THE EFFECT OF DISSIPATION ON
SOLUTIONS OF THE GENERALIZED
KORTEWEG-DE VRIES EQUATION

J. L. BoNnal? | V. A. DoucaLis®* , O. A. KARAKASHIAN® & W. R. MCKINNEY®

Abstract. It was indicated in recent numerical simulations that the initial-value problem for the generalized
Korteweg-de Vries equation is not globally well posed when the nonlinearity is strong enough. Indeed, even o
_initial data that is spatially periodic is observed to form singularities in finite time. The generalized Korteweg-de
Vries equations are Hamiltonian systems that feature a competition between nonlinear and dispersive effects, A
natural question that comes to the fore in consequence of the observed singularity formation is whether or not the

addition of a term modelling the effect of dissipation will eliminate singularities and so result in an initial-value
problem that is globally well posed. It is the purpose of the present paper to study this question both analytically
and numerically. Our concern will be mainly with the addition of a Burgers-type dissipative term because of its
frequent appearance in practical modelling problems. Some commentary is also provided about the situations
{hat obtain when other dissipative mechanisms are introduced. It seems that singularity formation persists in
the presence of small amounts of dissipation, but ceases at a certain critical level whose general form is studied
both numerically and analytically.

1. INTRODUCTION

The present paper is inspired by an earlier one of the same authors and aims to add
considerably to the conclusions drawn therein. In the previous study (Bona et al. 1994),
attention was given to the development and use of numerical approximations of solutions
to the initial- and periodic-boundary-value problem for the generalized Korteweg-de Vries

equation (GKdV equation henceforth)
ug + uPug + EUgge = 0. (1.1a)

Here, the dependent variable u = u(z,t) is a 1-periodic, real-valued function of the spatial

variable z € [0,1] and the temporal variable ¢ > 0 which is prescribed at t = 0 by

u(z,0) = uo(z) (1.1b)
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for 0 < z < 1. In (1.1a), € is a fixed, positive number that is related to a generalization
of the classical Stokes number of surface water-wave theory (see Albert & Bona 1991,
Bona & Scidlom 1993) and p is a positive integer. Special consideration was given in our
previous work to understanding the instability of the travelling-wave solutions of (1.1a)
called solitary waves, and it transpired that this instability manifests itself in blow-up in
finite time. More precisely, if p > 4 in (1.1a), then perturbations of solitary waves form a
similarity structure under the evolution (1.1a) and this structure in turn blows up, leading
to the inference that there is a point (z*,1*) such that u(z,t) — +oo as (z,t) — (z*,t*).
These earlier numerical simulations showed also that this special blow-up phenomenon has
more scope than might be expected. A broad class of initial data uo has the property that,
under the evolution (1.1a), the resulting solutions rapidly decompose into a finite number
of pulses resembling solitary waves, the first and largest of which then becomes unstable,
forms a similarity structure and blows up in finite time. As nearly as could be discerned
from the numerical simulations, the process of singularity formation for general initial data

up was the same as that appearing in the instability of the solitary wave.

It is worth noting that the blow-up phenomenon just described subsists on both nonlin-
ear and dispersive effects, and it can only occur if the nonlinearity overpowers the disper-
sion. Three facts support this conclusion. First, if ¢ = 0, so that dispersion is absent, there
are large classes of initial data whose corresponding solutions form singularities in finite
time, but it is the derivative that becomes unbounded, not the solution itself. Second, if
p < 4, then smooth initial data uo lead to global solutions u of the initial-value problem
(1.1), regardless of the size of the data (see Kato 1983, Albert et al. 1988). Finally, even
for p > 4, if the initial data ug is reasonably smooth and small enough so that one expects
nonlinear effects to be relatively insignificant, then the initial-value problem (1.1) still has

global solutions (cf. Strauss 1974, Schechter 1978, Kato 1983).

The GKdV equations arise in modelling the propagation of small-amplitude, long waves

in nonlinear dispersive media (see Benjamin et al. 1972, Benjamin 1974). The case p =1
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is the classical Korteweg-de Vries (KdV) equation about which much has been written in
the last three decades, and which arises in a number of interesting physical situations (cf.
Benjamin 1974, Jeffrey & Kakutani 1972, Scott et al. 1973). In real physical situations,
dissipative effects are often as important as nonlinear and dispersive effects (see the ex-
perimental study of Bona et al. 1981) and this fact has given currency to the study of the

Korteweg-de Vries-Burgers equation

as a model that incorporates all three effects (see Grad & Hu 1967, Johnson 1970, Bona
& Smith 1975, Bona et al. 1981, Bona & Schonbek 1985, Pego 1985, Amick et al. 1989,
Bona et al. 1992). In (1.2), the parameter € is as before and § > 0 is another parameter

expressing the relative strength of dissipative to nonlinear effects.

A natural question arises as to whether dissipative effects in the form of a Burgers-type
term, say, overcome the nonlinear-dispersive interaction that leads to blow-up. It is to this
and related questions that the present work is directed. For the most part, attention is

given to the initial-value problem

uy + uPugz — OUgy + EUgre = 0,

(1.3)
u(w, 0) = U()(.’L'),

where p > 4, up is a reasonably smooth, 1-periodic, real-valued function on the real line
R, and ¢ and é are positive constants as indicated previously. It is straightforward to
show that the initial-value problem (1.3) has unique solutions corresponding to reasonably
smooth initial data, at least locally in time, by semigroup methods (Kato 1975, 1983) or

by regularization techniques (Bona & Smith 1975).

It is also easy to ascertain that a solution of (1.3) defined locally in time has a global
extension if it remains bounded in a suitable norm on bounded time intervals (see Kato
1983, Albert et al. 1988 or Bona et al. 1987). However, standard energy techniques seem

unable to establish the @ priori deduced bounds needed to guarantee global existence.

3



It will be shown below that for fixed ¢ > 0 and for any given initial datum wuo, there
is a 6, > 0 such that if § > 6., then the local solution of (1.3) emanating from uo has a
global continuation as a smooth solution of the differential equation. This global result was
motivated by the outcome of a series of numerical experiments simulating solutions of (1.3)
which were designed to cast light on the effect of the dissipative term. Other interesting
points are indicated by these numerical results which are described in the detailed outline

of the paper to be presented now.

The plan of the paper is straightforward. Section 2 contains theoretical results apper-
taining to (1.3) and one of its near relatives wherein the dissipative term —8u, is replaced
by ou. We are able to establish in both cases that if the parameter § or o is sufficiently
large relative to certain norms of the initial data ug, then the solution u emanating from
up exists and is uniformly bounded over the entire temporal half-axis [0, 00). Moreover,
the proofs lead to explicit formulas for an upper bound on the critical values . and o, at
least when ug is a perturbed solitary wave that would blow up in finite time in the absence
of dissipation. When a solution is global in time, results about its decay to a quiescent

state are also derived.

Section 3 contains a description of the numerical method used to integrate (1.3). As
in our earlier study, the scheme is based on a Galerkin spatial discretization with periodic,
cubic splines coupled with a time-stepping procedure which combines a two-stage Gauss-
Legendre implicit Runge-Kutta method with a version of Newton’s method for solving the
system of nonlinear equations that arise at each time step. This basic scheme is augmented
by adaptive mechanisms that adjust the temporal and local spatial grids in an effort to

retain accuracy in the face of large values of the dependent variable.

Section 4 reports on numerical experiments carried out using a computer code derived
from the numerical scheme described in Section 3. In Subsection 4a, computations show
that solutions of (1.3) still blow up in finite time for p = 5,6 or 7 provided the dissipative

coefficient & is small enough. The computed rates of blow-up and the structure of solutions
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as they become singular are virtually identical to those observed for the non-dissipative
problem in which § = 0. An analysis of the data presented shows the interesting conclusion
that the theoretically derived forms for the critical values é. and o, coincide with those
obtained in practice.

Subsection 4b records some data connected with the decay of solutions when the param-
eter § is large enough to prevent blow-up. It is shown in Section 2 that in this circumstance
solutions approach exponentially a constant equal to the mean value of uo. The lapse rate
in the exponential decay depends linearly on é and tends to zero as § tends to zero. The
numerically obtained evidence supports the contention that for any p, the long-term be-
havior of global solutions is determined by the linearized form of the GKdV equation, a
conclusion that agrees with Biler’s sharp decay results for the case p = 1 (Biler 1984).
Commentary is also offered about the transitory, oscillatory break-up of initial data that
occurs at early stages in the evolution prior to the long-term, exponential asymptotics

becoming dominant.

The paper concludes with a summary section that also features remarks on potentially

interesting avenues for further research.

2. THEORETICAL RESULTS

After a review of notational conventions, the principal theorem in our theoretical de-
velopment is stated and proved. Several useful corollaries are then derived which act as a

foil for some of the numerical simulations presented in Section 4.

Notation. In the sequel Ly, 1 < ¢ < oo will denote the collection of L-periodic functions

which are ¢**-power integrable over [0, L] endowed with the norm

L 1/q
|f|q=</0 lf(w)l"dw) ,

with the usual modification if ¢ = co. For s > 0, the space H® = H*(0, L) is the Sobolev

class of L-periodic functions which, along with their first s derivatives belong to Lz. The
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usual norm on H* is denoted by | .

|s. The norm of Ly = H® appears frequently and will
be denoted | - |; rather than || - ||o; the associated inner product is the only Hilbert-space
structure to intervene in the analysis and it is written simply as (:,). In Sections 3 and 4,
we shall restrict attention to the case where L = 1. For the periodic problem, this simply
amounts to a rescaling of the spatial variable z, and no loss of generality results from this
presumption. However, in the present section, it will be convenient to leave L arbitrary

for reasons that will become apparent shortly.

It deserves remark that while it is convenient to present analytical results first, early
numerical results helped motivate the theory which in turn provided significant insights

and guidance into later numerical experiments.

As an example, which sets the stage for Theorem 2.1, the reader may consult Figures
1a and 2 in Section 4 that depict the outcome of two numerical simulations of (1.2), both
with p = 5, ¢ fixed and the same initial data. The difference between the two simulations
lies with the value of the dissipative parameter §; in Figure la, é is rather small while in
Figure 2 it is five times larger. As documented in detail in Subsection 4a, the smaller value
of 6 seems to allow the associated solution to form a singularity in finite time, whereas the

larger value of § appears to prevent the single-point blow-up observed in Figure la.

Armed with these, and other like results, for different values of p, the following theorem

was conjectured and proved.

THEOREM 2.1. Let ug be given initial data that is periodic of period L > 0 and suppose

ug to lie in H*(0, L) for some s > 2. Let ¢,6 > 0 be given.

(1) If p < 4, then there is a unique global solution u of (1.3) corresponding to the
above specification of data and parameters, that lies in C(0,T; H*(0, L)) for every T > 0.

Moreover, ||u(+,t)||1 is uniformly bounded in t.

(2) Ifp > 4, there is a Ty > 0 depending on |luoll1 and a unique solution u €
C(0,To; H*(0, L)) of (1.3) with initial data ue. If ||uo||1 is sufficiently small with respect to
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8, then T can be taken arbitrarily large, the solution is global, and ||u(+,t)||1 is uniformly
bounded for t € [0, +o0).

In all the above cases, the solution u depends continuously on the initial data uo in

that the mapping uo +— u is continuous from H® to C(0,T; H?).

Remark. Part (1) and the local existence theory in Part (2) may be found more or less
as stated in the literature (cf. Bona & Smith 1975, Kato 1975, 1983, Albert et al. 1988
Albert & Bona 1991). It deserves remark that the correspondence up — u has recently
been investigated in more detail by Bourgain (1993) and Zhang (1993), with the outcome
that values of s smaller than 2 can be accomodated and the correspondence, much more
than being continuous, is analytic. Moreover, since § > 0, coarse data becomes smooth
for t > 0. None of these subtle aspects are important in our analysis, however, so we pass

over them in favor of the simpler description in Theorem 2.1.

Proof. Attention will be given only to the case p > 4. As mentioned above, a theory, local
in time, of existence, uniqueness and continuous dependence for (1.3) may be concluded
using standard semigroup theory, and the details are therefore omitted. The focus of
attention here will be to provide a priori deduced bounds that allow the local theory to
be continued indefinitely. Finer results from the local theory can be deduced, but for our
purposes it will suffice to note that if the initial data uo lies in H® for some s > 2, and if
the solution u is bounded, at least on any interval of the form [0, T] for finite T > 0, then
the solution is global in time and lies in C(0,T; H?) for all finite T'. This state of affairs
can be ascertained from Kato’s theory (Kato 1975, 1983, Albert et al. 1988) or from the

estimates to be derived now.

Let u be a solution in C(0,T; H®) corresponding to initial data uo of the initial-value
problem (1.3), where s > 2. Without loss of generality, we may suppose that s is large
enough that the formal calculations to follow are straightforwardly justified. Because of the

continuous dependence of the solution on the initial data, one simply regularizes the initial
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data, makes the calculations with the associated smoother solutions, and after deriving
the desired inequalities, then passes to the limit as the regularization disappears. So long
as the inequalities in question do not involve derivatives higher than those appearing in

the initial data, this procedure leads securely to the desired results.

We begin by multiplying the equation (1.2) by the solution u, integrating the result
with respect to z over the period [0, L] and with respect to t over the interval [0, o], where
to < T. After suitable integrations by parts, and using periodicity to see that the boundary

terms cancel, there appears the simple relation

to
uCota)§+26 [ s O dt = ol (2.1)
0

(Throughout this proof, all the norms are computed with respect to the spatial region

[0, L].) It is deduced from this that |u(-,t)|2 is a decreasing function of time and that

t
/ o, D) dt
0

is bounded independently of t.

The next stage of the estimates is more complicated. As shown in Kato (1983) and
Albert et al. (1988), all that is required in order to infer the boundedness of v in H*®
on bounded time intervals, and thereby to deduce the conclusion of the theorem is to
demonstrate that the Loo-norm of the solution is bounded on bounded time intervals. For
this, it suffices to show the H 1_norm of the solution is bounded on bounded time intervals.
In fact, we shall show that the H 1_norm of solutions corresponding to initial data suitably

small with respect to § is bounded independently of t.

To this end, let wy = % fOL uo(z)dz be the average mass of the initial data. By inte-
grating (1.2) with respect to z, one readily deduces from the spatial periodicity that for
any t > 0 for which the solution exists on [0, 1], one has a(t) = 1 fOL u(z,t)dz = Uo. (This
is a reflection of conservation of mass in some applications of this class of equations to

practical situations.)



Define a new dependent variable v by v(z,t) = u(2,t) — Up. Then the variable v has

total mass zero and satisfies the initial-value problem

vt + ‘_6 ('U + Uo)p+ — bVgg + EVggy = 0,
(2.2)

v(:z:,O) = vo(z) = uo(z) — o.
Multiply the differential equation in (2.2) by v, and integrate over [0, L] to obtain the

following differential inequality:

1 d L L
EE/O. U£d$+6A ’U dw_m/ 3(v+u0)1’+ Vex dz

1 L P+l 1 o
= Tl Oz Z <p+ ) pPt1—I U | viedz
p 0 J

=0
L p-l p+ (2.3)
== 1 . p—J d
1 &= /pt
S p+ 1 = (p ] >(p+ 1 _-7) Iu0|]|v|p J I'Uz|2 Ivz:c|2
1=0
It is elementary that if w is periodic with mean value equal to zero, then
Wz < |wlz lwslz,  [walj < w2 [wasls,
and (2.4)

jwlz < o |wg|2.

If we use the first two of these relations systematically in (2.3), we ascertain that the
right-hand member of (2.3) may be bounded above as follows:

p—1

p+ r:i-__:_
§j( >@+1—4Nwah 0125 [vzala

=0

p2

+ ]_ p—2—j
p (p+1—JHwVwb ~ loals T a2 (2.5)

I/\

= t)
P+ 1 — 11..91/2 2
+2 I |1D |v |vz|22 |vu|2
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The last summand on the right-hand side of (2.5) requires special treatment; using the

second relation in (2.4), one sees that

[0l o215/ vasle < (L/27)? 0sflozl:

< (L/27r)1/2|v|2|v”|§.

Putting this together with (2.5) and (2.3) leads to the differential inequality

| =

[os(, 1)1} + 6 [vaa (-, O3 < Bloza( 1)z, (2.6)

N =
[}

t

where

8 = 0(|vl2, |vz|2, [@ol) =

1|22 /p+t . opei p2=i
Z( ! )<p+1—])|uo|f|v|22 0]

1
P+1 |4

=

+2(Z+ 1) (L/27l')1/2 |ﬂ0|p_1|’0|2 W

Note that since v has mean value zero, then
u(-, 1)l = Luj + [o(-,1)l3
while (2.7)

Juz (-, D)3 = loz(,1)l3

for all ¢ for which the solution exists. In consequence of these inequalities, it suffices to
show that ||v(-,)||1 is bounded, independently of ¢, in order that ||u(-,t)||1 is bounded,

independently of ¢.

The differential inequality (2.6) is employed to deduce a global bound on ||v(:,t)]lx.

Notice that 6 is monotone increasing as a function of its three arguments. Moreover,
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because of (2.1), |u(-,t)|2 < |uo|z whence |v(:,t)|2 < |u(-,t)|2 < |uol2 in view of (2.7). In

consequence of these two inequalities, we see that
- :
|u0|2 J p+2 P= 2—:
o< — Z( Dwrr-i) (o) ol oot
=0
2 p+1 |u(]|2 =
+p__+_‘i‘( )(L/2 )1/2 (L”‘:2 |u0|2
etz |23 (p+1) p+1—7 (|u0|2>j/2 p=2-j
< |uoly? . : Vsly *
Juols {; PO (B2) b
L3 (ptl +(2’”_1)”2 p+1\] (Iuol2\ 7
p+1 -2 p+1 p—1 L

pyz P2 _ i/2 o
< Apluoly? Y (pj 2) (%) o] *=2

i=0

P—2
g _
<A |u0|2 (lLkz + v zll/z) = 6(luolz2, |vsl2),

(2.8)

for some constant A, depending only on p. If one rewrites (2.6) as

d _
= [0 D) + (6 = O)|vas(, )2 < 0,

N =

then it becomes clear that as soon as § < 6, |v.(-,%)|2 becomes monotone decreasing. In
this range, 6 is also decreasing, and consequently if for some to we find that 6 < §, then
for all ¢ > t; the same inequality holds. In particular, if at ¢ = 0 it is the case that
0(|uolz2, [vos|z) = 8(|uol2, [woz|2) < 6, then for all ¢ > 0, |v,(+,)|2 < |uozl2, and so ||v]|; is

seen to be bounded, independently of t.

Referring back to (2.8), if

g2 P
/\p|u0|2 : <L1/2 Iu |1/2 + |u01|1/2) S 6; (2.9)

then ||v(,t)||1 is bounded, independently of ¢.

The theorem is thus established. [J
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Several interesting consequences can be drawn from this theorem and its proof. First,
by letting the period L tend to +o0, a result pertaining to the pure initial-value problem
emerges. (The integrals in the norms mentioned in the following Corollary refer to the

entire real axis R.)

COROLLARY 2.2. Let up € H°(R) for some s > 2 and let u be the corresponding solution
of equation (1.2) for z € R and t > 0 with parameters ¢,6 > 0 and p > 4. There is a

constant u = u, depending only on p such that if
242 p=2
wols T fuosla™ < upd, (2.10)
then the solution lies in C(0,T; H®) for all T > 0 and ||u(:,t)||1 < ||uol|s for all t > 0.

An interesting point arises relative to the inequality (2.10). It appears that this in-
equality is sharp in a certain way to be explained now. Consider the situation in which
the initial data uo(z) = Ay(K«x) for z € R, where A and K are positive constants. Then
luolz = Al|e/K'/? and |uggl|z = AKY2|3p,|y. Viewing o as fixed, but A, K as variable,

we observe that inequality (2.10) becomes
— < ué (2.11)

for a constant ¢ depending on p and norms of 1. Of especial interest are the traveling-wave

solutions of (1.1a) called solitary waves. These have the explicit form
us(z,t) = Asech?/P[K(z — z0) — wt] (2.12a)

for any ¢, where the parameter K governing the spread of the solution and the speed of

propagation w are defined in terms of the amplitude A by

2 AP 1/2 P
- ( p A ) 2K 4 (2.12b)

2e(p+ )(p +2) YT+ +2)
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If the initial data uo lies close to a solitary-wave solution u,(-,0) as defined above, then

(2.11) becomes

AP
pué 2 172
E2Ap )
(2&()}+1)(p+2)

or what is the same,

A=—>Cp, (2.13)

where C, is a constant depending on p and on the Lp-norms of sech?/?(z) and its first

derivative, and so in fact depends only on p.

As mentioned earlier, if p > 4, the solitary wave solutions of (1.2) with 6 = 0 are
unstable (Bona et al. 1987, Pego & Weinstein 1992), and small perturbations were seen
to lead to blow up in finite time (Bona et al. 1986, 1994). Consider now a situation where
¢ > 0 and p > 5 are fixed and initial data is specified to be ug(z) = Au,(z,0) where u, is
the solitary-wave solution in (2.12a) and X is slightly greater than one, (e.g. A =1.01asin
§5 of Bona et al. 1994). With 6 = 0 and this initial data, the numerical approximation of
the resulting solution of (1.2) indicates that it forms a singularity in finite time. Theorem
2.1 shows that for § sufficiently large, the solution of (1.2) emanating from this type of
initial data is uniformly bounded in ¢. One therefore expects a critical value é. of the
dissipative parameter § which defines the boundary between blow-up and global existence.

From the condition in (2.13), it is known that &7 < CpeAP.

In Subsection 4a, an approximation of 6. = 6.(4,¢) will be determined by making
sequences of runs where ug is fixed as above and § is varied systematically. It transpires
that the combination denoted A in (2.13) is central to determining whether or not one
has blow-up, at least for these perturbed solitary waves. It is a little unusual that the
relatively crude energy estimates leading to the conclusion enunciated in (2.10) has this

sharp aspect.

A final point that presents itself as a consequence of Theorem 2.1 is the decay of

solutions to a quiescent state.
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COROLLARY 2.3. If u is a solution of the initial- and periodic-boundary-value prob-
lem (1.3) with § > 0 corresponding to initial data ug € H*(0,L), then |u(:,t) — Uz <
e=3CE) t|uy — gy for all t for which the solution exists. If ug satisfies condition (2.9)

relative to 8, then |uy|y also decays exponentially, as does |0lul, for all j < s.

Proof. First, consider again the differential equation (2.2) satisfied by v = u — %y and

write 1t in the form

v + ('U + ﬁo)pvz + €Vzzg — 6Vgy = 0.

Multiply this by v and integrate the result over the period [0, L] to reach the differential

1d /L ) o
- — vdw+6/ vidr = 0.

Making use of (2.4) then implies that

d ", or\? L,
- — <
dt/[, vdm+26(L) /0 vidzr <0,

whence |v(-,t)]2 < |v(-,0)|26_6(271r)2t or what is the same, |u(+,t) —Uo|2 = O(e“é(zb_")%) as

relation

t — 4o00. Notice that this result is independent of p and the size of the data.

Now suppose the initial data ug satisfies the condition in (2.9). Since the Lj-norm of
v is strictly decreasing and the H!-semi-norm |v,|s is non-increasing, it follows that for

t>0, 8 =6(|v|2, |vz|2,%0) < 6. Upon applying (2.4) to |vz¢(-,t)|2 in (2.6) we obtain that

B +6=0) (25 JoaloHE <0
dtvz(’ 2+ L vx’ 2 = Yy

N —

from which it is deduced that

02 )l < Jos(-, Oz exp [(%”) [e- 6)ds} .

Thus |v,(+,t)|2 is seen to be exponentially decreasing to zero, and since by (2.8) 6(t) < 9 <

= N2
8, the asymptotic form of this decay is 0(6(0_6)(217 ') as t — +oo.
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Similar considerations apply to higher-order semi-norms. We pass over the details. []

Remarks.

(i) Biler (1984) has obtained detailed decay estimates for periodic solutions in the case
p < 2. See subsection 4b below for more commentary on his work.

(ii) This result is in marked contrast to the behavior of global solutions of the pure
initial-value problem for (1.2) corresponding to initial data uo € H*°(R), s > 2.
Such solutions are expected to decay to zero as ¢ — +o0o. However, the rate of
decay is algebraic in t as witnessed by the results of Amick et al. (1989), where for
p = 1 it was shown that

/°° u?(z,t)dz = O (t_l/z)

— 00

and that this rate was sharp in general. (See also the results of Bona & Luo 1993,
Bona, Promislow & Wayne 1994, Dix 1992, and Zhang 1994 for p > 2.)

Dissipative mechanisms other than the Burgers-type appearing in (1.2) arise in prac-
tice. One particularly appealing dissipative mechanism is a simple, zero**-order term

corresponding to the initial-value problem

us + uPug + eugyy + ou =0, (2.14)

u(z,0) = uo(),

where 0 > 0. A theory entirely similar to that worked out for the initial-value problem
(1.3) applies to (2.14). As there are some interesting mathematical points that arise, and

because it ties in with some of the numerical simulations in Section 4, a sketch of the

theory for (2.14) is provided.

THEOREM 2.4. Let ug be given initial data that is periodic of period L and suppose ug

to lie in H*(0, L) for some s > 2. Let € > 0 and o > 0 be given.
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(1) If p < 4, then there is a unique global solution u of (2.14) corresponding to the
above specification of data and parameters which is periodic in z of period L that lies in

C(0,T; H®) for every T > 0. Moreover, ||u(:,t)||1 is uniformly bounded for t € [0, 00).

(2) Ifp > 4, there is a Ty > 0 depending on ||uolj1 and a unique periodic solution
u € C(0,Ty; H*) of (2.14) with initial data uo. If o is sufficiently large with respect to
l|lwollz, then Ty can be taken arbitrarily large, the solution u is global, and ||u(:,t)||1 is

uniformly bounded for t € [0, 00).

In all the above cases, the mapping ug — u is continuous from H*® to C(0,T; H®).

Proof. As in Theorem 2.1, attention is concentrated on the case p > 4. The case p < 4
is essentially contained in the existing literature, and the local well-posedness theory for
p > 4 is a straightforward application of nonlinear semigroup theory. As before, the crux
of the matter is an a priori deduced, Loo-bound on u, and it suffices for this to show the

HZ?-norm is bounded, at least on bounded time intervals.

The analog of (2.1) is
t
0B +20 [ fuC5)ds = fuol}, (215)
0
from which one deduces immediately that

lu(-, )]z = e~ |uo2. (2.16)

The next step, if one were following the line of argument in Theorem 2.1, would be
to subtract the mean value, multiply the resulting equation by vz, where v = u — %o,
and integrate over [0, L]. This does not appear to be effective in the present case. Indeed,
solutions of (2.14) have exponentially decaying rather than constant mean values. However,

multiplying equation (2.14) by usss. and integrating over [0, L] is useful; after suitable
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integrations by parts, this procedure leads to

1 d L L ) 7}
- — uﬁzdw +0 / uiz dz = / (uPugs + pu”_lui)uz”dx
2 dt J, 0 0
5p L L
= uPluzu? _dr — p(p — 1) / u”_zuiuu dx (2.17)
0 0

) _ B
< P lul2s uslooluzs [} + p(p — Dlulsluz o luslelussl>.
Making systematic use of (2.4) for the zero-mean, periodic function u;, together with the

elementary inequality

1
[ulee < 7 lulz + 2lulalusls, (2.18)
it is deduced from (2.17) that
1d B 2
5 gz ues(5 D2 + (0 = Dlues(, O <0, (2.19)
where
5p (1 =
Q@ = QJuly, luzsl2) = > (flulz +2Ju 3/2|uu|;/2) fuly ez
L——2

1 2
o0~ 1) (i + 2l ucels?) T lualuzels

The function Q is an increasing function of both its arguments. According to (2.16),
|u(-,t)|2 is a decreasing function of t > 0. Hence if Q|9 < 0, then |uz.(-,t)|2 is non-

increasing for t > 0. In particular, if

Q (Juol2, [uo,.|2) < o, (2.20)

then the H?-semi-norm |uz(+,t)|2 is bounded by its value at ¢ = 0.

This concludes the proof of the theorem. [J

COROLLARY 2.5. Let ug € H*(R) for some s > 2 and let u be the corresponding solution
of the initial-value problem (2.14) with parameters €,0 > 0 and p > 4. There is a constant
v = v, depending only on p such that if

3p—2 P12
|'U,0|2 * Iuozz|24 S VPU’ (2'21)
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then ||u(-,t)||2 is uniformly bounded for all t > 0.

Proof. Simply take the limit as L — +oo in (2.20). [

Consider again the situation where ug(z) = A(K«z) for some positive constants A

and K. In this case, (2.21) amounts to the inequality
APK L vo, (2.22)

where v is a constant depending on p, ||z, and [tzz]2. In particular, if ug = Au,(z,0)
is the perturbed solitary wave discussed earlier, then our theory implies that the solution

emanating therefrom will exist globally in time provided

o2/3c1/3

Z = _——AF Z CII,, (2‘23)

where C), is a constant depending only on p.

Just as for the initial-value problem (1.3) with § > 0, solutions of (2.14) that satisfy
the initial restriction (2.20), decay to zero exponentially in ¢. This is already established
for the Lo-norm, and for data respecting (2.20), the differential inequality (2.19) implies it
for the H2?-semi-norm. Other semi-norms also decay exponentially. Note that in this case,
the exponential decay rates are still valid in the limit as L — -+oo applicable to initial data
in H*(R).

The theory propounded in this section will provide a framework for the numerical sim-
ulations of (1.3) and (2.14) reported in Section 4. In the next section, a careful description

and associated benchmarks of our numerical schemes are provided.

3. THE NUMERICAL METHOD

After a brief review of preliminaries about splines and Runge-Kutta methods, the nu-
merical technique used to approximate solutions of (1.3) and (2.14) is presented. Through-

out this section and the next, the spatial period L will be normalized to the value 1.
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The numerical scheme is a straightforward adaptation of one of the fully discrete
Galerkin methods for (1.1) that was described in detail and analyzed in Bona et al. (1994).
This scheme will be briefly reviewed below. We shall study its application to the initial-
and periodic-boundary-value problem (1.3). Entirely analogous considerations apply when

the scheme is used to solve the problem (2.14).

Let r 2 3 be an integer and S, = S}, be the N-dimensional vector space of 1-periodic
smooth splines of order r (piecewise polynomials of degree r—1) on [0, 1] with uniform mesh
length h = 1/N, where N is a positive integer. As usual, the standard semi-discretization
of (1.2) in the space S} is then defined to be the differentiable map up : [0,T] — Sp
satisfying

(uht + uzuhx’ X) - e(uh:c:c, X:c) == 6(Uh;,;, X-’B) =0 (31&)

for all x € Sy and 0 <t < T, which is such that

ur(0) = Hpue. (3.1b)

Here II, uo is any of several approximations of ug in S, (for example, Lj-projection,

interpolant, etc.) that satisfy an estimate of the form

[T, uo — uol2 < ch” ||uollr (3.2)

for ug € H", and where c is a constant independent of uo and h. (Constants independent
of the discretization parameters will frequently occur in the sequel and will be denoted by
¢, C, etc.) For smooth, periodic initial data u¢ for which (3.2) holds, and assuming that
the associated solution u(z,t) of (1.3) is sufficiently smooth on [0, T], it may be proved,
following the analysis in Baker et al. (1983) that there is a constant ¢ = ¢(u) depending
on the solution u, but not on the discretization parameter h, for which

R lup — ulz < c(u)h. (3.3)
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Upon choosing a basis for S, and representing uj in terms of this basis, the problem (3.1)
is seen to be an initial-value problem for a system of ordinary differential equations which

may be written compactly in the form

Uht =F(uh)a0StST7

(3.4)
up(0) = IIy uo,

where F' : S}, — S}, is defined by

(F(v)’ X) - _(vp Vg, X) Sir (5'0:” — dvg, X:c) (3.5)

for all x € Sy. Having recognized (3.1) as the initial-value problem (3.4), an appropriate
numerical method for the approximation of systems of ordinary differential equations leads
to a fully discrete approximation to (1.3). In our companion paper on the non-dissipative
case, use was made of the family of implicit Runge-Kutta methods of Gauss-Legendre type.
These were found to possess favourable accuracy and stability properties when applied to
(1.1). They can be extended in a straightforward way to the dissipative case at hand. In
particular, the fact that these methods don’t generate artificial damping is very helpful
when small values of v or o are in question. For simplicity, consideration is given here only
to the two-stage member of the Gauss-Legendre family. Let k be the time step (considered
constant for the moment) and let t, = nk , n =0,1,2,...,J, where J is some positive

integer such that Jk = T. For each integer n € [0, J], we seek a function U™ € Sj, with
U =T, uo (3.6)

and which approximates u, = u(:,t,), where u(z,t) is the solution of (1.3). For n =
0,1,2,...,J—1 the approximation U"*! is constructed from U™ through two intermediate

stages U™! and U™? in S}, that are solutions of the system of nonlinear equations

) 2 ;
U=k B ey O, =12, (373)
]=
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by the formula
2 .
yrtl =yUn 4+ k '21 b; F(U™7), (3.7b)
J=

where the 2 x 2 matrix A = (a;;) and the 2-vector b = (b1, b2)T that define the two-stage

Gauss-Legendre method are given in the following tableau:

1 1 1
a11 212 1 1723
1 1 1
az1 az2 iy W y
1 1
by by 2 2

In view of Lemma 3.2 of Bona et al. (1994), it is straightforward to generalize Proposi-
tion 3.1 of this reference to include the system under consideration here and thereby prove
that for any given U™ € S}, there are elements U™, U™? of S, that satisfy (3.7a). The
scheme that then assigns to U™ the function U™ defined by (3.7b) is stable in L,, which
is to say that

U, <|U%2 for 1<n<J (3.8)

The latter property follows from the well known conservative nature of the Gauss-Legendre
implicit Runge-Kutta schemes implied by the fact that bia;; + bja;; — bib; = 0 for all the
relevant i,j. The fact that the time-stepping scheme is conservative means that U2 =
|U%); for n = 1,...,J in the non-dissipative case § = 0 since then (F(v),v) = 0 for all
v e S), whereas the inequality (3.8) holds when § > 0 since then (F(v),v) < 0 for all ve S.
It deserves remark that the use of a conservative time-stepping scheme to approximate
solutions of a dissipative partial differential equation seemed to work very well in the

numerical experiments to be reported later.

The following remarks are meant to summarize the convergence theory pertaining to
the scheme just outlined. The theoretical analysis of this scheme for (1.3) with 6§ > 0

follows in detail that already derived for the initial-value problem (1.1) with é = 0 in Bona
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et al. (1994). Adapting the convergence proof contained in the last-cited reference leads
immediately to the conclusion that, provided the solution is smooth enough on the time
interval [0, 7] and k/h is sufficiently small, there is a unique solution U™ of (3.7) and it

satisfies the optimal-order Ly-error estimate

n n 4 r
o U™ —u(-,t™)]2 < c(k* + A"). (3.9)

Analogous estimates may be established for higher-order accurate Runge-Kutta time-
stepping methods following the arguments in Karakashian & McKinney (1990). In the

case of a g-stage Gauss-Legendre method with the same hypotheses about smoothness and

k/h, (3.8) holds and (3.9) generalizes to the optimal-order L,-estimate

n __ . 4N < 2q Y.
omax, U™ —u(,t")|2 < (k™ + 27)

It is well known that the temporal rate 2¢ obtained for the Gauss-Legendre method is the

best that can be achieved by a ¢-stage Runge-Kutta method.

A word is appropriate about the numerical linear algebra involved in the implementa-
tion of the scheme described above. At each time step the 2dim Sj X 2dim S), nonlinear
system represented in (3.7a) is solved by a doubly iterative scheme based on Newton’s
method. The work is organized in such a way that each time step only requires the solu-
tion of a small number of sparse, dim S X dim S, complex linear systems with the same
coefficient matrix. The details of the construction and implementation of this solver are
virtually the same as those used earlier in the non-dissipative case described in Section 4 of
Bona et al. (1994). In the numerical experiments whose outcome is presented here, use was
made of only the simplest iterative scheme considered in the last-cited reference, namely
the one corresponding to one “outer” (Newton) and two “inner” iterations at each time
step; this scheme requires solving only two sparse complex systems of size dim S x dim S5,
per time step. We pass over the details since they are adequately covered in the previous
work. For a theoretical analysis of the approximation of solutions of nonlinear systems

such as (3.7a) by Newton’s method, see Karakashian & McKinney (1994).
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It transpires that some of the solutions whose approximation is of interest feature very
rapid spatial and temporal changes. To keep track of the solution in such circumstances, it
proved necessary to introduce adaptive mechanisms into the numerical procedure. These
mechanisms took two distinct forms. First, a criterion was designed to refine the temporal
step size as the solution began to evolve rapidly, and then a procedure was developed to
cut the spatial meshlength in a neighborhood of points where large values of the dependent
variable are detected. The experiments reported here were all performed using a computer
code that featured both of these developments. Their implementation is presented and
discussed in Section 5 of Bona et al. (1994). It is geared toward approximating solutions
that are developing a single peak that apparently becomes infinitely high at a finite time
t* at a well-defined point z*. The spatial refinement is controlled by making use of a local
version of the inverse Lo, — Lo inequality satisfied by members of S}, and the temporal

step is defined by reference to the local, temporal variation of the quantity

I3(v) = ‘/‘; [v”"'z(w) — 6(p F 1)2(p +23) v2(z)| dz. (3.10)

More precisely, the computer code looks at the variation of I3(U™) with n and cuts the
time step when a normalized version of this quantity’s change exceeds a specified tolerance.
The functional I3 came to the fore in the earlier work on the GKdV equation (1.1) because
I3 is an exact invariant of this evolution. That is, if u = u(z,t) is an H!-solution of (1.1),
then I3(u(-,t)) is time independent. Although I3 is no longer an invariant of the evolution
generated by (1.2) when é > 0, its variation was still found to generate an effective criterion

for keeping errors under control by refining the temporal discretization.

4., NUMERICAL EXPERIMENTS

The scheme just presented was used by Bona et al. (1994) in a detailed study of the
initial-value problem for equation (1.1). As mentioned already, considerable attention was

paid to issues surrounding the solitary-wave solutions written in (2.12). Although the
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function u,(z,t) in (2.12a) is an exact solution of (1.1) when this equation is posed on the
entire real line, one may use it to define a solution on [0, 1], say, with periodic boundary
conditions imposed at the endpoints, as discussed in detail in Bona (1981). If A/e is large,
then u, decays very rapidly away from its peak value. Hence if at t = 0 the peak is centered
at the midpoint of the spatial interval (zo = 1/2 in (2.12a)), then to machine accuracy it
defines initial data supported in [0, 1]. Consequently, it may be extended to define periodic

initial data thusly,

o0

do(z) = Y us(z+35,0) (4.1a)

j==oco

and this data used to determine a spatially periodic solution of (1.2), say. As shown in
Bona (1981), the periodic solution of (1.1a) emanating from #o above is, to very good

approximation over relatively long time scales, given by

oo

u(z,t) = Y us(e +4,1). (4.1b)

j=—o0
The same remarks are valid for any initial data that decays rapidly to zero outside a finite
region of space, although the longer the spatial period [0, L], say, the longer the time scale

over which the solution of the periodic initial-value problem is well approximated by (4.1b).

It is known from earlier theory (see Bona et al. 1987) that the solitary-wave solutions
u, in (2.12) are orbitally stable for p < 4 and unstable if p > 4. Also, while (1.1) is always
locally well posed in reasonable function classes, it is known to be globally well posed
for initial data unrestricted in size only when p < 4, (see Kato 1979, 1983, or Schechter
1978). Two natural questions arise from these theoretical considerations. First, what
happens when an unstable solitary wave is perturbed? Second, is (1.1) globally well posed
if p > 4?7 The numerical simulations in Bona et al. (1986) and Bona et al. (1994) indicate
the answers to these two questions are related. The conclusions to which reference was
just made were based on the outcome of numerical experiments conducted with the fully
discrete, adaptive scheme presented in the previous section. It appears that the instability

of the solitary-wave solution manifests itself in a transformation to a similarity solution
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that goes on to develop a single-point blow-up in finite time. That is, there is a point
(z*,t*) € [0,1] x (0,00) such that |u(z,t)| = +oo as (z,t) — (z*,t*), t < t*. A detailed
analysis of a considerable collection of numerical simulations support the more precise

conjecture that the similarity solution corresponding to the blow-up has the form

1 ¥ —z
u(z,t) = = t)2f3px ((t* o t)-‘/3) + bounded terms, (4.2)

where y is a smooth, bounded function. These tentative conclusions in turn yield a negative
answer to the question of whether or not the initial-value problem (1.3) is globally well
posed for p > 4. Further experimentation showed that more general classes of initial data
rapidly decomposed into profiles resembling a sequence of solitary waves, the largest of
which loses stability and evolves into a similarity solution of the type indicated in (4.2)

and thus proceeds to form a singularity in finite time.

4A. BLOW-UP FOR SMALL DISSIPATION

It is the aim in this section to understand how the results just reviewed are modified
by the addition of a Burgers-type dissipative term as in equation (1.2) with small § > 0.
As was seen in Section 2, for § sufficiently large, the solution of the initial- and periodic-
boundary-value problem (1.3) exists globally in time and decays to the mean of the initial
data exponentially. However, if one sets as initial data a perturbed solitary wave that
apparently blows up when § = 0, the numerical experiments indicate that for 6 below a
critical value §., the resulting solution of (1.2) seems also to blow up. Moreover, the various
diagnoses, to be introduced presently, pertaining to the putative blow-up give results that
are virtually identical with those that obtain in the absence of dissipation, though the time
t* of blow-up is retarded by the dissipation. The value of §. depends upon the initial data
of course. The computations show that for a slightly perturbed solitary wave of amplitude
A, the critical value of é. has the form 6, = AP c, where ¢, is a constant depending

only upon p. It is especially interesting to recall that the theoretical analysis of Section 2
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