showed unequivocally that for p > 4, there is a constant C), such that if § > ¢A? Cp, then
the solution emanating from initial data uo of amplitude A exists globally in time and
decays to the mean of ug exponentially. This sharp agreement between analytically and
numerically deduced information regarding a supposed scaling law for é. lends credence
to its existence. Analogous numerical experiments for the zero*"-order dissipative problem

(2.14) confirm the validity of a scaling law of the form (2.23) for o..

With this background discussion and preview of some of the more important con-
clusions in hand, attention is now directed to a detailed description of the outcome of
our numerical experiments. Reported first are computations for the initial- and periodic-
boundary-value problem (1.3) with p = 5,6 and 7. The borderline case p = 4 had already
proved to be more difficult to understand when é§ = 0, and so it was not included in the
present study. We first consider, as in the previous study, initial data which is a simple

amplitude perturbation of a solitary-wave, to wit
uo(z) = AAsech??(K(z — ) (4.3)

with K as in (2.12b) and with the perturbation parameter A > 1 typically taken to be
1.01.

Consider the case with A =2.0, A =1.01, p=5and € = 5 x 10~* which was studied
with § = 0 in Bona et al. (1994). As seen clearly in Figure 6 of the last-quoted reference,
the solitary wave rapidly lost it shape and its peak became unbounded, whilst exhibiting
self-similar behavior. Let M(t) be some norm of the solution emanating from (4.3), say,
that becomes infinite in finite time. Its rate of blow-up is p where M(t) ~ (t* — )" as

t — t*, where 1, is as before, the blow-up time. The rate p is approximately equal to

p= — log[M(71)/M(1;)]
log[(m* — 1) /(T* — )]

where 7y, 7, are two distinct instances of ¢t < t*, but near t*, where M (t) is known.

The blow-up rates were computed for the approximate solution for the L,-norms with

¢ = p—1, p, p+1, p+2, oo and for the Ly- and Leo-norms of its spatial derivative (denoted
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L2,p and L, p, respectively). Naturally, the blow-up rates will not usually settle down
to their asymptotic values until ¢ is quite close to ¢*. In Table 1 below are reproduced the
numerically computed blow-up rates corresponding to the approximate solution emanating
from the just-mentioned perturbed solitary wave at the times 7; at which the computer

code calls for the i** spatial refinement. For details, the reader may consult Section 5 of

Bona et al. (1994).

i| L, L, T Lyt | Lo | Lop | Loon
5 | .5029(-1) | .6683(-1) | .7795(-1) | .8590(-1) | .1336 | .3008 | .4657
10 | .5047(-1) | .6729(-1) | .7853(-1) | .8657(-1) | .1348 | .3028 | .4731
15 | .4983(-1) | .6647(-1) | .7759(-1) | .8554(-1) | .1334 | .2992 | .4618
20 | .4989(-1) | .6658(-1) | .7773(-1) | .8572(-1) | .1338 | .2999 | .4690
25 | .5044(-1) | .6728(-1) | .7851(-1) | .8654(-1) | .1347 | .3020 | .4747
30 | .4974(-1) | .6633(-1) | .7741(-1) | .8534(-1) | .1329 | .2985 | .4685
35 | .5001(-1) | .6672(-1) | .7786(-1) | .8583(-1) | .1336 | .3004 | .4654

Table 1

Blow-up rates. Perturbed Solitary wave, p=15, e =5 x 107%, § = 0,
T =.22549 x 107!, f =42, 2* = 61333, Umax = 224,766,
kmin = .23 x 107%°, A7y = .16 x 10738,

The tolerance levels used to trigger the spatial and temporal refinements in the result
represented in Table 1 were chosen on the basis of extensive computational experience.
Simulations to be reported presently of the dissipative case utilized the same values of
these parameters. In the legend of Table 1 are recorded the final time 75 that is achieved
after f spatial refinements, the approximate point z* € [0, 1] of blow-up and the amplitude
Umax that the numerical approximation attained at ¢t = 7s. The parameter kpi, is the
smallest time step arising in the computations and A7y is the temporal increment the
program made between the last two spatial refinements. Initially, the spatial meshlength
was ho = 1/192 and the time step ko = 1073, It is useful to compare the blow-up rates

in Table 1 to those that would obtain if the solution had the form depicted in (4.2). For
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the reader’s convenience, these hypothetical rates for the case p = 5 are displayed in Table
2. The agreement between corresponding values in Tables 1 and 2 lends credibility to
the conjecture in (4.2). Graphs of the solution as a function of & for various values of ¢
provided in Bona et al. (1994) also support the conclusion that the putative blow-up has

a similarity form.

Norm| Ly | Ls | Ls | L1 | Le|Lyp| Leos]|
Rate | .500(-1) | .667(-1) | .778(-1) | .857(-1) | .133 | .300 | .467 |

Table 2

Predicted blow-up rates according to (4.2) for p = 5.

What happens to the picture just outlined when dissipation is added? To approach
this issue, we considered the approximation of a solution of ( 1.3) with all the parameters
for the initial data as in the simulation just described except that § was set to the positive
value 2 x 10~%. The parameters relating to the numerical scheme are also as above except
that the initial time step ko was taken to be 1 /1600 to minimize the numerical errors

associated with the first stage of the integration.

The evolution in time of the approximate solution in the case of positive dissipation is
depicted in the sequence of plots in Figure 1. The first four plots, which comprise Figure
la, show the same response to the perturbation that was observed in the dissipationless
case, namely the formation of a thin spike which proceeds to blow up at about the point
(z*,t*) = (.65812, .038624). In the graphs displayed in Figure 1a, the solution appears to
blow up at zo = 1/2, but this is due to the occasional translations of the peak back to
z = 1/2 to keep the maximum value of the solution located in the interval with the finest
grid. This strategy allowed us to refine the spatial grid in a static way rather than moving
the grid to follow the peak. (Actually, our simulations suggest that the center X (t) of the
peak at time ¢ behaves according to the law X(t) ~ a* + C(¢* — t)!/3 as t approaches t*,

where C' is some negative constant depending on 6, ¢, p and g.) The second set of four
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Blow-up in the presence of small dissipation.
Perturbed solitary wave, p=5, A =2, A=1.01, e =5x107%, § =2 x 10~*,
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Self-similarity of the blow-up. Data taken from the run of Figure 1a.
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graphs in Figure 1b show, on a suitably rescaled set of z-t axes, a detailed view of the
peak as it blows up. In these graphs the peak has been relocated to about z =0 and the
depiction is only that portion of the solution in the interval corresponding to the finest
spatial grid (e.g. [—6.81 x 107'%, 6.81 x 10~1%] in the fourth plot). These plots make
plausible the presumption that there is a similarity structure through which the blow-up
proceeds. Having determined that the solution corresponding to § = 2 x 10™* and the
previously mentioned perturbed solitary-wave initial data appears to form a singularity at
a finite time t*, it seemed appropriate to compute its blow-up rates near t*. These are
shown in Table 3, whose legend provides the precise values of all the parameters pertaining
to this simulation. As in Table 1, there appears to be well-defined asymptotic blow-up rates
associated with this solution, and, moreover, these blow-up rates are sensibly the same as
those in Tables 1 and 2. Similar agreement in blow-up rates was observed in the analogous
numerical experiments with perturbed solitary waves for p = 6 and 7. We also performed

a set of experiments with initial data
uo(e) = Ae™ D, (44)

which is a Gaussian profile not specifically tied to a travelling-wave solution of (1.1a). When
an approximate solution was developed using our scheme and A =1, p=5, e =2 X 10~4
and § = 1074, it was found that the solution apparently blew up in finite time, at about
the point (z*,t*) = (.72886, .37376) where the approximate solution U had attained a
value Ugax = 17,148. The form of the blow-up was much like that observed in the non-
dissipative case (see §5 of Bona et al. 1994). In addition, the blow-up rates of the various
norms of the solution emanating from the ug in (4.4) all agree to at least two digits with
those for the solitary wave shown in Table 3. This lends further support to a scenario that
is described as follows. The Gaussian initial data quickly resolves into a solution dominated
by pulses that resemble solitary waves. The largest of these then becomes unstable and
proceeds to form a singularity in finite time through the same route as seen already for

the perturbed solitary wave in Figure 1.
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i| L, By Lyia Lit2 | Lo | Lop | Leo
5 | .5049(-1) | .6700(-1) | .7814(-1) | .8612(-1) | .1341 | .3009 | .4639
10 | .4995(-1) | .6655(-1) | .7763(-1) | .8555(-1) | .1331 | .2994 | .4594
15 | .5000(-1) | .6670(-1) | .7787(-1) | .8586(-1) | .1339 | .3004 | .4660
20 | .4987(-1) | .6645(-1) | .7747(-1) | .8533(-1) | .1325 | .2988 | .4598
25 | .5012(-1) | .6688(-1) | .7808(-1) | .8609(-1) | .1343 | .3012 | .4683
30 | .5012(-1) | .6681(-1) | .7793(-1) | .8587(-1) | .1334 | .3006 | .4720
35 | .5007(-1) | .6675(-1) | .7786(-1) | .8579(-1) | .1333 | .3003 | .4665

Table 3

Blow-up rates. Perturbed solitary wave initial data, p=15, e =5 x 107%, § =2 x 10™*
T =.38624 x 107!, f =39, 2* = .65812, Umax = 98,050, kmin = .60 x 10738,
ATy = .77 x 1073,

It appears that the major effect of a small amount of dissipation added to the nonlinear,
dispersive equation (1.1) is just to delay the blow-up. This is seen by comparing the
approximate blow-up times 75 in Tables 1 and 3. Since the peak propagates in the direction
of increasing values of x, the blow-up point z* is consequently translated to the right as

well,

This paradigm changes as the level of dissipation increases. For example, repeating
the numerical experiment corresponding to Figure 1, except with § increased to 1073, the
approximate solution was soon observed to develop dispersive oscillations followed by a
steady decrease in the maximum amplitude (see Figure 2). By the time ¢ had the value
.09974, the largest excursion of the approximate solution was only about 1.03. A more
detailed view of the temporal decay of this solution will be provided in the next subsection.

This pair of experiments pointed to the following possibility: For fixed initial data u,
that leads to the formation of a singularity in finite time when § = 0, there is a critical
value é. of § such that solutions emanating from ug will form a singularity in finite time if

6 < 6., and will exist globally in time if § > ..
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Oscillations and decay in the presence of larger dissipation.
Perturbed solitary wave, p=5, A=2, A=1.01, e =5 x 1074, § = 1073.
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This hypothesis was copiously tested by several sequences of numerical experiments
with perturbed solitary waves of the form (4.3) as initial data. Some of these results were
presented in detail in Section 4 of Bona et al. (1992). On the basis of such experiments, a
conjecture was stated in the just cited reference to the effect that there is a critical value
¢p, depending only on p, of the parameter A = §%¢/AP, such that if A < ¢, the solution
blows up at a point in finite time, while if A > ¢,, the solution exists for all £. The second
part of this conjecture has now been proved (cf. Theorem 2.1 and subsequent remarks in
Section 2; the constant C} in (2.13) can be traced through the proof and, not surprisingly,

turns out to be much larger than the experimentally observed value c,.)

For a perturbed solitary-wave initial datum of the type (4.3) and a given set of param-
eters A,e,p and A (as mentioned before, we always took A = 1.01 and experimented with
p = 5,6 and 7), we recorded two nearby values §; and 6} of the dissipation parameter,
selected so that there was definite blow-up if § < 6 and definite global existence and decay
if § > 6F. As an example, we show the outcome of one such experiment corresponding to

p="5, A=2, A =1.01, giving 6, and &} for various values of ¢:

€ o, 6F
.10(=3) .10(—3) 11(=3)
25(—3) 16(—3) 17(=3)
50(-3)  .230(=3)  .235(—3)
80(—3) 28(—3) 30(—3)

The transition between ‘definite’ decay and ‘definite’ blow-up was quite sharp. This
enabled us to define with some confidence a computationally determined version of the
critical value é. to be the average of the sharpest achieved values §; and 6} after making
the interval (67 ,67) as narrow as was computationally convenient.

In Table 4 we show, for p = 5,6 and 7 and for various values of the amplitude A, the
value of the parameter §2/e. (This was computationally checked to be independent of ¢
for fixed A,p and JA; the particular data of Table 4 correspond to ¢ =5 x 10™%). We also

record the numbers ¢, = 62/eAP. The data clearly suggest that c, is independent of A
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and seems to be an increasing function of p, equal to about .34 x 1075, 1.22 x 10~%, and

2.42 x 1073 for p = 5,6 and 7, respectively.

A p=39 p=6 p=1
82 /¢ Cp 82 /¢ Cp 6 /e Cp
1.5 .026(-3) .3483(-5) .140(-3) 1.2330(-5) 414(-3) 2.4233(-5)
2 .108(-3) .3379(-5) .781(-3) 1.2207(-5) 3.100(-3) 2.4219(-5)
2.5 .328(-3) .3359(-5) 2.952(-3) 1.2093(-5) 1.485(-2) 2.4332(-5)
3 .832(-3) .3424(-5) 8.862(-3) 1.2156(-5) 5.315(-2) 2.4302(-5)
Table 4

Critical values 62 /¢ and ¢, = §2/c AP

for blow-up of perturbed solitary wave initial value (4.3), A = 1.01.

As discussed already, other classes of initial conditions resolve themselves into solitary
waves plus a dispersive tail, even in the presence of dissipation. One would expect that
if the largest solitary wave that emerges has amplitude A, then for é§ large enough to
guarantee the decay of this solitary wave, there should exist a global solution evolving
from the given initial condition. On the other hand, if § is such that the corresponding A

is below its critical value, then it is expected that the solution will blow up in finite time.

We close this subsection with a brief computational study of the effect of the zerot®
order dissipation term owu on the behavior of solutions of the initial value problem (2.14)
evolving from perturbed solitary-wave initial data of the form (4.3). As remarked in Section
2,if & = (0%¢)1/3 / AP is sufficiently large, a global solution exists, in fact decaying to zero in
L, exponentially as ¢ — co. The numerical experiments conform to this fact and indicate
that there exists a constant c;,, depending only on p, such that if ¥ < c;, the solution blows
up in finite time, whereas if ¥ > ¢}, it will exist globally. In the event of blow-up, the blow-
up rates were almost identical to the ones observed in the case of the (undamped) problem
(1.1), suggesting that a similarity structure of the type (4.2) is formed again. Thus, the

self-similar profile given by (4.2) proves to be quite stable under both types of dissipation
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considered here. It should be noted that (2.14) seems to be a harder problem to integrate
numerically up to blow-up as compared with (1.3), the reason probably being that as the
blow-up is delayed by dissipation, small numerical oscillations may pollute somewhat the
solution as it blows up. Such oscillations are likely to be damped more effectively by the

second-order term —éuyz.

Table 5 shows the results of a series of typical numerical experiments for p = 5 and
various values of 4,0 and €. (We took A = 1.01 as usual.) For a given value of A and o,
we varied e and recorded a pair of nearby values ¢4 and ¢_ chosen so that the interval
[e_,€e4] was narrow, with definite blow-up as the outcome if ¢ = e_ and with definite global
existence and decay if ¢ = 4. For the blow-up value, we also record Upax the maximum
amplitude reached at the end of the computation, as well as 7y, the approximate blow-
up time. The critical value is indeed seen to be a constant, equal to about 1.8 x 1073

independently of A, o and €.

!

Alo € Result | Umax Ts cy

1.7] .4 | .11(-3) | decay
10(-3) | blow-up | 2071 | .0776 | 1.804(-3)
1.8 | .3 | .44(-3) | decay
43(-3) | blow-up | 451 | .1188 | 1.797(-3)
1.8| .4 | .25(-3) | decay
24(-3) | blow-up | 2430 | .0844 | 1.798(-3)
1.8].5|.16(-3) | decay
15(-3) | blow-up | 1951 | .0607 | 1.791(-3)
1.9 | .4 | .56(-3) | decay
55(-3) | blow-up | 107 | .1030 | 1.802(-3)

Table 5
Blow-up and decay of (2.14). Perturbed solitary wave initial data, A=1.01, p=5.

The computed critical value of & = (o%e)!/3 /AP is given in the last column of the

Table. (The value ¢, was taken as the average of the two recorded values ¢4 and e_ of €.)
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4B. DECAY OF SOLUTIONS

In this section attention is restricted to the periodic initial-value problem (1.3) for the
generalized Korteweg-de Vries-Burgers equation in which the spatial period of the initial
data and the corresponding solution is normalized to be L = 1. The dissipation parameter
6 is taken large enough that the problem has a global solution. In this case, it follows from

Corollary 2.3, that the solution of (1.3) decays in L? exponentially fast, indeed, satisfying
|u(-,t) = Tolz < e @™ 8¢ ug — gy, (4.5)

where Uy = fol uo(z)dz. In addition, if uo belongs to H*(0,1), and satisfies the smallness
condition (2.9) relative to §, then all seminorms |8 ulz, 1 < j < s, decay exponentially to
zero as t grows. (In Corollary 2.3 the proof given yields that |u,(-,t)|2 decays with a rate

of O(e=(2™*8't) for some constant §' with 0 < §' < 6.)

As may already be gleaned from the example presented in the previous subsection
(cf. Figure 2), the solution evolving from, say, a solitary-wave initial profile, breaks up,
develops an oscillatory tail that travels around due to periodicity and interacts with the
bulk of the wave, thereby producing an irregular pattern of oscillations. As ¢ grows, the
various modes of the solution decay, with the highest ones vanishing first. Eventually, the
solution settles down to a sinusoidal profile which decays to the constant uy while travelling
with a speed determined by %, and the dispersive term in (1.3). Thus, for very large values

of ¢, the solution is essentially governed by the linearized equation corresponding to (1.2).

In the first part of this section we shall study, by means of numerical experiments, the
details of the just outlined behavior of the long-time decay of solutions. In the second
part we shall present numerical examples illustrating the short-time oscillatory break-up

of solutions and provide a brief commentary on this phenomenon.

Biler (1984), using techniques of Foias and Saut (1984), has proved sharp decay esti-
mates as ¢ — oo for the solutions of a class of nonlinear dispersive equations with dissipa-

tion, posed on an interval with periodic boundary conditions. His theory covers the initial-
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and periodic-boundary-value problem (1.3) for Uy, = 0 and p < 2, and shows, essentially,
that tll.»r{.lo M%ﬂh == tIEEO k’—gl";’ﬁ]i = —6A where A depends on uo and is one of the
eigenvalues (2mn)?, n =1,2..., of the operator —dl:; on [0,1] (i.e. of the differential oper-
ator in the dissipative term), with periodic boundary conditions at the endpoints. Hence,
both |u|z and |ug|z are O(e=%At) as t — oco. Here, for two types of initial conditions u,
and for p = 5 and 6, we shall present computational evidence which, among other things,
suggests that in various norms the solution of (1.3) decays to up in such a way that it is
O(e_(z”)zﬁt) as t — 400. In particular, the decay rate in (4.5) appears to be sharp.

In a first experiment, we took p = 5, ¢ = 0.5 x 1072, § = 0.2 x 1073, and, as initial
value, the perturbed solitary wave of the form (4.3) with A = 1.5, A = 1.01, and mass
Up = .141258. For all norms or seminorms M(+) (see below) considered, it was observed that
the decay was indeed exponential We then determined for each quantity M the constants

B and p such that

M(u(t) —up) ~ Be ™™, as t— oo. (4.8)

This was accomplished by computing M; = M(u(t;) — Up) at times t; = to + 1AL, ¢ =

1,2,..., where At = 2, and determining for each ¢ the values

-1 M,
W=7y 8\, /)

and

B; = Miexp (uit;)

The results are shown in Table 6 for ¢t up to 500. The quantities M(v) are the norms
|v|g, g = 2, p, 00, and also, the seminorms |v|2 and |vg|eo. For each M and different values
of t;, the corresponding computed values of y; and B; are recorded in Table 6a and Table
6b, respectively. We also show the rates and constants for the |v|; norms for ¢ = p — 1,
p+ 1 and p+ 2 only at the final instance ¢ = 500 since their evolution with increasing ¢

closely resembles that of the entries of the LP column.
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t L, L, Lo L, p Lo,p
20 | .15061(-1) | .49132(-1) .10203 .37086(-1) .18847
40 | .10434(-1) | .14300(-1) | .15728(-1) | .16468(-1) | .48906(-1)
60 | .89678(-2) | .53166(-2) | -.33487(-1) | .99156(-2) | .36859(-1)
80 | .83190(-2) | .10563(-1) | .41326(-1) | .10284(-1) | -.18133(-1)
100 | .80498(-2) | .86300(-2) | .19954(-1) | .84097(-2) | -.62585(-2)
200 | .78970(-2) | .78983(-2) | .49293(-2) | .79085(-2) | .14790(-1)
300 | .78957(-2) | .78961(-2) | .83062(-2) | .78961(-2) | .76502(-2)
400 | .78957(-2) | .78957(-2) | .79115(-2) | .78957(-2) | .78744(-2)
500 | .78957(-2) | .78957(-2) | .78934(-2) | .78957(-2) | .79025(-2)

t Lp—l Lp+1 Lp+2
500 | .78957(-2) | .78957(-2) | .78957(-2)
Table 6a

Decay parameters u. Perturbed solitary-wave initial profile, p = 5,6 = 0.2 x 1073, = 0.5 x 1073.

t | Ly L, Lo Lip | Lep
20 | .28507 | .70903 | 2.88439 | 3.78547 | 125.11658
40 | .25131 | .34881 02391 2.29930 | 16.33909
60 | .23425 | .22288 | .31065(-1) | 1.65868 | 14.17259
80 | .22425 | .30862 | 4.66287 | 1.68911 .29991
100 | .21903 | .26574 | 1.06674 | 1.44014 .52915

200 | .21504 | .24510 .16915 1.35432 | 7.59734

300 | .21498 | .24498 .34389 1.35089 | 1.77678

400 | .21497 | .24495 .30599 1.35072 | 1.89423

500 | .21497 | .24495 .30368 1.35072 | 1.91675

t | Lp—1 | Lptar | Lpyo
500 | .23791 | .25044 | .25487
Table 6b

Decay parameters B. Perturbed solitary-wave initial profile, p = 5,6 = 0.2 x 1073,¢ = 0.5 x 1073.
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We observe that after an initial transient stage, the Ly,q = 2,p — 1,p,p+ 1,p + 2
and Ly p rates py and the associated B’s stabilize to constant values. The Lo, and Loo,p
values also stabilize after a larger time period has elapsed; this probably reflects rougher
actual decay of these norms and the extra difficulty generally encountered in pointwise
approximation. The eventual rate of decay that emerges from the L,,q < p+ 2 and
Ly p columns is clearly p = .78957(—2). This is an accurate approximation of (27)%§ =
789568 . .. (—2) to five significant digits. The L, and L, p values have three, respectively
two, correct digits. It seems safe to conclude then from this experiment that all norms
of u — Wy decay exponentially in time with decay rate y = (27)28 and constants B that

depend on the particular norm measured.

In a subsequent experiment, the dissipation constant was doubled to § = .4 x 1073
while keeping all other parameters the same. As a result of the larger value of §, the decay
is faster and the entries stabilized grosso modo by t = 140. The results are shown (at
t = 140 only) in Table 7, and confirm the decay rate u = (2m)26; here the exact value is
(27w)%6 = .157914(—2). We also observe that for all norms the constants B have decreased

almost uniformly by about one percent; hence these constants probably depend weakly on

6.

Norm u B
L, | .15791(-1) | .21269
Lp_y | .15792(-1) | .23540
L, |.15792(-1) | .24237
Lyyq | .15792(-1) | .24781
Lpy2 | .15792(-1) | .25219
Lo | .15549(-1) | .29101
Ly p | .15792(-1) | 1.33652
Loo,p | .16900(-1) | 2.20768

Table 7
Decay parameters p and B at t = 140.
Perturbed solitary-wave initial profile, p=15, § = 0.4 x 1073, ¢ = 0.5 x 1073,
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It should be mentioned that the decay rate (2m)?6 was confirmed for all the norms and
seminorms considered in analogous numerical experiments with a pertrubed solitary-wave
initial profile in the case p = 6. Finally we experimented with a Gaussian initial profile of
the form (4.4) (for which W, = .177245), taking p = 5, € = .2 X 1073, § = 1073 in (1.3)
and integrating up to ¢ = 80 by which time the constants 4 and B for each norm and
seminorm under consideration (including both the Lo, and Loo,n entries) had stabilized.

The results are shown in Table 8. The computational decay rate p is again seen to be very

close to the value (27)2§ = .394784(—1) hypothesized earlier.

Norm w B

Ly | .39478(-1) | .21532
L,_y | .39479(-1) | .23830

L, |.39479(-1) | .24536
Lyt | .39479(-1) | .25086
Lyio | .39479(-1) | .25530

Lo | .39496(-1) | .30514
La.p | .39478(-1) | 1.35293
Loo,p | .39473(-1) | 1.91312

Table 8
Decay parameters y and B at t = 80.
Gaussian initial profile, p =5, § = 1073, ¢ = .2 x 1073,

A sample of the simulated temporal evolution of solutions corresponding to the solitary-
wave initial condition that yielded the results of Table 6, and to the Gaussian initial
condition from which Table 8 was produced, is shown in the sequence of plots of Figures 3
and 4, respectively. In both cases the solutions eventually settle down to profiles resembling

sinusoidal waves travelling slowly to the left as they decay to their respective values of .

An inspection of the first few terms of the series solution of a linear problem associated

to (1.2) proves quite illuminating. Defining w(z,t) = u(z,t) — Uo, one expects that since
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Figure 3a

Long-time decay of solitary-wave initial data. Parameters of Table 6.
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Figure 3b

Long-time decay of solitary-wave initial data, continued.
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Long-time decay of Gaussian initial data. Parameters of Table 8.
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Long-time decay of Gaussian initial data, continued.
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w tends to zero as t becomes large, for large ¢ the function w approximately satisfies the

linearized dispersive-dissipative equation
(] + 1’]0.);,; o &Ua:z + EWgzgs = 0, (4.7)

where n = ul. The solution of (4.7) posed with periodic boundary conditions on [0,1] and
with initial condition equal to the 1-periodic function wo(z) = ue(z) — o is given by the
Fourier series

w(:c,t) = Z ane—6(21rn)2t ez”‘"[‘”—(ﬂ—t(21rn)2)t],
n€Z

where a, = fol wo(z)e~?™"edz, n € Z, ap = 0. Keeping only the lowest frequency,

exponentially decaying terms yields the approximation
w(z,t) ~ ae~ (™6t oog {2n[z — (n — (27)%e)t] — €}, (4.8)

where the amplitude coefficient @ and the phase shift £ are constants depending only on the
first Fourier components fol wo(z)et?™® dx of wy. The relation (4.8) predicts the dominant
exponential decay rate O(e'(Z")zﬁt) as t — oo for solutions of the linear equation; as we
have seen this was also observed in the numerical experiments with the nonlinear equation
for u(z,t) — uwg for very large values of t. It also predicts that the decaying solution
asymptotically resembles u plus a sinusoidal wave profile that, as it decays in amplitude,
travels with a speed equal to n — (27)%¢ = (Uo)? — (27)%e. This is actually quite close
to the value that can be obtained from the output of our numerical experiments. As an
example, for the run corresponding to Table 6 and Figure 3, (4.8) predicts a speed equal
to —0.01968, which is an excellent approximation to the numerical speed observed in the
experiment and computed as follows. Let X(¢) denote the point in [0,1] where u(z,t)
attains its maximum. Using ¢; = 2(¢ — 2), ¢ > 3 and measuring the speed of the travelling
wave at time ¢; by the ratio v; = (X (¢;) — X($i=1)) /(ti — ti—1) (where the variable X is
viewed as an element of R/Z and distances computed accordingly) one obtains Table 9

showing the values of X(¢) and v at large values of ;.
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t; | X(%:) Vi
200 | .8975 | -.1853(-1)
300 | .9306 | -.1971(-1)
400 | .9629 | -.1967(-1)
500 | .9948 | -.1962(-1)

Table 9
Long-time speed of the travelling wave, example of Table 6.

Similarly, for the run with a Gaussian initial profile whose evolution was described in
Table 8 and Figure 4, (4.8) predicts a speed v equal to —.00772. The actual value of v at
t = 80 was —.00781.

Of course the linearized equation provides qualitative information only for very large
values of ¢, when the nonlinear term has ceased to be of any importance. For intermediate
values of ¢, the solution may decay in a complicated way, with energy being exchanged
between the lower and the higher modes; in fact, it can be the case that, initially, some
of the lower modes will actually increase for a short time due to the nonlinearity. This
history of nonlinear decay ought to be reflected, for example, in the constants B in (4.6),
which cannot be predicted solely in terms of uo as in the linear case. In fact, the weak
dependence of B on § observed in Tables 6 and 7 is probably due to the nonlinearity in the
problem. See Amick et al. 1989 for commentary on the role of nonlinearity in decaying

solutions of (1.2) when the initial-value problem is posed on the entire real line.

Turning now to the short-time decay of solutions of (1.3) and to the formation of the os-
cillatory tail, we show in Figure 5 the short-time (0 < ¢ < 0.2) evolution, in the case p = 3,
of an initially unperturbed solitary wave of amplitude A = 2, when § = ¢ = 0.5 X 1073,
The oscillatory tail forms, travels around due to periodicity and starts interacting with
the remnant of the main pulse which has not moved appreciably. If the amplitude of

the solitary wave is increased, it is observed that the oscillations become more numerous,
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Initial decay of solitary-wave initial data with A =2, = 0.5 x 1073, § = 0.5 x 1073.
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Initial decay of solitary-wave initial data, continued.



better formed and travel faster. Finally, Figure 6 shows the interesting initial decay of the

e e e 2
Gaussian ug(x) = e~100(z=1/2)

, allowed to evolve under (1.3) with parameters p =5, ¢ =
0.2 x 1073 and § = 0.6 x 103, The initial profile attempts to resolve itself into solitary-
wave pulses that actually grow in amplitude for a while. Had § been smaller, the leading
one would have proceeded to blow-up, as the numerical evidence presented in Section 4a

and Bona et al, (1994) shows. But, here eventually, the dissipative term dominates and

dictates the decay.

5. CONCLUSIONS

The overarching goal of the preceding discussion was to better understand the addi-
tional effect of dissipation on solutions of nonlinear, dispersive wave equations. The present
study centered around dissipative perturbations of the generalized Korteweg-de Vries equa-
tion (1.1a), but it is expected that the information gleaned for this class of equations will

provide useful guidance in other, related equations.

It is not surprising that even a small amount of dissipation will substantially alter much
of the long-term behavior of solutions. For example, the solitary waves that often appear
to play such a fundamental role in the long-term evolution of solutions of initial-value
problems like (1.1) for L-initial data cease to exist in the face of dissipation. (However,
steadily propagating bore-like solutions may well exist in dissipative cases — c¢f. Bona &

Schonbek 1985 and Bona, Rajopadhye & Schonbek 1994.)

The principal focus here has been to comprehend the effect of dissipation on the pu-
tative singularity formation observed in (1.1) when p > 4. The conclusions that form as
a result of the information obtained from our numerical experiments are compactly sum-
marized as follows. For suitable s, say s > 2, let initial data ¢ € H* be given. Consider a
dissipative perturbation of (1.1a) such as the GKdV-Burgers equation (1.3) or the model
(2.14). Let v > 0 connote a parameter like § in (1.3) or o in (2.14) that specifies the

strength of the perturbation relative to to that of the nonlinear and dispersive terms. Let
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Figure 6
Initial decay of Gaussian initial data p =5, e =0.2 x 1073, § = 0.6 x 1073,
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T, denote the maximum existence time for the H?®-solution of the relevant initial-value
problem with initial datum ¢ and dissipative parameter v. That is, for any T in [0,T)),
there is a unique H*-solution defined on [0,7] and T, is maximal in this regard. The
existence time T, is always positive on account of the local well-posedness of the initial-
value problem, and either T, = +00 or the Lo-norm of the solution becomes unbounded
as t approaches T, (see Kato 1983, Bona et al. 1988). Moreover, simple scaling arguments
together with the continuous dependence results make plausible the conjecture that T, is
an increasing function of v. The outcome of the numerical experiments reported in Section

4 then indicate the following dichotomy: either
(i) To = 400, in which case T, = o0 for all v > 0,
or

(i1) To < +00, in which case there exists a critical value v, with 0 < v, < 400 such
that T, < 400 for all v < v, and T, = +o0 for v > v..

In the second case, we expect T, to be a non-decreasing function of v € Rt with values

in the extended positive real numbers Rt U {4+00}, and continuous except perhaps at v,

where there may be a jump discontinuity.

If Ty < 400, then our experiments also indicate that the structure through which
singularity formation occurs varies only slightly with v until v, is reached. However, the
two different dissipative mechanisms considered showed a different dependence upon the

parameter p.

It would be interesting and relevant to important modelling situations to broaden the
range of dissipative mechanisms considered. A natural class of local dissipative terms that
deserves consideration in conjunction with the GKdV equation is (—1)78%7, j = 2,3,....
It is straightforward to determine that the initial-value problem for the GKdV equation
with the term v(—1)¥82*u, v > 0 appended is globally well posed for arbitrary sized initial
data if p < 4k — 2. It could be instructive to learn what happens if v > 0, £ > 2 and

p > 4k — 2. The case k = 2 may already be quite different from the cases k =0 and k =1
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examined here because for k > 2 the critical value of the parameter p in the nonlinearity
is determined solely by the dissipative term rather than the dispersive term. Non-local
dissipative processes also arise as models in practically interesting situations. Broadening
still further the range of inquiry might lead to the GKdV equation with dissipative per-
turbation v Mgu, where Myv(€) = |€|*6(€) is a homogeneous Fourier multiplier operator.

The decay of solutions of the initial-value problem
U + uPug + Ugzr + vMqu =0,
u(z,0) = g()

has been studied when g is suitably small (see Dix 1992, Bona, Promislow & Wayne 1994,
Bona & Demengel 1994). However, the situation that obtains for larger initial values has

thus far resisted analysis, and careful numerical simulation would be welcome.
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