of the form

fa=Af"+3gn 4.1)
where f* is given by (1.5), gn € B2 has zero total mass, A € R, and

A+ llgnliB, < €0
the corresponding solution u, is of the form

une, 1) = =755 £ /1) + (2. ) (42)
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where v, € Loo(1, T By), 9,(0,t) = 0 and

Nonll Lo .78 < 7 (LT"|A] + I gallB,)- 4.3)

Proof. For each n = 0, 1,2, - --, construct the map T, : Loo(1,T;By) = Loo(1,T; By)
defined by

(To0)( 1) = Sa@) fu () — AVC, 1) + NI (AY + ), 1)
= 00C, 1) + NI (AY + (. 1) (4.4)

where S, is the linear semigroup in (2.6), N;, is given by (27) and y¥(x,t) =
171128 f* (). In Fourier transformed variables, v{(s) has the form

;’E)(k' = e—(lkl”'+ia"k")(t—l)f"~;(k) — Al
and using the formula (4.1) for f;, this simplifies to

Dk, 1) = Ae W1 (= _ 1y 1 §(1)g, (k). 4.5)
Clearly 133’(0. t) =0, and an elementary calculation shows that for | <t < T,

" (e RO 1)), < o < e L7 (4.6)

where ¢ is independent of n and T. The term S,(f)gx is estimated via lemma 3, and
combining these results, there obtains the inequality

10l Lot 7.8 < CrUAIL™" + ligalls,) 4.7

where Cr depends on T, but not on n.
Employing (3.24a) of proposition 1 on the nonlinear term in (4.4) yields

N7, (AY + v)llB,
S cy"NAY +ll] ) 7., (1QAY + Ve 0,78 + 1AV + ViiL,0.m:80)
ey "t A+ llewa.r8)) UV o 7:8) + 10V Ly 78y + IVlLga.m:80)-

But ¥ (lL q.7:8) + Q¥ Loa.7:8,) < ¢ independent of T 2> 1, hence

INT (AY + V)llLoa.m:8) < Cry" (1Al + Ivllega.m:80) (Al + IVl 7:8)
L Cr(Al+ Wleoa.r:8)) (LT AL + (vl La.7:81)- (4.3)

Define the set
B, = [u € Loo(1,T: By) :
o = CllLorisy < LAl + lgalls;, 90,0 =0for0<s <1} (49)

and presume that |A| + [galls, < €0, @ constant whose value will be determined presently.
Then from (4.8) it follows that for v € B,

1700 = a8y < INT+(AY + W) lLya.m:8)
< Cr(|Al + Wlleya.7m:8)) (LAl + vl Lo, 7:80)-
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The fact that v € B, together with (4.7) implies

ol Lot 7:8 < IVplLwe.T:8 + L7 IAI+ lIgall5,
< (14 Cr)(LTMAl + lignlls,)-

Thus we see that

Cr(|Al + ligallg,)*(L™"| Al + ligalls,)

1Tpv — V2l L. 7:8) <
< Cref (L™"1Al + lignlls,)-

Choosing ¢ small enough, it follows that T, : B, — B,. Moreover if v, and v; lie in By,
then

| Tovi —Twv2llLo1.7:82)
< INT (AY + v1) = NT (AY + v2)llL,0.7:8)

< Cry2AY + villLga.mey + 1AV + vallLea.rs))’ v — vallLg.miBy)
< Cr(Al + ligallg) P vy — vall Lotr.7:80)

and thus independently of n, o may be chosen small enough so that T, is seen to be a strict
contraction on B,. With such a choice of €, the contraction-mapping theorem implies that
T, has a unique fixed point v, € B,. It follows that

Un = AY + Uy
where u,, solves (2.4),. Moreover, since v, € B,, we have the bound
lonllwq.7:8y < W0 7:By + LAl 4 ligalls, < Cr(L™"|Al + lignlls,)

and the proof of proposition 2 is completed. O

Since the assumption fy = Af* + go on the initial data made in proposition 2 is not
generic, we pose (1.4a) with initial data f € B, at time t = 0, show that u(-,# = 1) is of
the from (4.1), and then take fo = u(-, 1) as the initial data for (2.4) at time t = 1. The
solution u of (1.4a) is given formally by

u(, 8) = So(t) F() + Ng,(So() £() + (-, 1) = So(®) f()))-
Introduce the map T : Lo(0, 1; By) = Loo(0, 1; By) defined by

(TV)(C, 1) = Nor (v, 1) + So() )
It is clear that a fixed point vy of T satisfies

u(-, 1) = So() f() + vo(:, 1) (4.10)
Much as in the proof of proposition 2, define the set

B={ve Lo 1;8) : vllLpo1:8 < Ifllg,, 9(0,6) =0for 0 << 1)
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Proposition 1 implies that

BT vl Lo 0.1:82)
< cllv + SoM FIL orsyIV + S() o0 +1QQ + So(t) N 1.0.1:80)
< (vl L@ 1:8) + W ils) P vliLaoa:8 t 1S0() @ N Low(0.1:82))-

Now Qf (k) = q(k) F(k) and 0 (0) =0, so lemma 3 implies
1S0(8) OF N Lmo.:8 < @SB S cli flls,-

Together these estimates yield that if v € B, the there is a constant ¢ independent of such
v for which

oo < chFIE
and hence if || fllz, € R with R small enough, then

1TVl Lo©.1:80 < I flIBs

For such values of R, T maps B into B. Similarly, if R is small enough, T is a strict
contraction on B, and thus T has a unique fixed point vo € B. Rewriting (4.10) then yields

u(x, 1) = Af* + (S f — Af*)+vo
where A = f(O). Defining fo(x) = u(x, 1), it is seen that
fo=Af"+80 (4.11)

where Go(k) = e~H* (7% Fo) = F(@)) +To(k. 1). Hence §o(0) =0 and ligolla, < cllfllza,
as required to satisfy the conditions of proposition 2.

4.2. The main result

The asymptotic behaviour of u, the solution of (1.4a, b), as t — 00, I8 linked to the limit,
as n — 00, of the sequence (fu)22g of initial data in (2.4),, via the relation

L'u(L"x, L¥") = fa(x). (4.12)

0,1,2,---, then the
u(-, 1) and the fa's

Assuming that the conditions of proposition 2 hold uniformly in n
results of section 4.1 imply that if the initial data f € Ba, then fo
defined above have the form

mou

fo=Af"+8n n=012:- (4.13)

where A is the total mass of each f,, and the gn lie in B, and satisfy 2.(0) =0. Moreover,
the f, satisfy the recursion relations

< forr = Rafa = RO fo &+ LNTpua)CL) n=012""- (4.14)

where R, and R?, are the renormalization maps (2.9), (2.10), N, is the nonlinear term
defined in (2.7), and T = L. The relations (4.14) can be thought of as determining gu+1
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in terms of g, and A via (4.13). Before we make these relations explicit it is useful for
notational purposes to introduce the sequence of functions {¢,)52, C By, defined by

wo = Af*
0 +1 (4.15)
Pni1 = Ripa + NII7 (AY) forn>0

where, as before, ¥ (x, ) = p'-,f‘(x/ﬁlﬁ) or, equivalently, ¥ (k, t) = e~ %", This definition

is motivated in part by the fact made apparent in (1.6) that Ay is a good approximation to

u and hence, in view of proposition 1, N;T.'J(AW) is a good approximation to N;T.'_l(u,,).
At this point, a technical result about ¥ is needed.

Lemma 6. The function ¥ defined above satisfies

(a) LPPPGrei(k, 1Ly = yr+i (kL2 1) (4.16a)
and
(b) LN} 7 (AY)(-L) = N7t (AY)() (4.16b)

Proof. (a) From the relation

PR URLY 1y = | FRLP —ky ki )T hr ) - T, 5) by - dy
Rr
and Y(L"%#k, s) = eIt *™s = y (k, Ls), it transpires that

THGL ty= | k- L%k + ...+ k), Ls)GL PPk, Ls)
Rr

LTk, Lsydky ... dk,,
= LPPBY PRk, Ls).

(b) From (a) and (2.7), it is found that

F(LNY 7 (AY)(-L))(k)
= F(N[ 1 (AY))(k/L)

o T . ? ——
_ (Q/ o (1w [ £1) T 2 (E‘s> ds
p+1\L/J L

i)/"+|k ! P ie™ kN =), 1 na ~
— ST f e~ UK +ie )=y (Al//)"“(k,‘f)ds
T—I

where 5 = s/L?» =5/T. O

_ The results of lemma A of the appendix show that f, — ¢, € B, and satisfies
fa(0) = %,(0) = 0. Thus there are constants B, € R such that the relations (4.13) may
be rewritten as

fa=on+ B, S+ hy n=012... 4.17),
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where f) € B, is given by (3.6) and satisfies ?,:(O) =0, jf?'(O) =i, and h, € B, satisfies
hn(0) = h(0) = 0. Now the relations (4.14) determine h,,; and B, in terms of h,, B,,
and A via (4.17),, (4.16b) and the relation
fosr = RY@n + B fy' + ha) + LNJ 1 (un)(-L)

B 1
= @n+1 + (Tn + Cn) f]l.l + [Bn (R,(l)fr . zflt) + LNr,T(un)('L)
~ LNJ 1 (AY)CL) = Caf + R,?hn] (4.18)
where C, is defined by

1 d

=T a}-(Nln.T(un) — N{ 1+ (A¥))(0). 4.19)

Thus we have the recurrence relations

By = % + Cy (4.20)
and
hus1 = By (R,?f{‘ - %f,*) + LN} 7(un)(-L) = LN - (AY)CL) = Cofy + RShn.  (4.21)

From proposition 1, it follows that h,.; € B;, while an inspection of (4.21) shows that
ha(0) = 0 and &, (0) = O since C, satisfies (4.19).
It will be useful to estimate the B;-norm of h,. First, from (4.19), we have

1
ICal < FIINT 7 (un) — N 7(A¥) I3,
L

the right-hand side of which may be estimated via proposition 1 to give

c
[Cal < ZT}’"(”unHLm(I.T:B.) + 1AV L0, 7:8)) " 1un — A¥ || L1728,

It was shown in Bona er al (1994) that for smooth and sufficiently small initial data f;, the
following inequality holds:

lun — AY a8y S cn+ DL fiolls,.

Hence one derives
ICal < 2Ty Lfoll (1 4+ DL
< Culn+ DL £lig, (I £ 1, L.
Thus, if C.|| fiig, L**' <1, C, may be estimated thusly:

ICal < c(n + L2V £, (4.22)
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Consequently, the constant B, satisfies

|Bn—
18,1 < 2=t i
[Bol , x~ Ci- 1 - =
< +;LTE < |Bo|+C||fl|B,;(k+1)L !

and since By = @' (0, 1), it follows that | Bg| < | f|s,, so one obtains
|Bal < ¢ L7 f i, (4.23)

Taking the B;-norm of equation (4.21), and applying the triangle inequality to the right-hand
side leads to the inequality

* 1 *
Wnstlls, < IR hnlls, + | Bal IRSSY — 7/ ls,

+ LN 7 (un)(L) = NT p(AY)(-L)) I3,
+1Cal £ 113, (4.24)

valid for all n > 0. Making use of lemma 1 to estimate the first term on the right-hand side
of (4.24) yields

IRk llg, < cL72||AallB, (4.25)

while lemma 2 and (4.23) applied to the second term implies

1 = o
|Bal NRY ST = Zf{‘llza2 < L7 fllgeL ™ < LV fllg,.  (4.26)

From (4.22), it follows readily that
ICal £ B, < el + DLV fl, (4.27)

provided that || f||5, is small enough with respect to L. It remains to bound the nonlinear
term in (4.24). Using proposition 2, we may write u, = AY + v, where vl g8y S
cr(L7"|Al + {lgnlls,) and

&n =fn"‘Af*=¢"——Af‘+B,.fr+h,,.

Rescaling the x-variable, applying proposition |, and substituting u, = Ay + vy, leads to
the inequality

IL(NY 7 (ua)(-L) = Ni 7 (AY)(-L)Is,
< LN (un) = Ny 7 (AY) g,
< LT " (allLyo.7:80) + 1AY |l LW.7:8)) Vnll Lo 1.7:80)- (4.28)

As just noted, [|Unllza,7:8y < Cr(L™"|Al + lIgnlls,) and the formula defining g, leads
immediately to the inequality '

lgnllg, < llgn = Af™lls, + |Balll £ 1, + l1hall, - (4.29)



Higher-order asymptotics of decaying solutions 1199
Formula (A.3) of lemma A of the appendix implies, for |A| < 1, that
en — Af*lls, < clAILT".

Additionally, |B,| < cL™"||fllg, and |A| < || flig,» so the preceding estimates and (4.29)
imply
lgnlls, < ¢ L7 fll, + lihnll5,

whence

lonll L. 7:8) < Cr(LT"If 5, + Ballsy)-

Combining the bound above with (4.28) gives the useful result

IL(NY 7 ()(-L) = Ni 7 (AY) L)) iB,y

< CL L7"(Ifll, + Whallg,)P(L™" N fll, + UBallB,)- (4.30)
Together, the inequalities (4.25), (4.26), (4.27), and (4.30), when used in conjunction with
(4.24), yield the recurrence relation
Wrnsrlls, < Cln+ DLV g, + ¢ L7 halls,

+ CL L7 f g, + Whall)P (L7 fliB, + Balls,) (4.31)
valid for all n > 0.

Fixing € > 0 in accordance with the earlier condition guaranteeing the existence of
various fixed points, we consider the following induction hypothesis: for n = 0,1,2,---,

(D L2CLUfllg, + Ihalls)P <1

(ii)s  Nhallg, < C L7209 f|ig,

where C; is the constant in (4.31) depending upon L and C will be specified below. For
n =0, hg = go— Bo f]" where By = —igp(0), and ||goli, < Cli flla,. Thus it is adduced that
lholls, < Cll flls, and we see that (i)o is verified if || flls, < R for any R > 0 satisfying

LXC.((1 + C)R)? < 1.

The condition (ii)y is trivially satisfied at n = 0. Assume (i), and (ii), hold for
n=0,1,--,m We show they hold for n = m + 1. Applying (4.31) with n = m,
we have

1Amsills, < Cm+ L2 flig, + ¢ L2 A5,
+ CLL™" (1 fllB, + Whmllg)P (L™ £ ll3, + 1Bmlis,)

and the induction hypothesis (i), yields
lhmer g, < (Clm + 1)+ DL™2D | flig, + (C L™+ L™ )b,
<A(Cm + 1)+ DLV fiig, +2C L2 || hmlis,
< [(C(m o ]) + I)L—2e(m+l) +2C L—255] L—2m(l—e)”f”B2
< CL™M=9| £ i,
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where, if L 2> Lo(e, 5) and Lg is chosen large enough that

€ > sup {(Clm + 1) + DL™*+) 4 2 L=*C)

m20

then (ii)+1 follows. The relation (i)m+) is a consequence of (il)41 if | fllz, € R where
R is small enough to satisfy L2C(1 + C)?RP < 1. Thus the induction is complete. These
results are summarized in the following proposition.

Proposition 3. Let % < B < 1and p>2B. Then for any € > 0 and C > 0 there exists Lo
such that if L > Lo and || f ||, is small enough, then the functions f, given by (4.12) satisfy

1 fo — @n + BafD)5, < CLT7 U £, (4.32)
when @, is given in (A.1) and B, in (4.20).
Proof. From (4.13), we have

fn =@, + B"flt + h,

and from the induction argument above, h, satisfies |Aa,]lg, < C L~20=9|| f|I5,. Moreover,
this bound on h, and our previous estimate

lgnll, < cL™"I fllg, + lhnlls,.

together show that the g, are arbitrarily small, uniformly in n, if |[fllg, is chosen small
enough. This satisfies the conditions of proposition 2 and justifies the decomposition (4.13).

The case 8 = 1 requires a slight additional argument, since lemma 2 requires '5 <B <l

In fact (3.7) and (3.8) hold when 8 = 1 provided the exponent of L is multiplied by an
additional factor of 1 — & for any small § > 0. This § may then be absorbed in the € of
(4.32). O

To obtain the main result, it is useful to simplify the expression for ¢, and derive a
limiting expression for B,.

Lemma 7. Let @, be given by

k i ——
(?n(k) — Ae—lklzﬂ(l _ ia”k3) + imy’l / c—|k|2ﬂ(l—s)(Aw)p+l(k‘ s)ds
T—H

where Y (x,t) = ,-U'gwf‘(x/t‘/zﬂ). Then it follows that

”¢n - 5,: "Bz <C L_2"|Al. (4.33)

Proof. From formula (A.1),

Bull) = Ae M e RU=T 4 NIy k)
)
(@n — on)(k) = A e~ kPP (=1 kNA=T™) _ (f _jgnk3))

k! oy "
+iy" e kPO Ay ypHi (k, ) (e K= — 1) ds. (4.34)
p T
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We also have, for j =0,1,2and 0 <5 < 1,

d" [P TS =) R
_(e—la Ba-17") _ (1 - |a"k3)) < Caz"(l + |k|)6

dks

and

i
d—dﬁ(e—'“ k=) _ 1)( < Ca"(1 + kDY

These estimates, plus an argument similar to that used in the estimation of the nonlinear
term in (A.2), when applied to (4.34) yield

lon — Pulls, < ClAla™ + CIAIPL™"a" < ClAIL™™"

O

Lemma 8. Let the sequence {B,) be given by (4.20). Then there exists a constant B € R
given by (4.36) below such that B, L"n:»wB, and for any € > O there is a constant ¢ > 0
such that

IL"B, — Bl < c L") i,

Proof. Equation (4.20) implies that
B‘) S (- 1-k)
-+ Z Lo (4.35)

where By = iw'(0, 1) and C, is given by (4.17). The relation (2.7) for N;' . in conjunction
with (4.17), upon evaluating the derivative at k = 0, yields

n: T e —
|

— (AY)P ' (x, 5)) dx ds

=Zp+]

where T = L2?#. The substitution u,(x,s) = L"u(L"x, T"s), a change of variables, and
(4.18a) obtains the formula

Tn+|
= (n+l)f f ' (x,s) - (A1//)"+'(x $))dx ds

n

p+l

which, in view of (4.34), produces the relations
. T’l
B,=L" (Bo+ — / (u"*' (x, 5) = (AP (x, ?))) dx ds
p+
forn=20,1,2,---. If we define B by

B = By + '—f f (u" ' (x,5) — (AY)"*(x,s)) dxds . (4.36)
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then

|L"B, — B| = Sl foo /.oc(u”“(x,s) ~ (AY)(x, 5))dx ds
p+1Jr Jowo
oo P o5}
< cf / lu — Ayr| fulP~*|Ay|* dx ds. 4.37)
Tn k=] V=0

But ¥ (x,t) = iy f*(x/t'/?), s0

WG Dl <ce™#
and
W e S ct7%
while (1.6) implies that for any € > 0, there is a C such that for || f]|s, small enough,

1) = AYC. Dl < ey

and

11
G 1) = AP Ol < 0.

These bounds and (4.36) together produce the estimate

[e.e]

IL"B, — Bl < c/ e — A lgalul ol ?2 | A o ds

w1 [% -4 L ol
<clfig fT R A Pl P
_p+l ~ _ _ -
S c”f"Z;H(Tn) %F'+|+€ < C"f”Z:'IL (p+1 Zﬂ)n+€2ﬂn‘
But, p+ 1 —28 > 1 since 28 < p, so taking € = 28¢€, and | f|lg, < 1, we have
2
IL"By — B] < c L™= £l (L") = ¢ L0~ f | ,.

ad
We are now in a position to state and prove our main result.

Theorem 1. Let 1/2 < 8 < 1 and p 2 28 be given. If || fll, is small enough, there exist
constants A and B depending upon f such that for any € > 0 the solution u of (1.4a,b)
satisfies

(e 28, 1) =T p(t"% 0)s, < ct™% f s, (4.38)

where

ST k(s 3 L RIS ot

Faptk,t)y=Ae 1=tk )+m € (Ay)rti(k, s)ds
. |

+iBke WM (4.39)
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Proof. The preliminary results in proposition 3, and lemmas 7 and 8 imply

~ B
Sn — ((Pn + ﬁf;)

B,

<= (on + Bl + lom = il + 2= = Ba| U7

<L) flig,.
But, f, = L"u(L"x, L*"), and setting t = L%", we find

1% (7% 1) ~ Ta (2% t)lg, < ct73 2 £ g, (4.40)
where

Capx,t) =172, (x/t"1%) + B} (x /'), (4.41)
Dividing by ¢!/28 and setting € = €/8, (4.38) results. The equivalence of (4.39) and (4.41)
follows from the definitions of @, and f}* given by lemma 7 and (3.6). O

5. L;- and L,-bounds
The result (4.38) of theorem 1 can be reinterpreted in terms of the L;- and L.-spatial

norms. From the definition of the B;-norm, (4.38) implies

sup {(1+ [k[)Ek ™%, 1) — T gkt~ %, 1)
k

+ (1 + kD@ ) =T pk™ 5, 01} S ct™T | fllg,. (5.1)
Setting k = k¢=1/28 in (5.1) yields
sup((1 + £ % (k)@ (K. 1) — Ta 8k, 1)|
k

(L + PR @E, 1) - T g & O < ct™#+ | fllg,. (5.2)

In particular

1
- 2 = ctT 7 flig
fu(k,t) — Ta gk, t)| £ 1 4 137213

and

i
—ght
ct™ ¥ fls,

@k, 1)~ Ty gk, 0] < — 2
@& D ~Fpa® 0l <

which yield L,- and L,-bounds

—Z+e

[@C, 1) = TapC 0, <ct™87 flg,
@G, t) = TanC 0l <ct ™ flg (5.3)

and the L,- and L,-bounds
- I 5
[@C, 1) =T gC. Ol St flig, )
o~ Y] =
@ 1) =Ty g Oy, S ct™7% fllg,. (5.4)

By Plancherel’s theorem | f|;, = IfILz. and additionally |f|., < I_ﬂL,, while if’ = ;f
Combining these elementary relations with (5.3) and (5.4) yields precisely the estimates
claimed in (1.9) and (1.10). a



1204 J L Bona et al
6. Discussion

In providing a detailed asymptotic form for the decay of solutions of the model equation
(1.4), the foregoing theory makes clear the relative strengths of dissipative, dispersive, and
nonlinear effects. While dissipation dominates the decay, dispersion and nonlinearity are
evident in second-order terms. In fact, these results may be interpreted as providing an
asymptotic form for the difference u — v of the solution of the model equation and the
solution of the linear, dissipative equation (1.7). A subtle dependence upon the initial data
also obtains in capturing the leading order term in the asymptotics when the disturbance
has zero total mass.

Going well beyond our initial study Bona et al (1994) using the renormalization group
methods of Bricmont et al (1994), the present work shows more clearly the efficacy of these
techniques. Interesting further lines of inquiry include determining the complete temporal
asymptotics and the application of these techniques to more general equations. The former
has been accomplished, for instance, by Wayne (1994), where the long-time asymptotics to
arbitrary order are derived for a class of parabolic equations which include local dissipation
and nonlinearity but not dispersion.

Appendix

Lemma A. The @,’s introduced in (4.15) admit the following explicit formulae in Fourier
transformed variables:

Falk) = A eI T AT ™) L NnTE CAY) (k). (A1)
Moreover,

INF- (A5, < c L7"IAJP (A2)
and

lgn — Af*lis, < clAla” +c L7 AP (A3)

where W (x, 1) = s f*(x/1'1%P).
Proof. The formula (A.1) follows from the relation (4.15), (4.16a, b) and induction. To
bound the nonlinear term, we first establish that

WPk, O] < et F T ok, 1) (A4)

for some p € (0, 1) depending only on p. Indeed, for p=1,
— © - -~
Yk, 1) = / Yk — ki, )Y (ky, 1) dky
-00

. kf2 - oo =
=/ W(k—kl)w(kn.t)dh%—/k/z Yk — k)Y ki, 1) dki. (AS)

-0

———

Since J(k, 1= e {I; is even in k, hence so is ¥P+!. Assume without loss of generality
that k > 0. Then, it follows that

e 2|Il//(k =k, 0l =vk/2,1)

k e(—o00.k/
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while

X 19 ki, ) = Y (k/2,1)

and the two integrals in (4.23) may therefore be bounded above by

k/2A i~ = = 1 ~
f Yk — ki, )Yk, 1) dkll SY&/2,0l¥®|e < kaﬁ(k/z- 1)

—00

. -~ -~ -~ 1 ~
‘ f Pk =k, P ke, 1) dk.| <VE2DTOlw < o7 ¥ k/2,0),
k2 t

Thus ’ﬁ(k, t)l < ct'i% (k/2,t). An inductive argument gives (A.4) for p = 2,3, ...
From the definition (2.7) of N; , we have

i a l ————
F(Np- | (AY) (k) = '—p"+—y1 f e~ KPP+ = 55T (1 ) ds
T-n

and hence

i
s =1 Yok, s)ds

[F(NF-u ((AYD )] < clAIPy" K|e™ f

1
1kt T NPy S 2
< c|AIPy" kle™™ f e =P ITs o= 25 ds.

Bounding the exponential term in the integral by its L-norm, and the polynomial term by
its Ly-norm, there obtains

|F (N}, (AY))(K)] < clAIPIkle™ % (p Ty < ] AP [kle~ o4 L

where y = L¥~(*+D and T = L%, and hence yT % ~' = L. In consequence, it transpires
that

27

sup{(1 + [kI)| F (N7 , (AY NI} < c|AIPL™" sup{(1 + {k]He 7} < c|A|IPL™.
k k

Since ;‘%W = a’ * 17; * ok 1’[/\, and &/\’(k, t)y = Zﬂtlklzﬂ“{[/\(k, 1), the term

d2

d
PAY il n -
Sl:P{(l + 1kl )'dk (F (N7 (A¥)) (R + (1 + 1K) i

(F(N7-,g (A¢))(k)‘ }

is similarly bounded, and (A.2) follows. The upper bound (A.3) follows immediately from
the triangle inequality, (A.1), and (A.2). ]
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