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Numerical Simulation of Singular Solutions of
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ABSTRACT. Presented here are some detailed results from a. computer-assisted
study of singularity formation in solutions of generalized Korteweg-de Vries
equations u¢ + wPug + uzre = 0. This report supplements an earlier paper by
the same authors. Of special interest here will ‘be the path of the peak of the
solution as it nears blow-up. Also, more detailed information is provided than
heretofore about the structure of potentially singular solutions in the critical
exponent case p = 4.

1. Introduction. This paper is concerned with the initial-value problem for
the generalized Korteweg-de Vries equation (GKdV equation henceforth)

(1.1a) Uy + uPu, + gy = 0.

In (1.1a), u = u(z,t) is a real-valued function of the spatial variable z € [0,1] and
the temporal variable ¢t > 0, p is a positive integer, € is a positive constant and
subscripts connote partial differentiation. The partial differential equation (1.1a)
is considered in conjunction with initial data

(1.1b) u(z,0) = up(z) for 0< 2z <1,

where ug is a given smooth, real-valued function of z that is periodic of period 1.
Solutions u of (1.1) are sought that are likewise 1-periodic in the spatial variable.

Equation (1.1a) arises in many instances in modeling wave propagation in
weakly nonlinear, weakly dispersive regimes where dissipative effects can safely
be ignored. Because of their considerable role in describing a variety of physi-
cal systems, and because of their very interesting mathematical properties, these
equations have come in for substantial scrutiny in the last three decades.

It is our purpose here to study the initial- and periodic-boundary-value problem
(1.1) for values of p > 4. We will use high-order accurate numerical methods for
approximating solutions of (1.1). These tools will cast light on some fairly delicate
aspects of the evolution of relatively large initial data to be discussed presently.
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This article fits into the development by many authors of theory and intuition
about (1.1). Making no claim whatever to completeness, we mention as a sample the
papers of Kato (7], Bona, Strauss & Souganidis [4], Bona, Dougalis & Karakashian
(1], Pego & Weinstein [11], [12], some of which will inform the further discussion.
The present contribution particularly supplements two earlier studies by the same
group of authors (Bona et al. [2], [3]).

One of the primary focuses of Bona et al. [2] was to better understand the
instability of the special traveling-wave solutions of (1.1a) called solitary waves that
was predicted theoretically for p > 4 by Bona et al. [1] (see also Pego & Weinstein
(12]). Using a specially designed, adaptive version of our high-order numerical
scheme, it was observed that small perturbations of solitary-wave initial profiles
form similarity structures under the evolution (1.l1a), and that these similarity
profiles lead to the formation of singularities in the solution at a finite time. Indeed,
the numerical simulations point to the conjecture that there is a point (z*, t*) such
that u(z,t) — 400 as (z,t) — (z*,t*). A detailed analysis of computed blow-up
rates of various spatial norms of u as t approaches t* suggest that u has the form

1 -z

(1.2) u(z,t) = T _t)g/upx ((t' - £)1/3> + bounded term,
where x is a smooth, bounded function. The existence of such similarity solutions
x has recently been settled by Bona & Weissler [5], but this does not at once
imply the validity of (1.2) for a broad class of initial data, nor even for appropriate
perturbations of solitary waves.

In our companion paper Bona et al. [3], consideration was given to the effect
of dissipation on the singularity formation imputed to exist from the paper (2]. In
the main, we studied the initial-value problem for the GKdV-Burgers equation

U+ uPuz — OUzz + €Ugzz =0, 0< 2z <1, £>0,

(1.3) u(z,0) = up(x), 0<z <1,

where 6 is a positive constant, p is an integer greater than or equal to 4, and ug is
as in (1.1b). Among other things, the following interesting result came to light. Let
ug be given initial data and suppose the solution u emanating from ua blows up in
finite time in case § = 0in (1.3) (i.e. for (1.1)). Our theory and simulations indicate
that in this circumstance, there is a §. > 0 so that if § > 6., then the associated
solution u = u is uniformly bounded for (z,t) € [0,1] x [0, 00). However, if § < &,
the solutions us appear to form singularities in finite time with similarity-form
blow-up just as displayed in (1.2).

In the present paper, two issues are addressed that were not elaborated pre-
viously, but which are related to the results just described. The first is concerned
with the putative blow-up due to instability, of perturbed solitary waves. Very
careful observations indicate that the peak of a blowing-up solution, which is the
spatial point x = X (t) at which the solution at time ¢ makes its maximum positive
excursion, propagates as it becomes infinite. In Section 3, we report computational
evidence that X (t) moves according to the law X (¢) ~ z* — c(t* — t)/% as t ap-
proaches t*, where c is a positive constant. Another point taken up here which has
been largely neglected in the earlier work is the structure of solutions in the critical
case p = 4. In this case it was noted before that the computations relating to the
instability of solitary waves yielded much less definite results than for supercritical
values p > 4. A very careful set of numerical experiments is reported in Section
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4 that suggests strongly there is singularity formation as a result of the instabil-
ity, but that the structure of the blow-up may not follow so closely the paradigm
illustrated in (1.2).

The description of the numerical simulations in Sections 3 and 4 are preceded
in Section 2 by a summary of the algorithms used and a report of the analytical
facts pertaining to these algorithms. The paper concludes with a short section in
which open questions suggested by and related to the contents of Sections 3 and 4
are brought out,.

2. The Computational Procedures. The computer-generated data pre-
sented later in this report was obtained by a fully discrete Galerkin-finite-element
scheme that utilizes splines for the spatial discretization and high-order, conser-
vative, implicit Runge-Kutta methods of the Gauss-Legendre class for the time
stepping. The stability limitations are kept minimal by using an implicit scheme,
but there results as a consequence a nonlinear system of algebraic equations to solve
at each time step. These systems are solved approximately by a few iterations of
Newton-type, starting with an appropriate extrapolation of the solution based on
previous time levels.

The methods just outlined are developed in detail in Bona et al. [2]. They
comprise what we will refer to as the base scheme, and they feature uniform spatial
and temporal grids. The base scheme as realized by a Fortran code has been
extensively checked for accuracy and convergence as reported in Section 3 of 2]. It
is worth mentioning the recent, very satisfactory theoretical results pertaining to
the base scheme detailed in Karakashian & McKinney [6]. Let U™ connote the fully
discrete approximation to the exact solution u at the time tn = nk, where k is the
constant time step, generated by applying the base scheme with splines of order r
and a constant spatial grid of size A and a g-stage Gauss-Legendre time-stepping.
(Referring to the detailed aspects of the determination of U™ set forth in [2], this
involves one “outer” and two “inner” Newton iterations.) The theorem that applies
here is that there is a constant ¢ = c(u,t) depending on a low-order Sobolev-norm
of the solution u(-,t) for 0 < ¢t < T such that

n T 2
OSTSa%("/k ”U - u('vtn)”Lz < C(h’ +k q)v
uniformly for small A and k. The exponents r and 2q appearing above are the
optimal rates achievable by these specific approximation techniques.

Since most of the solutions we aim to approximate feature large variations and
very steep gradients, it will be necessary to equip the base scheme with adaptive
capabilities in both space and time. The decision to refine spatially is based on the
inverse inequality

Cu
lvllr. < m”")”Lz

which is valid for members of the finite-dimensional subspace S}, consisting of splines
of order r on a mesh of size h. The temporal adaptivity employed is based upon
limiting the variation of a discrete version of an integral invariant of (1.1a) (a
Hamiltonian functional in fact). We refer to [2] for more details.

3. Trajectory of the Center of the Peak Near Blow Up. The solitary-
wave solution of the GKdV-equation has the form u(z,t) = p(z — ct) where

(3.1) p(z) = Asech®P(K(z — z¢))
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with A > 0. Here K, A and ¢ are related by the formulas

. A 172 2k AP
_p[f(P+1)(P+2)] e+ 1)(p+2)

It was found in our earlier study (Bona et al. [2]) that if initial data uo in (1.1) is
taken as

(3.2) uo(z) = Ap(z),

say, where A > 1, and p > 4, then the associated solution u apparently evolves into
a similarity structure of the form depicted in (1.2). Thus the solution forms a single
peak that becomes infinite in finite time. Detailed aspects of the formation of the
singularity are presented in [2] in terms of the rate of blow-up of various norms of
the solution. In addition to evolving into a similarity structure and forming a single
peak, the peak itself propagates in the process of blowing up. It is this propagation
we wish to investigate in the present section. By means of numerical experiments,
the details of the propagation of the peak for times ¢ near the blow-up time t* will
be investigated both for initial-value problems for the GKdV-equation (1.1) and for
the GKdV-Burgers equation (1.3). A couple of different types of initial profiles will
be considered.

In the first groups of numerical experiments, the GKdV-equation (1.1a) was
integrated numerically with initial data ug as indicated in (3.1)-(3.2), a perturbed
solitary wave. We took A = 1.01, A = 2 and € = 5 X 10~* and computed the
solution for values of p = 5, 6 and 7. The relevant parameters appearing in our
numerical scheme were taken to be the same as those appearing in Tables 11, 15
and 16 for p = 5, 6, and 7, respectively, in [2].

For solutions u that develop a dominant peak like those considered here, let
X (t) connote the location of the peak, which is to say

and ¢

u(X(t),t) = Orgfi(lu(m,t).

Let (z*,t*) denote the point of blow-up. As an Ansatz, suppose that as t approaches
t*, X(t) has the form

(3.3) Xt)y=z"+C(t" -1)7,

where C and v are constants to be determined. As a consequence of the presumption
(3.3), for t near t* the speed of the peak of the solution would be

X(@t)=—C@t* -t

The evaluation of the parameters C and v and the estimation of how closely
the power law (3.3) describes what actually transpires is effected by making use of
technical aspects of the adaptive computer code to do with cutting the temporal
step, refining locally the spatial mesh and translating the peak into the region
of finest spatial mesh. These procedures are explained in Bona et al. [2]. The
refinement of the spatial structure takes place statically, with new grid points being
inserted in smaller and smaller; nested neighborhoods of z = 1/2. This refined mesh
is effective in following a blowing-up solution because the code systematically takes
advantage of the translation-invariance of the differential equations to place the
peak of the solution at or near £ = 1/2. These spatial shifts occur at times 7,
1 <1 < f, where 7; is the time when the i*h spatial refinement takes place. The 7;
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get very close to t* as i increases to f and X (7;) can be estimated by the quantities
x; +0.5, where z; is the accumulated amount of translation of the peak at the time
of the i*" refinement. Approximating 2* and ¢* by xy + 0.5 and 7y, respectively,
it is reasonable to expect that v should be approximated well, for ¢ large, but not
very close to ¢ = f, by the quantities

- log((zi — zy) /(2301 — z4))
(3.4) Y dog((m — )/ (i — 1p))

On the right-hand side of (3.4), there appear differences of terms that get extremely
close to each other as 7 increases. Care must be exercised therefore in their compu-
tation in order to avoid loss of accuracy due to cancelation. For example, TP —Ti
is actually computed as the sum of the differences Ar; = 7,4, — 7; formed by
accumulating small, but positive quantities during the refinement process.

In Table 1 the values of ; computed with (3.4) are recorded for the GKdV
equation with p = 5 and 6, for 1 = 5,10,...,30. It was found in Bona et al. (2],
that the p = 5 solitary wave with the aforementioned parameters evolved into a
similarity profile whose evolution was followed numerically up to its apparent blow-
up at z* = zy = 0.61333, t* = 74 = 0.022543. The adaptive code performed
f = 42 refinements achieving a maximum amplitude Unyay = 224,766. For p = 6
the analogous parameters were z* & z; = .54732, t* = Tr = 0.51541x 1072, f = 41,
Unax = 26, 099.

p=35 p==6

¥i Ci Vi C;

5 | .3388 | —.4128 | .3482 | —.3219
10 | .3306 | —.4082 | .3152 | —.3111
15 | .3393 | —.4168 | .3052 | —.3054
20 | .3374 | —.4148 | .3362 | —.3175
25| .3336 | —.4181 | .3409 | —.3153
30 | .3348 | —.4086 | .3101 | —.3104

TABLE 1. Values of ; and C; at the time 7; of the 3" spatial
refinement for GKdV. Solitary-wave initial profile (3.2).

The data in Table 1 is consistent with the hypothesis that ~ is a constant
independent of p, quite probably equal to 1/3; the same value appears from the
analogous data in the case p = 7 not shown here.

The parameter C' postulated as a constant in (3.3) may be approximated by
the numbers (z; —z;)/(7; — 7). This computation was found to be very sensitive
to small variations in the computed values of the +;, since Tf — 7; can become as
small as 107%0 in our computations. Instead, taking into account the robust value
v = 1/3 that emerged by use of (3.4), the computation of the approximations C;
of C at 7; was effected by the formula

Ci = (z; — )/ (s — 7)) /3.

The entries in Table 1 for C; stabilize and suggest that C is indeed a constant for
each p. Its values are about —.41 for p = 5, —.31 for p = 6, and —.28 for the p =7
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data not shown here. Hence, for the family of solutions evolving from perturbed
solitary-wave initial profiles of the form (3.1) with A = 2 and e = 5x 1074, C seems
to be well approximated by —2/p.

When consideration is given to the Korteweg-de Vries-Burgers model equation
(1.3) for small positive values of § so that solutions emanating from, say, initial
profiles of the type (3.1) still blow up in finite time as the computations in Bona et
al. (1996) suggest, practically the same values of v and C emerge. This is consistent
with the findings of the last-quoted paper in that it is again verified that values of
6 in the range of blow-up of GKdV-B do not affect the leading-order asymptotics
of the blow-up structure.

Analogous computations were performed using as initial data the Gaussian
profile

(3.5) uo(z) = exp (—100 (:c - %>2>

not specifically tied to a traveling-wave solution of this class of equations. For
example, using (3.5) as initial data for the dissipative equation in (1.3) with p = 5,
e =2x10"% and § = 1074, it was found that the solution apparently blew up
in finite time at the point (z*,t*) = (.72886,.37376) where the numerical solution
achieved a value Unax = 17,148. The mechanism of blow-up was identical to the
example discussed in Bona et al. [2] (cf. Figure 9 and Table 18 of that reference):
the initial Gaussian profile quickly resolved into a solitary-wave type pulse traveling
to the right, followed by a hump. Subsequently, the solitary-wave portion became
unstable, evolving into a similarity solution apparently of the form displayed in
(1.2). The computed values of v; and C; associated with the trajectory of this
leading pulse as it blew up are given in Table 2.

1 5 10 15 20 25 30
v | 3384 3320 3315 3301 .3380 .3288
C; | —.3049 | —.3053 | —.3019 | —.3021 | —.3067 | —.3028

TABLE 2. Values of v; and C; at the time 7;
of the i*" spatial refinement for GKdV with
p = 5. Gaussian initial profile as in (3.5).

The emerging value of v is again approximately 1/3, a number that seems
therefore to be stable under perturbations of €, p, § and ug, provided of course that
there is a well-defined, dominating peak that blows up. The value of the negative
constant C' seems to depend in general on the particular initial profile uo and on ¢
and p as well.

4. On the Critical Exponent Case p = 4.

It was remarked in Bona et al. [2] that the outcome of the computations
to determine whether the instability of solitary waves for (1.1a) in the critical
exponent case p = 4 leads to blow-up in finite time was not as convincing as for
p 2 5. In fact, perturbations of solitary-wave initial profiles of the form (3.2)
with perturbation factors A > 1 did not apparently lead to blow-up. In the above-
mentioned reference (cf. in particular formula (5.8)) we constructed a special initial
condition 1y obtained from the p = 4 solitary wave (corresponding to A = 2,
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FIGURE 1. Presurmed blow-up of a perturbed solitary-wave for
P = 4. (Parameters as in Table 3.) (a): uo(z), (b)~(d): com-
puted approximations at the times of the first three spatial grid
refinements, respectively.

€=15x10"") by first adding a constant which results in non-zero asymptotic values
of about —.446 at z = 0 and z = 1. The resulting profile was then perturbed in a
special direction (motivated by the theory in Bona et al. [4]) and then truncated
for periodicity. The result is the initial datum shown in (a) of Figure 1. This
was integrated numerically with the adaptive code starting with ho = 0.1 x 1072,
Ko = 0.25x 10~ and using tolerance levels (cf. [2]) TOLI = 0.1x10~5, TOL2 = 0.1.
These parameters allowed the code to perform f = 13 spatial refinements while



24 J. L. BONA, V. A. DOUGALIS, O. A. KARAKASHIAN, AND W. R. MCKINNEY

9.13 —

time= . 0.59070-01

time= 0.5908D-01

25,406 —
6.901 19.244 —
24.672 — 513.081 —
2.442 6.919 |
0213 1 - ) 0.756 —{—rr=ri] | e
50  -25 0.0 25 5.0 -625 -3126 00 3125 625
£-3 E-4
¥ ®
71.685 - time=  0.5908D-01 e = SSTADO
L
54.135 — 153,433
5 36.585 3 103,603 —
19.034 — 53.953 —
1,484 - I | - 4213 i : i
-7.812 -3306 06 3806  7.812 -9785 -4882 0O 4882 978§
€-5 £-6
X x
FIGURE 2. Presumed blow-up of a perturbed solitary-wave for

= 4. (Continuation of Figure 1). (a), (b), (c), (d): solution at
the 4th 7th 10th 13th spatial grid refinements, respectively. The
z-axis comprises the finest and the next finest grid region.

sustaining good accuracy. The resulting solution traveled to the right and formed
a thin spike which is shown (translated back to the region of the finest grid which
is always a small interval symmetric about zo = 1/2 and called Q* in [2], at
the instances of the first three spatial refinements in frames (b), (c¢) and (d) of
Figure 1. The spike grew in height achieving a maximum amplitude Unax = 203 at
t* 2 113 = 0.059086 and z* = 0.73244, as may be seen in Figures 2 and 3, where the
z- and the u-axes have been rescaled. In particular, in Figure 2 the profile of the
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FIGURE 3. Data of Figure 2 with the z-axis scaled to contain the
finest grid and the next two grid regions.

peak is shown on an interval about 1/2 (translated to a symmetric interval about 0
in the pictures) that contains the current interval Q* of finest grid size together with
one more adjacent region of the next-to-finest mesh intervals at the instances of the
4%, 7*h, 10*" and 13*" refinement ((a), (b), (c), and (d), respectively). In Figure 3
the z-interval has been enlarged to contain the interval 2* and the next two regions
of successively coarser mesh enclosing Q2*, with the purpose of exhibiting a detailed
view of the peak profile and of the trailing, almost horizontal “shelf”.

The maximum amplitude Upmax = 203 reached in this computation was an
improvement by almost an order of magnitude on the analogous value that was
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achieved in the computations reported in Bona, et al. [2]. In addition, the moni-
toring of other quantities of interest in the refinement process (like the number of
spatial refinements, the size of the time step etc.) adds confidence to the conjecture
that the solution indeed blows up. Because of the better accuracy evinced in the
present calculations, one expects more robust rates of blow-up of the various spatial
norms of the solution and its derivative as t — t*. By a rate or exponent of blow-up
for some spatial norm ||u(-,t)|| of the solution u, we mean a value p > 0 for which
[lu(:,t)|] ~ c(t* —t)=P as t — t*. This is indeed what is observed; in Table 3 we
record the computed blow-up rates of the norms used with the same notation in the
analogous tables of [2] at the instances of spatial grid refinement 7;, for 1 <3 < 7.
For ¢ > 8 the computed rates were not as stable, losing accuracy as ¢ approached
13, the total number of refinements. (In Tables 3 and 4, the columns labeled Ly p
and Lo, p denote the computed rates of blow-up of the Ly-norm and L..-norm of
ug, respectively.)

1 Ly Lg Lg L Lyp | Loop
1]0.9124 (—1) | 0.1111 | 0.1236 | 0.1854 | 0.3693 | 0.5568
2109193 (1) | 0.1113 | 0.1238 | 0.1858 | 0.3712 | 0.5571
3 |0.9228 (—1) | 0.1112 | 0.1236 | 0.1854 | 0.3706 | 0.5570
4109244 (-1) | 0.1112 | 0.1235 | 0.1851 | 0.3700 | 0.5553
510.9391 (—1) | 0.1128 | 0.1254 | 0.1882 | 0.3761 | 0.5671
6 | 0.9160 (—1) | 0.1099 | 0.1221 | 0.1831 | 0.3654 | 0.5500
710.9289 (—1) | 0.1115 | 0.1238 | 0.1853 | 0.3714 | 0.5541

TABLE 3. Blow-up rates. Perturbed Solitary wave,
p=4,¢e=>5x10"% 7, = 0.059086, f = 13,
z* = 0.73244, Upax = 203.17, kmin = 0.36 x 10714,
ATy =0.40 x 107!}, TOL1 = 0.1 x 10~%, TOL2 = 0.1.

In Bona et al. (2], assuming that the singular solution that develops from an
unstable solitary wave of the GKdV equation is of the form

i o
u= it — t)e X <(: - ;)Tﬁ> + bounded term,

we computed the rates of blow-up of the Ly-norms of u(-,t) and uz(-,t) as t — t*
as functions of o, § and q. Then using the fact that the third invariant of (1.1),
namely the quantity

1
h= [ @ -+ ) +2ad)d,
0

is constant in time (implying that [u. ||, and ||u||’£:f:2 have the same rates of blow-
up) one may deduce that blow-up can occur only for p > 4 and that o and 8 must
be related by the formuls

o =28/p.
As a consequence of the foregoing considerations, for ¢ > p/2 the rates of
blow-up p of the Lq-norms of u and u, were predicted to be

(4.1) p=p(llullz,) = ol - p/2q)
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and

(4.2) p = p(lluzllr,) = a(1 +p(g — 1)/2q).

The evidence accumulated in Bona et al. [2] strongly suggested that for p > 5,
p(llullLe,) = 2/3p. This determines a conjectured value of @ = 2/3p (implying
B = 1/3). Moreover, this conjecture for the value of o was strongly supported
for p > 5 by the good agreement of the other blow-up rates determined from the
numerical experiments with the predicted values displayed in (4.1) and (4.2).

In the critical exponent case p = 4 at hand, the predicted value of @ = 1/6 does
not agree with the outcome of the numerical experiment. For example, examination
of the column with the blow-up rate entries for the L,-norm in Table 3 shows that
p(||u| L, ) might well be .185, which is some 11% larger than the value 1/6 predicted
by descent from higher values of p. Similarly, the blow-up rates suggested by the
data of Table 3 for the other norms were also about 11% higher than the values
suggested by (4.1) and (4.2) for p =4 and a = 1/6.

The anomaly for the rates of blow-up in the critical case p = 4 was further
investigated by attempting several other expressions for the blow-up, including

(4.3) (-, 8)] ~C<L>_p ——

|log(t* —¢)|
The idea of having 4 logarithmic term appear in the critical exponent for blow-up
in nonlinear. dispersive evolution equations is well-known in the context of the
nonlinear Schrédinger equation (cf. McLaughlin et al. [10], Landman et al. (9]
and Kosmatov et al. [8]). The computed values of p using (4.3) as the form of the

blow-up are provided in Table 4 and are seen to be closer to the theoretical rates
than the values of p in Table 3.

Ly Ls Le L Lyp | LoD
0.7939 (—1) | 0.9665 (—1) | 0.1076 | 0.1613 | 0.3213 | 0.4844
0.8212 (—1) | 0.9941 (—1) | 0.1106 | 0.1660 | 0.3316 | 0.4976
0.8408 (—1) 0.1013 0.1126 | 0.1689 | 0.3377 | 0.5075
0.8538 (—1) 0.1027 0.1141 | 0.1710 | 0.3418 | 0.5128

(-1)
(1)
(-1)

0.8762 (-1 0.1053 0.1170 | 0.1756 | 0.3510 | 0.5291
0.8613 (-1 0.1034 0.1148 | 0.1722 | 0.3436 | 0.5172
0.8789 (-1 0.1055 0.1172 | 0.1753 | 0.3515 | 0.5243

~N S Ot R W N | e

TABLE 4. Blow-up rates. Perturbed Solitary wave, same data as
in Table 3, rates computed with the log formula in (4.3).

Since the adaptive refinement procedure used in the numerical schemes is based
(among other things) upon controlling the time step by checking that properly
weighted values of I3 remain close to each other from time step to time step, it is
reasonable to expect that the computed values of ||u||$_ become infinite like ||u; 12,
something that is confirmed experimentally by examining the columns labelled Lg
and Ly p in Table 3. On the other hand, assuming self-similarity of the blow-up
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profile and using the constancy of I3 (for p = 4), one is led to the conjecture

p=plulle,) =a(1-2/9), p=p(lullz,) = a(3-2/g),

which seems to be consistent with the data of Table 3 if o = .185 and Table 4 if
a =.172 and 8 = 2a. Of course the blow-up is not necessarily self-similar, though
the graphs in Figure 2 make a good case for such a hypothesis.

Another point of interest is that the exponent v in the assumed form of the
trajectory of the center of the peak, (see 2.3), in this experiment was found to be
about .26 and not 1/3 as in the cases where p > 5.

5. Conclusions. The present study has added some detailed information
connected with the apparent singularity formation in solutions of the GKdV equa-
tion and the GKdV-Burgers equation. The results in Section 3 indicating the peak
of a blowing-up solution propagates at speed (t* — t)1/3 have been incorporated
into the theoretical study of similarity solutions of the GKdV equation in Bona &
Weissler [5].

The computations connected with the critical case p = 4 are improved in various
ways over those reported previously. Especially the better agreement with predicted
values of blow-up rate one obtains by incorporating a logarithm into the Ansatz
about the singularity is intriguing.

It must be candidly remarked, however, that the computations connected with
p = 4 seem to stretch the capabilities of our computer code in its present form. One
possible reason for this may be seen already in Figures 2 and 3. The peak in the
profile of the solution has wider “support” than the analogous peaks for the cases
where p > 5. Moreover, the support does not shrink as rapidly as occurs for p > 5.
It may be that the refinement process of our code (or indeed as embodied in the
choices of parameters) is so restrictive that it causes the grid in the vicinity of the
peak to become unacceptably structured after 10 to 15 refinements. As it took on
the order of 40 refinements to produce a peak of height about 105 for p > 5, we are
seriously handicapped if we make no more than a dozen refinements. Together with
associated theoretical work, improving our simulations of solutions when p=4is
presently under study.
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