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ANALYTICITY OF SOLITARY-WAVE SOLUTIONS OF MODEL
EQUATIONS FOR LONG WAVES"
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Abstract. It is shown that solitary-wave solutions of model equations for long waves have
an analytic extension to a strip in the complex plane that is symmetric about the real axis. The
classes of equations to which the analysis applies include equations of Korteweg~de Vries type, the
regularized long-wave equations, and particular instances of nonlinear Schrédinger equations.
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1. Introduction. This note is concerned with solitary-wave solutions of model
equations for long waves and aims to cast light on their regularity properties. The
prototypical example in view is the well-known travelling-wave solution

(1.1) u(z,t) = ¢c(z— (c+1)t) = 3csech? (515/3(1: —(c+ 1)t))

of the classical Korteweg—de Vries equation
(1.2) Us + Ug + UUg + Ugzz = 0.

For any positive value of c, the function of z and ¢ defined in (1.1) via the function ¢.
of one real variable is an exact solution of (1.2) which is infinitely differentiable and
which decays rapidly to zero at oo . These properties are possessed by solitary-wave
solutions of & considerable range of evolution equations that feature a balance between
nonlinearity and dispersion. As these special travelling-wave solutions of nonlinear,
dispersive wave equations are known in many cases to play a significant role in the
long-term asymptotics of general classes of solutions, they have come in for detailed
study in the last couple of decades. Existence and regularity theory for solitary waves
has been developed recently by Benjamin et al. [3] and Weinstein [12]. Their results
apply to a broad class of model equations to be introduced presently. The outcome of
these theories is that the relevant profiles ¢ of the solitary-wave solutions are often
positive C®-functions having a single maximum and which decay monotonically to
zero at infinity, just as does the sech? solutions of the Korteweg-de Vries equation
displayed above. Moreover, ¢. and all its derivatives lie in Ly N L.

In fact, the sech?-solitary-wave solution of (1.2) has further regularity than just
C*-smoothness. The function ¢ in (1.1) defined on the real axis R is real analytic
and admits an analytic extension to the complex strip {z = z+iy : |y| < n/ct/?}. Ttis
this latter property on which attention will be focused in the present study. While the
theory developed here seems to apply to a considerable range of equations, the ideas
are most transparently presented in the context of the following relatively concrete
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726 Y1 A. LI AND JERRY L. BONA

classes of model equations for waves in nonlinear dispersive media:

(1.3) ug + Ug + uPug — (Mu)z =0 (Korteweg—de Vries type),
(1.4) ug + ug + vPuz + (Mu)y =0 (regularized long-wave type),
(1.5) dug — Mu + [ufPu =0 (Schrodinger type).

In the first two models, p is a positive integer, while p is a positive even integer in
(1.5). The linear operator M is a Fourier multiplier operator defined by

(1.6) (Mv)(€) = a(€)D(€)

whose nonnegative symbol a satisfies certain growth conditions to be spelled out
presently. The linear transformation M is called the dispersion operator and its
symbol a is related to the linear dispersion relation for the model in question (see
Benjamin [2] or Whitham [13]).

We intend to show that as a rule, solitary-wave solutions of these model equations
possess the property of being extensible to an analytic function defined on a strip in
the complex plane C, which lies symmetrically about the real axis R on which the
wave profile is ostensibly defined. This fact is interesting in its own right, but in
addition, it has implications regarding uniqueness [9] and appears to be useful in
assessing whether or not a particular solitary wave is actually a soliton (cf. (5], (6],
).

The plan of the paper is as follows. In the next section, a few convenient notational
conventions are introduced. In §3, the main result for travelling-wave solutions of
Korteweg—de Vries type and regularized long-wave type is enunciated and proved.
Section 4 is concerned with the analogous result for nonlinear Schrodinger equations.
The paper concludes with a few comments about regularity issues related to those
discussed here.

2. Notation. By L, = Lp(R) for p in the range 1 < p < oo, we mean the
standard class of pth-power Lebesgue-integrable functions on the real line R with the
usual modification if p = co. The standard norm on L, will be denoted by - llp
The Fourier transform of a Lebesgue-measurable function ¢ defined on R is denoted
by ¢ and is defined to be

(2.2) 4O == [ ': o(x)e=dz.

The convolution of two functions f and g defined on R is written f * g. Multiple
convolution of a function with itself will appear frequently, and it is therefore conve-
pient to introduce notation for this operation. If ¢ is a measurable function defined
on R and n is a positive integer, define the function Vp¢ by the recipe

v1¢ = ¢’
and for n > 1,
Vad(z) = (6 * Vn-19)(2)

(2:2) =[f¢@_wwqaw@.
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By a solitary-wave solution of (1.3) or (1.4) for a given positive integer p and
dispersion symbol a, we shall mean a function ¢ : R — R such that ¢, ¢’, and M¢ all
lie in L, and such that for some positive constant ¢, ¢(x — ct) defines an L,-solution
of (1.3) or (1.4). A similar definition will be adopted later for solutions of (1.5). As
mentioned already, existence of such solutions for a wide range of symbols a has been
dealt with in the recent works of Benjamin et al. [3] and Weinstein [12].

For any z € R, the greatest integer less than or equal to z is denoted by |z].

3. Results for Korteweg—de Vries type and regularized long-wave mod-
els. After a preparatory lemma, the principal result for equations of the types de-
picted in (1.3) and (1.4) is stated and proved.

LEMMA 1. Let c > 1 be given. Suppose ¢ = ¢(z — ct) defines a solitary-wave
solution of (1.3) or (1.4) for a given value of p and symbol o of the dispersion operator
M. Suppose also that for some positive constants A and r, a(f) > A|¢|" for all € €R.
Then the function

()
V2r((p+1)(c - 1)]?
lies in Ly N Ly and solves the egquation
(3.2) (142 (€)) B(€) = Vpra%(©),

where A =1/(c — 1) if ¢ is a solution of (1.3) and A = ¢/(c— 1) if ¢ is a solution of
(1.4).
Proof. Suppose ¢ defines a solitary-wave solution of (1.3) as described in §2. Then

(mc+1)¢' +¢7¢' — M¢' =0,

(3.1) P(€) =

from which it follows that, at least in the sense of tempered distributions,

Voot _
(3.3) [(c=1)+ M]¢ T 1¢’ = constant.
Since each term on the left-hand side is an Lo-function by assumption, the constant
on the right-hand side must be zero. Applying the Fourier transform to (3.3) and
using (1.6) leads directly to the desired result (3.2) with A =1/(c —1).
Because ¢ > 1 and M has a nonnegative symbol, it follows from (3.3) with the
constant equal to zero that

1

—lle=1+ a7,

(3.3") ¢ =

Since ¢ € H! by assumption, the product ¢**! is also in H!. For any s € R, the
linear operator (¢ — 1+ M)~! maps H*® into H**". Hence it transpires from (3.3')
that ¢ € H'*". In consequence, ¢**! € H!*" whence ¢ € H*?", and so on. It is
thus inferred that ¢ € H*, from which it is adduced at once that

(3.4) / : (1+ €)™ (&) de < oo

for any m. An immediate consequence of (3.4) is that ¢ € L; N Ly, as stated in the
lemma.
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The same considerations lead to the advertised result when ¢ defines instead a
solitary-wave solution of (1.4). 0

With this simple lemma in hand, the main issue may be confronted. The idea
is to demonstrate that if ¢ defines a solitary-wave solution of (1.3) or (1.4), then its
Fourier transform @ has exponential decay at o00. In consequence, the Paley-Wiener
theorem assures that ¢ itself is analytic in a complex strip centered about the real
axis.

We begin with a special case of the main result, which will prove to be instructive
and which contains the essence of the argument that applies to the more general
situations. .

THEOREM 2. Let an integer p > 1 and a wave speed ¢ > 1 be given. Suppose that
¢ as in Lemma 1 defines a solitary-wave solution of (1.3) or (1.4) corresponding to
the dispersive symbol a(€) = |€|™ for some real number m > 1. Then there ezists a
constant o > 0 such that for any p with0< p <o, :

(3.5) sup e*¥l|(€)] < oo.
¢eR

Proof. By Lemma 1, it suffices to prove (3.5) for the function 4 defined in (3.1)
that satisfies equation (3.2).

For any k with 0 < k < m and A > 0, define the nonnegative function fi for
£ >0 by

k

fe(®) = T3

It is straightforward to determine that for all £ > 0,

(3.6) f(®) < f—;

where 8 = (5)"% (1—%)1_'{- if0<k<m,and §, =8 =1

m
Case I. m > 1 is an integer.

Suppose that ¢ satisfies (3.2) and (3.4). When 0 < k < m 1, (3.6) may be used
to conclude that

le*(0)| = %,; [Ves1d(6)|
< % [Voua(@)
(3.7) . )
< A—#VMIMI(E)

1 (kp k-1 )
< = (_n—v, + 1) Vp+1|91(6)

for any £ € R. On the other hand, for any n > 0 and any §; € R, we have
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i§1|m+n
14 Alés|™

-1 [ Pe-a)| [ Pe-o) [

(311

™" 1(e)] = Vo] < BVl

00 p Lig

/ ( (& — &) + §p+1) D(E&p — Epr1)P(Ep1)| dbprrdbp - - - db

—% | \i=1
(38) 4 o g 3
SX/;M.‘.LM P;_ 1"1!""."'?4.1!
-~ p -

et d(Eprn) [ (& — &+1)" (& = Eiv1)| dprr -+~ dE2

) i=1

<3 2 (D) oms0] = oro] =+ [ormd0)] @),

fri=n

where |(-)9(-)|(€) = |€™(€)| and we have introduced the standard multiindex no-
tation 7 = (1,...,Tp41), || =11+ -+ +7py1, and (7) = r,s-ﬁ-[,,,,ll' fo<li<m-1,
then using (3.7) in (3.8) leads to the inequality

p+1 copies of Vp+1l$|

.

. p+1 - - -
™ (&)l < ; I (f,) (H —1—) Vor1[Bl # -+ % Vo [91(61)

(3.9) iri=t o1 AR
1 l - 1 .
= 2 3 (D) Vornhiie) = sam+ DVouriiE)
" irl=t "

It follows from (3.7) and (3.9) that for any £ € R and any k with 0 < k < 2m — 1,
one has

k-1
(3.10) e90] < 53 (Z+1) Veroitalr o

where, as mentioned previously, | £ | denotes the greatest integer less than or equal
to ,—’:1-
Tt is intended to establish (3.10) for all values of k, and to this end we argue by

induction, supposing that the inequality (3.10) is true for all k with 0 < k<nam-1
for a fixed integer n > 2. Let k = nm + ! for some integer ! in [0,m — 1. Then (3.8)
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and the induction hypothesis allow one to infer the following inequality:
(3.11)

ledee)| < 5 > ((n—12m+l) (Ord] e[ rod] ¢ [0 ©
Irl=(n—1)m+l
—_ p+1 (r ri—1 )
: §|r|=<v§)m+z ((" lr)m ' l) (.1;[1 (i:“'tl—)_> Vipr([3 Jp+1) 1

V(12 )P Viprn(( 2582 ) 1)

. (n—1Lym+1 ( L "‘) 116
MJﬂlr|=('§)m+z( T ) .1:11( ! > e+ (|3 Je+1)

j=1

If inequality (3.10) is specialized to the case k = 0, one infers that || < vp+1|1l)|.
Using this fact and the elementary formula

o0 ((3)r+)

':(1’+1)< i[ J+21)<(P+1)( rf 'J+p+1)
=(p+1)( l(" 1)m+£J+P+1)=@+1)(p[nmm+EJ+1)

oo (&)

one obtains

(312) vEf*‘wl)(Lr.-/meﬂ)“"' S V(| & 1) ¥
Using a specialization of the multinomial Abel identity (see [11, p. 26]), namely

An(z1,Z2, .-, TM)

- g::N (JZ ) ili‘l[l(z,- + k)Rt

M M i
= (:B1$2---$M)_1 (in> (Z$5+N) s
1 1

and the simple relation Z‘I’H(n —1) = (n—1)m +1—p— 1, one obtains

—1)ym+1 ptl § ri—1
> ()G
jrl=(n—1)m+1 i=1

ptl

= 3 ((n—lr)m+z) (%)‘Ll“,(r«—l)pﬁ(%Jm)r.._l

[ri=(n—1)m+l 1
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_ (2_) (rn=1)m+i—p—1 A (E _’n'_l 2)
m (n—1)m+i p) p7 'Wp
(n=1)m-+i-p-1 =(p+1) (n—1)m+i-1
=(£) m 4 (E) (p+1)m ((p+1)m+(n_1)m+l)
m P P }
nm+1 (n=1)m+i-1
=(@+1) ( —p+ 1)
kp k~1-m
=(p+1) (; + 1)
k-1
< (E’i + 1) .
m

The latter inequality, when combined with (3.11), (3.12), and the induction hypoth-
esis, yields
X 1 (kp o \*1 R
k — ——
9] < 5 (Z+1) Voun(a s BI©
for any integer k > 0 . It follows that (3.10) holds for any £ € R and any integer

k>o0.
Using the fact that ) € L;(R), we infer that

v(p+1)(|_',§;JP+1)I¢| < I¥ll, "v(P+1)([;’.‘.-JP+1)-1W;'”2
< 19l [Vipany(( & o=,

<o < g EO L2

and so

kg 113 (%2 N7 ot (Uempr)—2
(3.13) |€59(€)] < Wm A\ 1 NIl
for any £ € R.

To complete the proof for Case I, consider the sequence

(2 )H IIEOE)

10 * = mt!

for k=0,1,2,.... Because the ratio °—:'kﬂ takes the form
k+1-1 (p+1)(ﬂ‘_'t}.12+1)
X k+1 m
ars _ KB (£l 4 )7 Il

kAt ()" )

k—1

1 ez (p 1 14 _P ==
= si/m 1%l =i ) ¥ et ’
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it is readily seen that

—— D .

ak+1 _ ep A~ lptlp
k—oo Gk - m }\1/"' "¢"1 ™

m =t
Hence the pOWer series Y_p—o axp converges for |u| < "":Z |y = - In conse-
quence of (3.13) and (3.14), it is seen that for any £ €R,

~ e k k ~
A = 3 L 1)
k=0 = g

g (kp s x
B (; o 1) D Wk/mipD)

z
M8

1917 &gkt A=
Iz <=
<=2 axp <0
1113 ,;
B .0 "
provided |u| < mA ) U2 v s the function el |4(€)| appears to be uni-

formly bounded foripsuch choices of u, and this is the desired conclusion in case m is

a positive integer.
Case I1. m > 1 is not an integer. e
If mo = |m] and ¢ = maXo<e<oo %’%—;, then it follows from (3.2) that

e

TT e Vp+11¥1(6)-

(3.15) 1p(e)l <

Now one may use (3.15) and induction as in the proof of Case I to prove that

. (pH1) LK/ mol+1 ( k . i
0100 Jeie] < Lo (2 +1) V()P

holds for any integer k > 0 and all £ € R. In consequence, the following inequality is
obtained for integers k and § € R:
: (p+1)Lk/mol+1 [ k k=1,
e -
I Pty G 1) I

Thus it appears that for all £ €R,
- w k k -~
HE5(0)] = 30 LE 19(6)
=0 '

B2 & kgt DIk/molt [ kp b () (Lk/molp+D)
S =0 1 \k/m —+1 “"/’“1 <>
""If’lh k=0 kl A 0 mo

s . m 1fm A
for any p satisfying 0 < p < a?&ﬁ"%?“'f’lh (p+1)p/mo_

If the results just obtained for 4 are translated into results about $, it appears
that if ¢(x — ct) defines a solitary-wave solution of (1.3), then

(3.17) sup e#l¢!|(€)| < o0
¢eR
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for any 4 satisfying

m(c — 1)P/™(p 4 1)P+1)/m(on)(p+1)p/2m | _piryp
0<pu< ™=V )ep (2m) I = pr(mac, 9)

when 1 < [m] = m, or for any p satisfying

mo(c — 1)P/™e(p 4+ 1)P+1)/mo (9 (p+1)p/2mo (et
( ) (pepg(t)"i'l}/mo ( ) "¢"1 =p1(maca ¢)

O<pu<

when 1 <mp = |m| < m.
On the other hand, if ¢(z — ct) defines a solitary-wave solution of (1.4), then
(3.17) holds for this ¢ for any x with

mct/™(c — 1)P/™(p + 1)(@+1)/m (o) (P+1)p/2m

o =(ptl)p
N 1Bl ™ = pam,c, )

O<pucx<

when 1 < [m] = m, or for any x with

1/mo (s _ 1\P/mo (P+1)/mo (9,.)(+1)p/2mo  ~(p+1
moc /™o (c— 1)P/™o(p 4 1) (27) o et

O<pu<

when 1 <mg = |m]| <m.

The theorem is thus seen to be valid if one chooses o = p1 for solutions of (1.3)
and o = p, for solutions of (1.4). O

An inspection of the proof presented above shows that the specific assumption
() = [€|™ is not needed. Indeed, the presumption that there are positive constants
A >0 and m > 1 such that

(3.18) AEI™ < ()

for all ¢ € R suffices for our theory. The lower bound in (3.18) implies that the
normalized Fourier transform 1) satisfies

N " 1 A
619) WO = e 90 < T i)

and it is this inequality that is the basis for the estimates appearing in the proof of
Theorem 2. In consequence of these remarks, we can assert the following corollary to
the proof of Theorem 2.

COROLLARY 3. Let u(z,t) = ¢(z — ct) be a solitary-wave solution of the equation

ut + ug + uPuz ~'(Mu), =0
or the equation )
ug + Uz + uPuz + (Mu), =0,

where p > 1 is an integer and m@) = a(£)P(€) with a(&) satisfying (3.18) for some
m 21 and A > 0. Then there exists a constant o > 0 such that

sup e*%l|g(£)] < oo
=

foranyp withO< p<o.
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The result concerning analyticity of ¢ now follows immediately from Theorem 2
or Corollary 3 together with the Paley—~Wiener theorem.

THEOREM 4. Let ¢ satisfy the assumptions of Corollary 3 and let ¢ > 0 be as in
the conclusion of this corollary. Then there is a function ®(z) defined and holomorphic
on the open strip {z € C: |Sz| < o} such that ®(z) = ¢(z) for allz € R.

Proof. Let p lie in the open interval (0,0). Choose a u; > 0 satisfying 0 < g <
p1 < 0. Then it follows that

/co e?#8l|d(¢)|2de = /jo e~ Am—mltleZmlel| 3 () 2de

(3.20) .
s1lél| 4 —2(p1—p) ¢l
<sup (ek150))" [ e & < .

Define the function
I
o) = —= [ b a

for any z = 2 + iy € Q = {2 € C; (92| < o}. Using (3.20) and the Paley-Wiener
theorem [10], one may conclude that &(z) is a well-defined, analytic function on €.
Of course, Plancherel’s theorem implies that &(z) = &(z) for any z € R. O

An immediate consequence of the analyticity expressed in Theorem 4 is the fol-
lowing interesting result.

COROLLARY 5. Suppose the hypotheses of Corollary 3 to hold and let ¢ be a
solitary-wave solution of (1.3) or (1.4). Then ¢ cannot have compact support, nor
can it be the case that in any bounded set S C R, there are more than a finite number
of points x, € S such that ¢(z,) = v. In particular, ¢ has at most finitely many zeros
in any bounded subset of R.

Remarks. It is worth contrasting the last result with that obtained for the evolu-
tion equation

(321) Us + 'Urpuz + (uq):m:z =0,

where ¢ > 1 is an integer. In equation (3.21), the dispersive term is singular, and
this fact accounts for the compactly supported travelling-wave solutions (compactons)
discovered recently by Rosenau (see Hyman and Rosenau [7]). As Corollary 5 shows,
such solutions are not possible when the dispersion is nonsingular.

In case the symbol a(£) = |£|™, where m is an even integer, one may establish
the analyticity of ¢ by recourse to the local theory of ordinary differential equations.
It is not immediately transparent even in this case that the real analyticity thereby
established extends to analyticity in a complex strip. However, a little work in this
context reveals the truth of this assertion. These methods make no impression in case
the symbol a does not generate a local operator.

4. Further extensions. It is the purpose of this short section to expand the
range of the discussion to include equations of Schrédinger type as depicted in (1.5).
In (1.5), it is supposed that M is a dispersion operator with the symbol a as in (1.6)
and that p = 2r is an even natural number.

The travelling-wave solutions of (1.5) of interest here have the general form
e**b,,0(z — 6t), where w and @ are real numbers with 0 < w < 2r, say, and with
% : R — C a smooth function lying in L; N L. Of special interest are the so-called
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bound states. These are standing-wave solutions of (1.5) for which § =0, w = 2 > 0,
.and |¢| tends rapidly to zero at infinity. The function 4,0 = @ defining a bound
state e**¢q(z) satisfies the equation

(4.1) Q¢+ Mo~ ¢ ¢ = 0.

In the applications associated to Schrédinger equations, particular importance is at-
tached to ground states, which are bound states that minimize energy subject to fixed
charge. The associated waveforms ¢q are analogous to solitary-wave solutions of (1.3)
and (1.4) in that they are real valued, even, and rapidly decreasing to zero at infinity.
Such solutions fall under the auspices of our previous theory.

THEOREM 6. Let Q > 0 and let ¢q be a ground-state solution of (1.5) that lies in
Ly N Ly. Suppose p = 2r, where r is a positive integer, and suppose the symbol a of
M to satisfy (3.18). Then there exist a 0 > 0 and a function ®q defined and analytic
on the strip {z =z +1y : ly| < o} such that Bqo(z) = da(z) for all z € R.

The range of applicability of this result may be considerably broadened if the
dispersion operator is suitably specialized. Consider, for example, the special case
where a(k) = k?, corresponding to the one-dimensional equation

(4.2) e + Ugz + [u[PTu =0,

with r = 1 corresponding to the classical cubic Schrédinger equation. In this case, we
have the following simple lemma (cf. Bona and Soyeur [4]) relating bound states to
more general travelling-wave solutions. Define Ty : H' — H?! by

(4.3) (Tou) (z) = e'3%%u(z).

LEMMA 7. Let ¢ be an H'-function and let ¢ = Ty for some § € R. Then ¢
defines a bound state of (4.2) corresponding to the parameter Q@ = w — 162 > 0 if and
only if ¢ = v, ¢ defines a travelling-wave solution of (4.2).

Suppose that e**4),, g(z — t) is a travelling-wave solution of (4.1) corresponding
to a bound state e**¢q(z) under the transformation in (4.3). Suppose also that ¢q
is actually a ground state. Then according to Theorem 6, ¢q is the restriction to the
real axis of a function @ that is analytic in a strip {z : [3(2)| < o}. It follows that
Yw,6 is likewise the restriction to the real axis of a function ¥,, ¢ analytic in the same
strip, namely the function

U,0(2) = €49 ¢q(2).

While this result is a consequence of the general theory, such considerations are not
required in this special case. Equation (4.1) for ¢n can be solved explicitly in case
M = —82, and one readily finds that h

$a(z) = Asech!/ "(Bz),
where A= X/(r + 1)Q and B = rv/Q.

A more challenging situation arises when the symbol a(k) is a perturbation of
the Laplacean. Suppose that 1, ¢ defines a travelling-wave solution of (1.5) by the
formula

u(z,t) = e e, o(z — 6).
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Then 4, ¢ satisfies the equation
—wp — iy’ — My + [y =0.

Guided by the considerations that arose when M = —82 in (4.2) and (4.3), we write
Yu,0(z) = e"%o’d)(z). A computation shows ¢ to satisfy the equation

(4.9) (~w+6%/2)¢ — i6¢' — Mo+ |¢|*"¢ =0,
where the symbol & of the oper?.tor Mis given by

a(€) = afe - 6/2).
Assuming that ¢ is real valued, equation (4.4) takes the form
(4.5) Mo +i0¢ + (w— 62/2)p = ¢+,
or, in Fourier-transformed variables,

(4.6) [a(€ — 6/2) + €6 + w — 62/2] $(€) = 77 F1(¢).

Write a(€) = £2 + B(€), where B(¢) > c||™ for some constants m > 0 and ¢ > 0.
Then the symbol on the left-hand side of (4.6) may be written as

1
E+BE-6/2)+w- 19 2E€+de—6/2m+ 0,
where Q = w — 162 as before. If 2 > 0, then obviously we have

(4.7) €24 BE~6/2) +Q > Ay + Agle]?

for suitably chosen positive constants A; and Ap. Because of (4.7), the theory de-
veloped in §3 may be brought to bear, and we ascertain immediately that ¢ has an
analytic extension ® to a strip in C centered about the real axis. In consequence of
the relationship between ¢ and 1, the same conclusion is drawn about . This result
is summarized in our last proposition.

PROPOSITION 8. Suppose the symbol a of the dispersion operator M to have
the form o(€) = €2 + B(£), where B(E) > cl€|™ for some ¢ >.0 and m > 0. Let
u(z,t) = €4y, 0(z — 6t) be a travelling-wave solution of (1.5), where w — 302> 0.
Suppose .,6(y) = €4%¢(y), where ¢ is real-valued. Then there isa o > 0 and a
function W, ¢ analytic in the strip {z : |3(2)| < o} such that U, () = ., ¢(z) for
allz €R.

Remark. Equation (4.1) arises in more than one space dimension in the form

(4.8) iuy — Mu+ [ul>"u =0,
where u = u(z,,2,,...,2Z,,t) and M is a Fourier multiplier operator defined by

m(gh{%- .- 1§n) . a(§1’§27' .. 76‘") ﬁ(€17§2‘1' L] ,gn)-

Travelling-wave solutions analogous to those considered in one dimension have the
form e**y,, 9(z — 6t) where t,w € R and z,6 € R®. Bound states correspond to
0=0.
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It follows readily from the techniques developed in §3 that a ground-state solu-
tion ¢ of (4.8) is the restriction to R™ of a function & which is defined in a “strip”
{(21, 22,-.-,2n) € C" : |Q(z;)| < 0, for 1 £ j < n} and comprises an analytic
function of n complex variables there.

In case M = —A, then the n-dimensional analog of Lemma 7 allows bound
states to be related to general travelling waves via the operator Ty given by Tyw(z) =
e"i""'w(m) and thereby to extend the results on analyticity to more general travelling-
wave solutions.

5. Conclusion. Solitary-wave solutions of the classes (1.3), (1.4), and (1.5) of
nonlinear, dispersive wave equations have been shown to possess an analytic extension
into a complex strip around their original domain of definition. This further regularity
property of such travelling-wave solutions lays the groundwork for a broader use of
complex-variable methods in the study of these equations. Such techniques have
already proven to be useful in discussing a number of thorny problems connected
with uniqueness and soliton behavior (cf. [1], [5], [6], [8], [9]). Perhaps the door now
stands ajar to further developments along these lines.

An interesting project for further study would be to determine the type of sin-
gularities that arise when a solitary wave is extended into the complex plane. The
examples in hand indicate that these extensions will be meromorphic or fractional
powers of meromorphic functions. We have conjectured this to be the case under
fairly general conditions, but a proof has remained elusive.
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