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Abstract

In this report, we study the system
N+ We+ (NW)y = ANy =0, Wi+ Ne+ WWe = Wi =0, (%)

which describes approximately the two-dimensional propagation of surface waves in a uniform horizontal channel of length
Lg filled with an irrotational, incompressible, inviscid fluid which in its undisturbed state has depth 4. The non-dimensional
variables N(x, 1) and W (x, t) represent the deviation of the water surface from its undisturbed position and the horizontal
velocity at water level ./2/3h, respectively, The natural initial-boundary-value problem corresponding to the situation wherein
the channel is fitted with a wavemaker at both ends is formulated and analyzed theoretically. We then present a numerical
algorithm for the approximation of solutions of the system (%) and prove the algorithm is fourth-order accurate both in time
and in space, is unconditionally stable, and has optimal computational complexity, which is to say the operation cost per time
step is of order M where M is the number of grid points in the spatial discretization. Further, we implement the algorithm as a
computer code and use it to study head-on collisions of solitary waves. Our numerical simulations are compared with existing
theoretical, numerical and experimental results. We have tentatively concluded that the system (x) is a good candidate for
modeling two-dimensional surface water waves. Copyright © 1998 Elsevier Science B.V.

Keywords: Boussinesq systems; Solitary waves; Two-way propagation of water waves

1. Introduction

Consideration is given to the propagation of waves in a uniform horizontal channel of length Ly filled to a depth
h with an incompressible perfect fluid. Assuming that the wave motion is generated irrotationally and that it is
uniform across the width of the channel, the two-dimensional Euler equations are the full equations of motion. Even
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the two-dimensional version of the Euler equations are currently challenging both theoretically and with respect
to the numerical approximation of solutions. Consequently, when the practical need arises to model waves, further
approximations are often made. Assuming that the maximum deviation a of the free surface from its undisturbed
position is small relative to & (small-amplitude waves), that the typical wavelength A is large relative to h (long
waves), and that the Stokes number S = aA2/h? is of order 1, the Euler equations may be formally approximated
by a restricted, four-parameter class of model equations derived by Bona et al. [6], having the form

nt + ux + (un)x + a“xx.r - b’]xxr = 0» Mr + r’x + uu,\‘ + C"x_rx - du.\'xt = O, (])
in scaled variables, where a, b, ¢ and d are real constants satisfying the restrictions
a=106*~Pr,  b=16>-Ho-n,

2
c=%(l—-92)u, d=§l(|—92)(1-#)* .

where 0 <8 < 1,and A, u € R. Subscripts connote partial differentiation, the independent variable x corresponds
to distance along the channel while ¢ is proportional to elapsed time. The dependent variable n = n(x, ) is
proportional to the derivation of the liquid’s free surface from its rest position at the location x at time ¢ and
u = u(x, t) is proportional to the horizontal velocity at the height 6.

As pointed out in [6], all the models in (1) yield approximations which, like the classical Boussinesq system
((8l,u=b=c=0,d = =';) are formally accurate to order € = a/h. An interesting issue immediately presents
itself as to which of these models should be chosen in concrete modeling situations. The theory developed by Craig
[15] is not helpful in this instance because it deals with an ill-posed model, though his theory is definitive for
unidirectional, Korteweg—de Vries-type models. The developments in [6] indicate that many of the possibilities in
(1) are mathematically ill posed or that they do not preserve energy or other physical quantities conserved by the
full Euler equations. After these are eliminated, there still rernain several potentially useful classes of models of the
form depicted in (1).

It is our purpose to examine in some detail one of the more promising of the potentially useful models derived in
[6], namely

n - %hznxxt = —hwy — (NW)x, wy — %h2wxxl = —8fNx — Wiy,
for (x,¢t) € @ = [0, Lg] x [0. Tp]. 3)

The system (3)is () witha=¢c=0,b=d = %, but written in physical variables, where x is the distance along
the channel, ¢ the elapsed time, g the acceleration of gravity, 4 the undisturbed depth, and n is such that & + n(x, t)
is the total depth at location x at time 7, as before. The dependent variable w = w(x, ¢) is the horizontal velocity
at the water level 4/2/3h at the location x along the channel at time ¢. To simplify the notation in the rest of the
paper, we will resort to the standard non-dimensional variables (already in use in the systems in (1)), X = x/h,
f=1t//h]g, N =n/h,and W = w/cg, where cop = +/gh. The corresponding scaled Boussinesq system is

Np— gNezi = Wi = (NW)z, Wi — Wiz = —Nz = WW,,
for (£,1) € 2 =10, L] x [0, T, 4)

where L = Lo/hand T = Tp//h/g.

The theory developed in [6] for certain of the systems in (1) was for the pure initial-value problems posed on the
entire real line, and thus pertains to wave motion far from the ends of a channel or for very long-crested waves in
field situations, In this report, attention will be directed to the initial- and boundary-value problem for which there
is specified
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N@©, 1) = hy(F), N(L, 1) = ha(),
WO.5) =u), WL =uv), )
N(x,0) = f1(x), W, 0) = f2(%).

The consistency requirements for the initial- and boundary-conditions are the obvious ones dictated by continuity
considerations, namely

hi(0) = £1(0), h2(0) = fi(L), v1(0) = £2(0), v2(0) = fa(L). (6)

The problem (4)-(6) is appropriate to the situation where, in addition to disturbances already in the channel initially,
wave motion can be added at both ends of the channel. Our particular interest in this problem stems from some
forthcoming water-tank experiments in which wave motion is initiated by wavemakers at both ends of the channel.
One reason for choosing the system (4) from the various well-posed possibilities in (1) is that it is reasonably
straightforward to implement the initial-boundary-value problem in (5) for the system (4). Another salient point is
that accurate and efficient numerical algorithms are readily developed for the system (4).

The plan of the paper is as follows. In Section 2, the initial-boundary-value problem (4) and (5) is written as a
system of integral equations. Existence, uniqueness, and regularity results for the solutions of (4)—(6) are established
by recourse to the integral equations. A numerical algorithm having optimal order of efficiency for the approximation
of solutions of (4)-(6) is then proposed in Section 3. The scheme is based on the system of integral equations. In
Section 4, it is shown that the numerical scheme is unconditionally stable and fourth-order convergent in both space
and time. The algorithm is then implemented as a computer code and the rate of convergence tested in Section 5.
Numerical simulations of the head-on collision of solitary waves are also presented in this section. The paper
concludes with a brief summary.

2. Theoretical results

In this section, we prove that corresponding to given compatible initial- and boundary-data as in (5) and (6),
there exists a unique solution to (4) and (5), defined at least on [0, L] x [0, T'] for some T > 0, and we examine
the regularity of this solution. The existence of a solution is established by converting (4) and (5) into integral
equations and applying the contraction-mapping principle. The regularity then follows from the fact that solutions
of the integral equations are exactly as smooth as the data affords. The argument is similar to that proposed in {2,3]
for a single equation which models unidirectional waves and in [7] for the pure initial-value problem for another
Boussinesg-type system (see also [6]). In what follows, we drop the carets adorning the independent variables
in (4).

To begin, write the system (4) in the form

(1 —a"28})N, = —Wy — (NW)y, (1 —a"28H)W, = =Ny — WW,,

where a? = 6. Inverting the operator 1 — a~23?2 subject to the boundary conditions in (5), one obtains

Ne(x, 1) = | G(x, $)(=W; — (NW)s) ds + S(L — )}y + S(x)h3,

W,(x, 1) = | G(x,s)(—N;s — WW;)ds + S(L — x)v} + S(x)vj,

/
/
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where
G, s) = _alcosh(a(L — x — s).) — cosh(a(L — |x — s}))]
2sinh(al)
and
__ sinh(ax)
Sx) = m

Since G (x, s) is continuous with respect to s, continuously differentiable exceptats = x,and G(x, L) = G(x,0) =
0 for all x € [0, L], the integrals on the right-hand sides may be integrated by parts, thereby leading to

L
N, = f K(x,s)(W + NW)ds + S(L — x)h| + S(x)hy = Fi(x,t, N, W),

° 7
W, = f K{x,)(N + %Wz)ds + S(L —x)v’l + S(x)vé =F(x,t, N, W),
0
with
3G  a®
K(x.5)= 2" = ‘12—(S(L —x — 5) +sign(x — $)S(L — |x — s)).
Now integrating the equations in (7) with respect to the temporal variable, one obtains
t L
N(x,t) = fix) +/fK(x,s)(W+NW)dsdr
0 0
+S(L = x)(hi (1) = hi(0)) + S(x)(h2(t) — h2(0)), )

t L
W(x,t) = fz(x)+f/K(x.s)(N+%WW)dsdr
00

+ S(L — x)(v1(t) — v1(0)) + S(x)(va(r) — v2(0)).

Note that any classical solution of (4) and (5) satisfies the integral equations in (8) since all the steps followed in
the derivation of (8) may then be justified.

Denote by C*(a, b) the Banach space of k-times continuously differentiable functions defined on [a, b], equipped
with the norm

Ifllcx = sup  sup |fP ().
O<j<k a<x<bh

We will systematically abbreviate || |0 by || f]I.

Before presenting the local existence and uniqueness result, it is convenient to prove some properties of the
mapping M defined by

L
M@ (x) =/K(x,s)v(s)ds 9)
0

forany v € C(0, L).
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Lemma I. There is a constant ¢; depending only on L and constants Dy, k = 0, 1, ..., depending on k and L such
that

() if A; = supper<s (i IKS (x, 8)ds + JEIKD (x, 9)|ds), j = 0, then
A; = (V6) e,

and
(b) if v € CX(0, L) for some k > 0, then M(v) € C*+1(0, L) and

Mgk < Dicllvlice.
In (a), K)((j ) connotes the jth partial derivative of K with respect to x, computed classically on the intervals [0, x]
and [x, L].
Proof. Observing that for |x| < L, |S(x)| < 1 and that K (x, 5) is continuous in s except at s = x, where there is a
jump discontinuity with
K(x.x+)—K(x,x_)=a2=6, (10)

one easily obtains that |K (x, s)| < 2a? which yields that Ag is bounded by the constant 2a%L. Since for |x| < L,
|S”(x)| is bounded by a constant depending only on L, and K ! is continuous, it is seen that Ay is bounded by a
constant which also depends only on L. It is easy to verify that for x # s,

KD (x,5) =a’K{™(x,s5) foranym >0, v

which yields (a) for j > 0 with ¢| being any constant which bounds Ag and A;.
Let v € C(0, L) and denote M(v) by ¢. Using part (a), one sees that

L
Joll < sup flK(x,s)ldsnvnsc.nvn.
0

0<x<L

Using (10) and (11), one shows that

L

d'(x) = [ K (x, s)v(s) ds + 6v(x),
0
and that

oD (x) = 66 (x) + 6™V (x) form = 0.
The first equation yields ¢ € C! in the case v € CO with
lo®)lict < (e +0)vll,

and the second equation, when used as the basis for an inductive argument, yields (b) forany k > 0. O

For any Banach space X (for instance X = C*), the space C(0, T; X) is the Banach space of continuous maps
u: [0, T] = X with the norm

lullco.r:xy = sup flu(®)|x-
0<t<T
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The product space X x X will be abbreviated by X?; it carries the norm

Ifllx = max(ll fillx, I f2llx}
forf = (f1, f2).

We are now ready to prove the local existence and global uniqueness of solutions of the system of integral
equations (8) corresponding to specified auxiliary data as in (5).

Theorem 2. Letf = (fi, f2) € CO, L)%, h = (h1,h2), v = (ui,v12) € C(0,T)? forsome T, L > 0. Sup-
pose f, h and v to satisfy the compatibility conditions (6). Define |If|| = max({]| f, lco.Ly: | f2llc.Ly), (IR =
max{li4ilico.r), Ihzllco.ry} and vl = max{lvilico.ry, lv2llco.ry). Then there is a Ty = To(T. L. ]l [h,
Ivll) < T and a unique solution pair (N, W) in C(0, Tp; C (0, L))? that satisfies (8). Moreover, forany Ty < T,
there is at most one solution of (8) in C(0, T,; C (0, L))2,

Proof. Let C = C(0, Tp; C(0, L))? and write the pair of integral equations in (8) in the tidy form
U = AU,

where U = (N, W). It will be shown that the operator A defined by the right-hand side of (8) has a fixed point in C
for suitably chosen Tj by using the contraction-mapping theorem. From Lemma | and the compatibility conditions,
it is readily adduced that if U € C, then AU € C. Suppose now that both U and W lie in the closed ball Bg of radius
R about 0 in C; then we have the helpful inequality

To
IAW(x, 1) — AUGr. Dlle <11+ [Ulle + [We) f IU = Wile de
0

<c1To(1 4+ 2R)||U — W]

v — Wi. (12)

If® < 1,then Aisa contraction-mapping. For U € Bg, let B denote the terms in (8) involving the initial- and
boundary-values, namely

_ (fl(x) +S(L —x)(h (1) = h1(0)) + S(x)(ha(t) — hz(O)})
— AW + S =001 = v1(0) + S W) — vp(0)) )

It is obvious that ||B||C(0_T:C(0.L))2 < b =|f|l + 2(||h|| + ||v]}), and therefore
IAUllc = |AU — A0 + Bllc < @|Ullc + ||Blc < ©R +b.

Thus if we choose R = 2b and Ty = To(b) = 1/2(1 + R)cy, it is seen that
® =5 and |JAU|c < R.

The contraction-mapping theorem can be applied to establish the local existence of a solution of (8).
For uniqueness, let H = U — W, where U and W are two solutions of (8)inC = C(0, Ty; C(0, L))2. Asin (12),
one can show that

I
IHle < Cf IHjlc dr
0
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for0 <t < T\, where C depends on both |U||¢ and |W||c. Gronwall’s lemma then implies that
IHllc = 0,

which finishes the proof of the theorem. O

Theorem 3 ((Regularity)). Let £ = (fi, f2) € C2(0, L)%, h = (hy, hp), v = (v1, v2) € C'(0, T)? for some T,
L > 0 satisfy the compatibility conditions (6). Then any solution pair (N, W) in C(0, Tp; C o, L) of (8) lies in
C (0, To; C2(0, L))? and is a classical solution of the initial- and boundary-value problem (4) on the interval [0, To].

Proof. Since U = (N, W) has continuous component functions, one shows by using Lemma 1(b) that AU is
differentiable with respect to ¢, whence U, exists and is given by (7). Since h’ and v’ € €00, T)?, it transpires that
U, € C. Rewrite (8) as

f
N = filx) + f MW + NW)dr + S(L — x)(h1(¢) — h1(0)) + S(x)(ha(t) — h2(0)),
0

i
W = fo(x) + / MN + 1WwW)dr + S(L — x) (v (1) = vi(0)) + Sx)(wa(t) — v2(0)),
0

where M is defined in (9). Lemma | yields that the terms on the right-hand side of the latter equations are in
C (0, To; C' (0, L)), which is equivalent to saying that N and W are in C1(0, To; C'(0, L)). Using the same
argument once more gives that (N, W) € C1(0, To; C2(0, L))?.

Using (8) again shows that (5) is valid because 5(0) = O, S(L) = 1,and K(0,s) = K(L,s) = 0. That the
solution of (8) satisfies (4) can be established by observing that the derivation leading from (4) to (8) is reversible
if (N, W) e CY0, Tp; C%(0, L))%. O

Theorem 4 ((More regularity of the solution)). Let £ = (fi, f2) € ClO, L2, h = (hy,h2), v = (v1,12) €
C*(0, T)? for some T, L > 0, > 2, k > 1, satisfy the compatibility conditions (6). Then any solution pair
(N, W) in C(0, Ty; C(0, L))? lies in C¥ (0, Tp; C' (0, L))? and is the classical solution of the initial- and boundary-
value problem (4) on the interval [0, To].

Proof. This results from a straightforward extension of the argument in the proof of Theorem 3. O

Definition. A polynomial P(xy, ..., x,) is said to have degree /; in the variable x; if when all the other variables
are held fixed, P is a polynomial of degree at most /;.

Denote the boundary terms A, h2, vi, v2, by @; ie. @ = (¢1, ¢2, @3, Pa) = (A1, h2, vi, v2). By @)} we
mean max <i<a |@; (¢)|. Bounds are now derived for the temporal and spatial derivatives of N and W in terms of
bounds for N and W.

Theorem 5 ((Bounds on solutions of (4))). Let £ = (fi1, f2) € C!(0,L)?, @ € C'(0,T)*, for some T, L > 0,
[ > 2, and suppose the compatibility conditions (6} to be satisfied. Let Ty > 0 and let (N, W) be the solution of (4)
corresponding to the auxiliary data f and @. For k < [ a positive integer, define
FW(x,T)

axk ’

r€[0.¢) dxk

FNx,T) “

o, (t) = max max[
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and
B'(r) = max (|@@)I}, Il = max |fY].
O<r=t O<j<k
Then for r € [0, Tol,

ok (t) < Pe(B' (1), [Ifllk, 00 (2)),

where P can be bounded by a polynomial of degree k in B 1 (t) and ||f||x and of degree k+ 1 in g (¢) with coefficients
depending on &, L and Tp.

Proof. From (8), one verifies that for any ¢ > 0,

1L
Nx(x,t)=f1’(x)+Ecj;ffK(x,.s)(W+NW)dsdr
0 0
—S8'(L — x)(h1(t) = h((0) + 8'(x)(ha(t) — h2(0)),
t L
Wx(x,t)=f2'(x)+ Ei—f/K(x.s)(N+%W2) ds dr
00

— 8" (L — x)(wi (#) — v1(0)) + 8 (x)(v2(t) — v2(0)).
Using Lemma 1(b) and the fact that | S(x)| < 1 for |x| < L, it is seen that

INI < Iflly + ToDollW + NW| +4[15'(x) | B' (),
IWxll < £l + ToDollN + W2 + 4118’ ()| B' (1),

which yields
max{[|Nell, [Wxll} < P1(B (), IEll1, 00(8)).

Bounds for higher-order spatial derivatives can be obtained inductively using a similar argument and Lemma 1(b).
|

3. The numerical scheme

The numerical scheme is based on the integral equations (7). Finite-difference schemes can also be used to
approximate solutions of the system (4). If these are employed, proper treatment of the boundary conditions would
be required to achieve high-order accuracy in both space and time. As will appear presently, the imposition of the
boundary conditions in such a way that high-order overall accuracy is achieved is very simple when the scheme is
based on (7).

We turn now to the details of the scheme. Let Az be the step-size for the temporal discretization and Ax the length
of the spatial discretization; let (M + 1) be the number of spatial mesh points so that M Ax = L. The equations in (7)
are first discretized in space via numerical quadrature; the resultant system of ordinary differential equations are then
integrated forward in time by a finite-difference, predictor—orrector method. The resulting scheme is fourth-order
accurate in time and space, and we will show that for each time step, the only computational work involved is to
solve a trigiagonal system, which requires order M operations where M is as above.
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3.1. Spatial discretization

The spatial discretization is effected by approximating ¢ (x;) = fO‘L K{xi,s)y(s)ds,i = 0,1,..., M, by the
trapezoidal rule with boundary corrections,

kAx k—l

1
[y s o =ax | $0GA +yEAN+ T 5(i8x)
jAx =j+l

+ A (Y (GAxT) — Y (kAXT)).

This approximation is of order 4 when y € C*(j Ax, kAx). Taking account of the fact that K (x, 5) is discontinuous
at x = s and denoting K (x;, s) = K;(s), one has that

L
@ (xi) /K, (®)y(s)ds = L;(y)
0
= %Ax[K, (O)y(O) + (KiGAxT) + KiGAxT)y(i Ax) + K (L)y(L)]

1
+Ax Z Ki(jAx)y(jAx) + —Ax*[(Ki(s)y(s)) o+
J=Lj# N
— (Ki()y()Y liax- + (Ki($)y©Y liar+ — (Ki()y() lrax-1-

Writing K (x, s) = K !(x, s) + K2(x, s) with

K'(x, §) = %azS(L —-Xx =), Kz(x s) = a 51gn(x —s5)S(L — |x —s]),
and after some simple computation, one obtains fori = 1,2,..., M — 1 that

Li(y) = F! + F} + F) — La*ax?y (i ax),

where
M-1
Fl=ax Y (K (jany(jax),
j=!
M-Il
F2=Ax ) (KXjAx)y(jAx)) with K}(iAx) =
j=I
F = 3a* Ax[y(Osm—i — y(L)si] + 130* A<y O)sp—i + ¥ (L)sil,

i

and
si=38({Ax), fori=0,1,.... M.
The derivatives y’(0), y'(L) and y’(i Ax) in L;(y) may be replaced by the finite differences
1
y'(0) ~ ——-( y(2Ax) +4y(Ax) — 3y(0)),

YLy~ —-()'(L 2Ax) —4y(L — Ax) +3y(L)),
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and
y(iAx) = ——(y((t + 1)Ax) — y((i — 1)Ax)),

fori=1,2,....,.M — 1. Write y; = y(iAx) so that ¢ (x;) = fOL K (x;, 8)y(s)ds is approximated by
¢i(y) = F + F} + F) — 0 Ax2(yip1 — yic1), (13)
where y = (yp, ..., ypu) and
FY = a* Axlyosm—i — yusi]
+ gga® Ax[(—y2 + 4y1 = 3y0)sm—i + (Ym—2 — 4ym—1 + 3ym)sil.

Applying these spatial discretizations to (7) and denoting W = (W, ..., Wy) and N = (Np, ..., Ny) where
W; =W(iAx,t), No = N({Ax,t), Ne(xj, t) and W, (x;, t) can be approximated by

Ni(xi, t) ~ ¢;(W + No W) + S(L — xj)h) + S(x;)h3,
Wi (xi, 1) = ¢ (N + LW o W) + S(L — xj)v| + S(xi)v).

The symbol N o W denotes the componentwise product of N and W, which is to say NoW = (NoWp, ..., Ny Wy).

The semi-discrete algorithm is then to find vectors n = (no(t), ..., ny(¢)) and w = (wo(?), ..., way (t)) which
are approximations to N and W, respectively, such that fori = 1,..., M — I,
(ni) = @i (€y) + sm—ih} + sihy, (wi)y = i (Fw) + Sar—i v} + s;v5, (14)
no=hy, ny =h, wo = v, Wy = vy,
where f, = w+nowandf, =n+ %w ow. Denoting i = (ny,...,nmy~1) and W = (wy, ..., wpy—), and

identifying no, ny, wo, was as hy, ha, vy, va, the system (14) may be written as the system of ordinary differential
equations

d /n f) (¢, i, W) d

U N —u="f t, ) 1

P (\“V) (fz( A, W) ) or dtu (t,u) (15)
where u = (i, w)T and f(r,u) = (¢, i, W), f2(¢, i, W))". Observing that the dependence of f and f; on the

boundary terms @ = (h), hy, v, v2) is separate from their dependence on i and W, we write (see (13))

Ly(W +1ioW) + By(2, ),
Ly (i + 3% o W) + Bw(®, @),

fi¢e. n,w

b0t B, W (16)

)
)

[

where Ly is a matrix independent of i, W, and By (P, ®’') and Bw (P, ®') are vectors whose components are
polynomials quadratic in the components of ¢ and &',

3.2. Acceleration procedure

If M + 1 is the number of spatial mesh points, a direct evaluation of ¢;(y), i =0, 1,..., M, will involve on the
order of M? operations. To reduce the computation to order M operations, we follow the scheme put forward in
[4,5] by defining

(D*y)i = yi — (ie1 — 2yi + Yi_ 1)/ (8% =24+ e79%%) = Ay; + B(yis1 + yi-1),
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where
—1

= @h% 3 1 g-ahx and A=1-28.

Notice that if y = (yg, y1,...) and y; = e9/4% then
(Dy); =0 for all i.
Denoting FO = (F—‘l.o), F! = (F,.') (see (13)), then since e?% = /8% it transpires that
(D%, =0, i=1,....M -1,
(D" =0, i=1,....M— 1.
Defining K by
Kij = sign(i — j)e®li=J1ax,

it is straightforward to verify that

w1 B)"z, [ = ],
D? ZKf.f-Vi = { B(yi+1 —yi-1), i=2,3,....,M =12,
i=l ; —Bym-2. i=M-—1.

In consequence, if G = F! + F2 + F0, where G = (G;), F? = (F}), then

(DG); = AG; + B(Git| + Gi_) = (D*F?);

%azBAxyg. i=1,
={ 1a*BAx(yip1 — yi-1)s i=2,3,....M -2,
—%GEBAX}'M_;: i=M-—1.
To complete the system of equations for G|, ..., Gy, observe that

AG) + BG, = —BGo + $a*BAxy,,
where
Go = FQ = 1a*Ax[yo + L (=y2 + 4y — 3y0)]
and
AGuy_1 + BGy—2=—BGy — 1a*BAxyy 2,
with
Gy = FYy = —§a*Axlym — 3 Om—2 — dym—1 + 3ym)].

Thus, evaluating ¢; (y), fori = 1,2, ..., M — 1, can be accomplished by solving the preceding tridiagonal linear

system for G|, ..., Gy-1, and then using (13) in the form
$i(y) = Gi — 38> Bx (i1 = Yiz1)
fori =1,..., M — 1. The total operation count for this procedure is of order M, which is optimal.

It is easy to verify that wo = wys = 0 because

Kl(s) = ~K3(s) and  Kp(s) = —Kp(s)-
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3.3. Temporal discretization

The Adams fourth-order predictor—corrector scheme, (P4 EC4E) in the parlance of Isaacson and Keller [19], is
used for the integration of (15) in time. In case the exact values of the boundary terms @’(¢) are not available, they
are calculated via the fourth-order central difference formula

1
¢, 1) ~ (p/ = ¢1~2 _ 8¢l+l - ¢I+2
(aty=d 12At( Vs a7
where @/ = @(IAt), ! € N.Letf!(u) denote the function obtained by approximating &’ ({ Ar) with d®linf(lAt, u)
(i.e. replacing By (@, #')) and Bw (P, @’) by BN(P, d®) and B, (P, dP), respectively). The numerical scheme
foru is

8! = u' + L ArS5E ') — 59wty + 372! 2) — 9f! 3 (Y,

fjl'H = llI + Q%At[ng'l(ﬁ’_H) + 19f1(u1) + 5f[—l(ul—l) +fl—2(ul—2)]_ (18)
The fourth-order Runge-Kutta—Simpson method can be used for the first three steps to generate the starting values
for the Adams method whenever it is necessary. The fourth-order predictor—corrector scheme was employed because
it requires two-functional evaluation instead of four when compared with the fourth-order Runge-Kutta scheme.
The advantage in stability of the fourth-order Runge-Kutta scheme for the ordinary differential equation is not
important because the system is not stiff. Indeed, we will show presently that our scheme is unconditionally stable.

Remarks.

(i) The same method can be used to develop schemes of arbitrary order of accuracy by using higher-order derivative
corrections for the trapezoidal rule (i.e. the Euler-Maclaurin formula) and higher-order prediction—correction
time stepping methods.

(i) In some of our computations, the initial RungeKutta steps can be avoided, This situation is obtained when
we are approximating a known, exact solution or in cases where the disturbance comes entirely through the
boundary, so that zero initial conditions are appropriate.

4. Analysis of the numerical scheme

In this section, we prove that the algorithm (18) is fourth-order accurate in time and in space, and that it is
unconditionally stable.

Lemma 6 ((Error for the Trapezoidal rule with boundary correction)). If y € c4( JAx, kAx), then

kAx 4 kAx

f (x)dx = Iix(y) = Ax / Iy (x)] dx
Y g 384 '

jAx jAx

Proof. This is a standard result (cf. [16]). O

Lemma 7 ((Spatial discretization error)). Let there be given y € C4(0, L), apositive integer M and Ax = L/M <
1.Lety = (yo, Yis..., yu) where y; = y(iAx). Thenfori =1,...,. M — 1,
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< caMyAx*,

L
@i (y) ~—fK,'(s)y(s) ds
0

where M4 = maxo<;j<4(|ly")(x)||} and c3 is a constant depending only on L.

Proof, By the definition of ¢; (y) and using Lemma 6, one finds that

L
¢(Y)—fKi(.9)y(s) ds
0

1A

L
Li(y) —fKi(S))’(S) ds| +|L; () — i (¥l
0

A 4 iAx L
<=2 (/ |(K.--y)‘4>(s>|ds+f|(K,--y)‘4’<s)|ds
0

— 384
iAx
2A .2
a“Ax - Yitt — Yi—1 / —y2+ 4y —3» /
Ax) — 2 _JL _illy'©) - - : -
i 2 {y(t X) e + Ism—il |y (0) T + Isi| |y (L)
_ym-2 —4ym—1 +3ym
2Ax ’

Applying Lemma 1(a) to the first two terms, the conclusion emerges. O
We will denote the max-norm of a vector y by |y|.

Lemma 8 ((Lipschitz condition for the mapping € in Eq. (15))).
(a) The functions ¢ (y) are Lipschitz, i = 1,..., M — 1;ie. forany y,z € RM*!,

max |@;(y) — #i(2)| < CLly —z|,
I<i<M-1

where C is a constant depending only on L.
(b) The max-norm of the matrix Ly in (16) is bounded, which is to say there is a contant Cy. depending only on L
such that

NN lloo < Ci.

(c) Forfixed® € C 1o, 7)4, £(z, u) is uniformly Lipschitz continuous on bounded subsets of lo. More precisely,
for any uy, uy € R*¥ =2, there is a constant C, depending on L, but not on uy, u3 or M, so that

[E(t, up) — £z, w2)| < Cr(1 + Juy| + Juz2])u — w2

Proof. From (13), validating part (a) only requires estimating the max-norm of the matrix AxK', with K!(i, j) =
Kf(j Ax),! = 1, 2. A simple calculation shows that Ax | X! (|00 is bounded by a constant depending only on L, and
(a) is proved.

Let§ = (¥1,..., yu—1), § = (0, §,0), and similarly, let Z = (z1, ..., 2m-1) z = (0, 2, 0). Since

(LNY)i = ¢i(F),
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it follows that
ILNY — Lyl < CLIF — % = CL|§ — 2|,

which yields (b).
For (c), write uy and u; as u; = (n, w;), u; = (ny, wy), and observe that

£ ug) — £(1, u) = ( Ly(Wy 41y 0oWy) — Ly(W2 + iy 0 Wy) )

Ly(w + %v‘h oW)) — Ly(W, + %Wz o W)
Using part (b), there appears

CLiWwi —W2+NjoWw; —figoWw
If(t,un—f(r,uz)ls( CEIFS\a S oot =2 E')

Crinp —my + W) o W — 5Wp o W
SCr(l 4+ |uy| + |uz)uy —uy|. o

Suppose [0, Tp] is a temporal interval over which we have existence of a solution as discussed in Theorem 2.
Using Theorem 4, one infers that if / > 2 and & > I, then for initial data fi, f2 € C/(0, L) and boundary
data ¢; € C¥(0,T) fori = 1,...,4, satisfying the compatibility conditions (6), the unique solution (N, W) in
C(0, To; C(0, LY)? of (7) lies in C*(0, Ty: C! (0, L))? and is the classical solution of the initial- and boundary-value
problem (4) and (5) on the interval [0, Tg].

For simplicity of exposition, we will assume from now on that the initial data (f|, f) = 0. The conclusions
remain valid for non-zero initial data satisfying fi, /> € C*(0, L) and the compatibility conditions (6).

Lemma 9 ((Local truncation error)). Let N, W € C(0, Ty: C*(0, L)) be the solution of (4) and (5) and let N; () =

N@GAx, 1), Wi(t) = W(iAx,t),i = 1,2,....M — |, where M and Ax are as in Lemma 7. Define U =
(Niyoo o y Ny, Wiy oo, Wiy ). Then for 0 <t < Ty,

d 4

EU — £, U)| € c2Ax" Q1 (o0(?), ..., 04(1)) = €1 (1),
where Q) is a quadratic polynomial in the quantities o; introduced in Theorem 5 (i = 0, 1,. .., 4) with numerical

coefficients and c; is the constant appearing in Lemma 7 which depends only on L.

Proof. Let N = (Np, ..., Ny)and W = (Wp, ..., Wy). From the equations in (7), and using Lemma 7, one finds
d
—U-f(¢,U
l TR )|

_ (AN W ey iy — BN W)
[]:2(ta N: W)].I=X|....,XM_| - fZ(tv Na W)

Uy Ki(s)(W + NW)ds — (W +NoW)l,_, | ),

- '([fo" Ki()W + §W?)ds — gi(N+ SWoW)]_, |

gl W (/) 12
—— NWH | — (N + 5 ,
0<j<4 ox W+ ) 0x (V4279

< c;;_Ax4 max max[

which yields the advertised conclusion. O
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Lemma 10 ((Existence and bounds for the solution of (16))).
(a) Assume & € C!(0, T)* and define

T\ = sup{tg | Ty > to = 0 and u(¢) exists with Ju(z) —U@)| <1 forzt € [0, 1]}, (19)
where u(t) is the solution of (15) and U(¢) is defined as in Lemma 9. Then 7} — Ty as Ax — 0 and

lu()] < 1 +oo(r) fore €0, T1],
where, as in Theorem 5,

oo(t) = max max{||[N(, D), [W(, )|}
tel0.1]

and the unadomed norm || - |} is as before that of C(0, L).
(b) If ® € C¥(0, T)* and k > 1, then
k

d
Ol Ol +apr), @, @', ...,@%) forr e [0, 1],

where Qy is a polynomial of degree at most & + 1.

Proof. Since f is locally Lipschitz continuous, there is a unique solution u(¢) to (15) for ¢ € [0, 5], at least for some
to > 0. Since u(0) = U(Q) = 0 and both u, U are continuous, then T} > 0. We shall now obtain a lower bound for
T| and show that T} — Tp as Ax — 0. Fort € {0, T1], one has

d d d
{E;u(t) — 5 vO|=f¢w - =UE)

<|f(r, ) — £, V)| + ‘f(t. U) - %U(t)
SCo(l+ Jul+ [UDlu — Ul + (1),

where

d
e1t) = max | £(s, U(s) = = U()

In consequence, it transpires that

d d
'd—tll(t) - TIU(t)

<2C (1 +ap())u—=U| + e1(2). (20)

Because (d/dt)|u~U| < (d/d?)(u—U) except on a set of zero measure, and since o (¢) and ) (¢) are non-decreasing
functions of ¢, it follows from Gronwall’s lemma that

lu — U] < e ()[e2CL0F00 _ 11/2CL(1 + a0(1))) = ¥ () @n

fort € {0, T1].

It 77 were such that ¥ (T}) < 1 and T| < Tp, it would contradict the maximality of T in the definition (9)
as follows, In this case, there is a tp with 0 < T» < Ty — T3, such that u(z) is still defined and ju — U] < |}
fort € [T}, T + t2], because f is locally Lipschitz continuous. Since e;(r) and og(r) are non-decreasing in ¢ (let
e1(t) = e1(Ty), op(t) = og(Tp) fort > Tp), it follows that ¥ (¢) is strictly increasing in ¢ as soon as e (¢) > 0. Since
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op(r) arld e (t) are continuous, ¥ (¢) is continuous and ¥/ (t) — oo ast — oo. Thus it follows that T} > min{Ty, T)
where T is the unique solution of

*

w(T) = 1.

Note that since ej(t) — 0 as Ax — 0, T — oo as Ax — 0. Thus u exists on an interval [0, 7|] that coincides
with [0, Tg] for Ax sufficiently small. Moreover,

u@)| < lu() =U@®)| + U@ <1+ 09(t) fort [0, Ty].

This finishes the proof of (a).
From (16) and (17), one has

iu— Ly(W+now) L By(¢.9")
dt \LyGi+iWow) Bw(®, @) )"
where u = (i, W). Since

ILnlloo < CL,

it is easy to see that

Ly (W + 8 oW)| < Cr(l + u)ul, Ly + 3Wo W)l < CL(l + [u)jul.
Observing that
|By (@, @) < q1(@(r), @'(1)), |Bw(®, @)| < q1(®(1), &'(1)),

where ¢, is a quadratic polynomial in & and @', it is adduced that

< qu(@9), @D (1)) + CL(1 + [u))|uf

d
‘EU([)
=01, @), V(1)) < 011 + 00(0), 2P (1), 2V (1)),

where Q) is a quadratic polynomial.
Since

d. d, . oa d .,

d2u Ly (Ew + (En) ow+mno (Ew>) EN(D, @', 0"

a? - ol e (La)oa N Ev@ 0 0m )
N (E?l'l + (EW) OW)

where Ey and Ew are quadratic with respect to @, @', @”, the inequality in (b) is obtained for k = 2. Applying
the same argument inductively, one obtains the inequality in (b) for general k. 0O

Remark. From (20) and (21), one can prove that
dk
W[U(’) — U(Z)]‘ -0

forany k and ¢t as Ax — 0.
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Lemma 11 ((Temporal discretization error)). Let Tj, At > Obe given and let |- | denote the max-norm on R2(M—1
Suppose that u = u(t) € C3(~3At, T))2M=1 u, = £(z, u) on the interval [-3A¢, T1] and u = 0 on [=3A¢, 0],
where f(t, u) is Lipschitz continuous in u with Lipschitz constant K, which is to say

|f(t- ul) _f(tvu2)| < K|u| —l]2|

foruj,u; € R*™ =D andr € (=3As, T). Letut, I > 1 be determined by the iteration

i =u'"t 4 L Ar(55E Y — 5911-2 4 376173 — 91 =4) + ArdY,
ul =o't G ArOF + 1987 = 56172 1+ £173) + Ard,

(which is equivalent to (19)), where f/ = f(jAt, u/), £/ = f(jAr, @/)andu® = u~! =u~2 = u=3 = 0. Suppose
that the errors 6! and §! satisfy

6"l + 3K Arf!| < 6

for! < T1/At. Then for all I < T1/At, it follows that

i 3 4 ) ecaTi _ |
lu' —u(lAnD| < |ca{ 1+ KAt ) At sup [u>' (@) +60 | —,
8 t€[0,T] Cd

where ¢g = T‘fK (17 + 30K At) and ¢3 is a numerical constant,
Proof. This is a standard result (see [19]). O
To apply this lemma to the scheme (18), let 8’ and 6 be defined as
(% e @@ - pan — dni )zt + (G Tis @y - pan - dny )22

(& Ziordui@ = Nan — dof ) + (F T dvp@ - Nan - dv; )2

6! =

where (z!); = spy—i, (2% =s; fori=1,....M = 1,43, =55, a, = —59, a3 = 37, & = -9, and
(2‘—4 2 oaih( ~ j)An) — dh'l'j) ' + (i‘z Y3 0aik(( ~ AL ~ dhlz_j) 22

¢ = , .
(% X)coavi (@ — Han - dvll") 2+ (31 Tjcoayup(@ — AN — dvy /)22

where ag = 9, a; = 19, a2 = —5, a3 = 1. Assuming that ¢ ¢ C3(0, T + 2A0)%, where T is as in Lemma 10,
then |6| and |8’ | can be bounded above by

max{|6'|, 1§} < cart®  sup (12O ")}
t/Atell-6.142]

Assume further that ®(0) = &'(0) = --- = ®O(0) = 0. Define #(¢) = 0 and u = 0 for t < 0. Then
u € C3((—00, T1)) and (d/dr)u = £(z, u) for all z € (—oo, T}). Moreover

max{|6'|, 16"|,! < Ti/At) < cart* sup  {[@ D)),
1e(0.7+2At1]

Since the Lipschitz estimate on f is not a global estimate, Lemma 11 cannot be applied directly to the scheme
(18). However, an argument similar to the one in Lemma 10 can be used to show that it is applicable to f over a
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time interval [0, 72] where T, — T as At — 0. Because we are interested in deriving a posteriori error estimates
for w', a different line of reasoning will be pursued.

Let T < Ty, and set & (T) = max{|u/|, [@'|: ! < T/At}. Note that & depends implicitly on At, Ax, and M, but
we view these as fixed for now. In consequence, the quantity ¢ is known, at least a posteriori. If we set

B(z) = {v € R*"™~D: |y| < max{6(z), | + o ()},

where | - | still connotes the loo-norm on R~V then when T < T, all the quantities u’, &’ and u(¢) belong to
B(T) fort, lAt € [0, T].‘ In this situation, we replace f by a function f equal to f on [0, T] x B(T), and such that
f(z, y) is globally lipschitz continuous in y for r € [0, 7] with a Lipschitz constant not exceeding that for f restricted
to B(T). This is possible because the temporal-dependence and the y-dependence of f are decoupled. In particular,
a bound for the Lipschitz constant for f is

K(T) = +2 max(5(T), 1 + (D).

Since w/, W', for 1, I At € [0, T], may be viewed equivalently as having been generated either by forf, Lemma 11

applies and yields

eqT

- — |
! —u(Ar)| < cs (1+%K(T)At) arts ( sup D@+  sup |¢(5)(t)|>

€d t€l0.7) rel0.7+2A0)
forall! < T /At, where ¢s = max{ci, ¢4} is a numerical constant and
cq = ca(o(T), 5(T)) = 5K (T (17 +30K(T)Ar).
Combining this estimate with (21) and the bounds on u(¢), one obtains for 0 < I' < T\ and for all ] < T /At, that

' —UdANL < o —u( ADL+ lu(lAD = U AD]
c,;}'-" — 1

= ( 3. ) 4€
<YM +es| 1+ KT)At ) A" ——
8 Cd

x( sup [u®|+  sup {|<z><5’(r)n> = es(t),
1€(0,7) te[0.T+2At1]

where, on account of the earlier estimates,

ex(t) = caAx* Q1 (01 (1), 0 < i < 4)[eZCLFa0 _11/2C, (1 + 0p(1)))

- {.'(ff ]
+cs (1 +§K(T)Az) Arte [ sup @)+ sup {|¢<5>(r)|}].
8 €d te(0.7] tef0.F+241]

Thus e, provides an upper bound for the total error in the fully discrete scheme. In particular, for fixed T >0,
! — UG Ax, 1AD)] < cs(Ar* + Ax?),

where cg is independent of Af, Ax, and M, but depends on hy, hy, vy, v, N, W, T, and & (7).

Theorem 12. Let (N, W) be the solution to (4) and (5) with f| = fo = 0and @ = (h), ha, v|, v2) belonging to
C3(0, T)*, where T > O and @@ (0) = 0, fori =0, 1,..., 5. Let M be a positive integer and Ax = L/M. Let At
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be a positive parameter, and presume Ax, At < 1. Let u! be the solution of (18), let T < Tj be as defined in (19),
and set

&(T) = max{ju'|, [&'], ! < T/At},
Then it follows that
max{|N(iAx,l1At) — b, WG Ax, IAL) — wh]) < co(At* + Ax?)

foranyiand/withl <i < M — land | < < T/At, where cg is independent of At, Ax, M, but depends on h;,
ho, vy, v2, N, W, T and o (T).

5. Numerical experiments
5.1. Convergence and efficiency tests

The convergence estimate c(Ax*+ Ar*) for the scheme is checked numerically by using the exact travelling-wave
solution
3 5

m(x —kt —x9), k= :EE.

— kt — (22)
N(x,t) = ? (—2 + cosh (3/%(,{ —kt — xO))) sech? (EE%O_)) '

which was obtained by Chen [13]. We chose xo = 20 and L = 40 so that the crest of the wave is placed at the
middle of the channel. The exact values of N(x, 0), W(x, 0), N(O, t), W(0, t), N(L, t) and W(L, t) are used for
the initial- and boundary-conditions of N and W. All the numerical computations were performed on a DEC Alpha
station.

The first test was designed to demonstrate that the error from the spatial discretization is of order Ax*. This is
accomplished by fixing the step size in the time direction and varying the step size in space. We took Ar = 0.001
and Ax = 0.25/2* for k = 1,2,3, 4,5, 6, and compared the numerically generated approximation with the exact
solution at T = 1 for each value of k. The max-norms of the errors in N and W, ER? and EY, respectively, were
computed. The outcome is shown in Table 1.

The structure of Table 1 is as follows. The first column corresponds to the step size in space and the second
column presents the CPU time used to obtain the numerical solution for each step size. Increasing k by | halves
the step size which results in the number of mesh points being doubled. The ratio of CPU time used for step size

W(x,t) =3k sech?

Table |

k CPU (s) Ratio EF Ratio EY Ratio
1 271 0.1015 0.4193E—-1

2 5.33 1.97 0.7030E-2 14.4 0.2812E-2 14.9
3 10.73 2.10 0.4506E—3 15.6 0.1778E-3 15.8
4 21.90 2.04 0.2824E—4 16.0 0.114E—4 16.0
5 44.72 2.04 0.1766E—5 16.0 0.6965E—6 16,0
6 103.3 2.31 0.1089E-6 16.2 0.4297E-17 16.2

L =40,T = 1, At =0.001, Ax = 0.25/2,
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Table 2

k CPU (s) Ratio EY Ratio EY Ratio
1 30.0 0.1707E-2 0.7658E-3

2 60.3 2.01 0.1029E-3 16.6 0.4330E-4 17.7
3 122 2.02 0.6312E-5 16.3 0.2463E-5 17.6
4 246 2.02 0.3862E—6 16.3 0.1460E-7 16.9
5 497 2.02 0.2363E-7 16.3 0.8890E—8 16.4
6 984 1.98 0.1285E—8 18.4 0.5182E—-9 17.2

L =40,T =1.00, At = 0.0625/2%, Ax =210,

hi and hg_; is shown in column three. This ratio was seen to be about 2, thus confirming that the theoretical
optimal-order efficiency of the scheme is attained. The fourth column shows the maximum absolute error at the
mesh points between the exact solution N and the corresponding numerical approximation. The ratio of the error for
step size Ay and hy is shown in the fifth column. It appears that halving the step size in space results in the error
being decreased by approximately 16 times, thereby demonstrating that the discretization error is of order Ax*.
Columns 6 and 7 are similar to columns 4 and 5, respectively, but for the variable W. Using the data for the CPU
time for k = 5, one finds that the average CPU time used per point, per time step and per variable is approximately
0.448 x 0.25/(40 x 1000 x 26) = 4,367 us.

The second set of tests was organized to demonstrate that the error from the temporal integration is of order
At*. This was done by fixing the step size in the spatial discretization and varying the temporal step size. The
spatial discretization was fixed at 27!, a value sufficiently small that the error derived thereform is negligible
compared to that generated by the temporal discretization. The time step At was taken to be Ar = 0.0625/2* for
k=1,2,3,4,5,6, and the numerically generated approximation was compared with the exact solution at T = ]
for each k. The max-norms of the error associated with N and W, E3? and E}, were computed and are shown
in Table 2. The structure of Table 2 is similar to Table 1. Column 2 shows the optimal efficiency obtained and
columns 5 and 7 indicate that the discretization error in time is of order Ar4.

Tables 1 and 2 are consistent with the unconditional stability of the scheme since the numerical approximation
is bounded over quite large variations in the ratio of At to Ax. It is worth noting that the numerical experiments
indicate that for fixed Ax and A¢, the overall error grows linearly in t.

5.2. Generation of clean solitary waves

To numerically simulate the collision of solitary waves, one needs to have in hand accurate or “clean” numerical
approximations of these solitary waves. Generating a clean solitary wave in a laboratory environment is a rather
difficult task. In contrast, we will show that generating clean solitary-wave solutions numerically is not difficult,
even when exact solutions are not available, which is the case for this system (the exact solution (22) is not a
solitary-wave solution because N changes sings). The procedure for numerically generating a solitary wave may
be described heuristically as letting a wave that is close to a solitary wave evolve in an extensive water channel for
a relatively long time. After the leading solitary wave separates from the rest of the disturbance, we may cut it off
from the remainder and have, to a very good approximation, a clean solitary-wave solution. Numerically, this was
accomplished by commencing with initial data that resembles a solitary wave and letting it evolve for a certain time
according to a numerical simulation of the evolution equation via the scheme outlined above. When the principal
elevation has shaken off a dispersive tail, and often, smaller solitary waves, it is isolated numerically by setting the
remainder of the signal to zero. It is then pulled back to the left-hand side of the spatial interval of integration and the
process repeated. A few interations of this procedure were needed to produce an accurate solitary traveling wave.
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In practice, we started the numerical simulation with zero initial conditions and let a single “solitary” wave, which
was a lower-order aproximation to the actual solitary wave, enter via the boundary conditions from the left side of
the spatial domain.

To find a suitable approximate solitary-wave solution, it is convenient to introduce a system which explicitly
expresses the order of magnitude for all the terms appearing in (3). Using the dimensionless variables,

X = Ak, t=A>A/cg, n=af, w=gaw/cy, 23)
and letting o« = a/h and B = h?*/A? be the small parameters corresponding to nonlinear and dispersive effects,
respectively, the system (3) becomes

(24)

If @ = B = 0 in (24) and attention is restricted to solutions moving to the right, it is found upon solving the
linear wave equation that @ = . To correct for the small but non-zero effects of nonlinearity and dispersion, itis a
standard procedure to suppose that

W =i+aA+ BB,

where A and B are functions of 7, ¥ and f (cf. [27]). Substituting this expression for @ into (24), one obtains the
pair of equations

r?; = %ﬂn = — — oAz — BBz ~ “f?z)*’ -
i — §Phzzi = — Nz — aAj — BBy —anng,
after neglecting the higher-order terms. Since these two equations have to be consistent, and using the lowest-order
relation 9, = 8; + O(«, 8) on the terms linear in « and 8, we find
20A; +2BB; — afjiiz + (i) =0,
which yields
= —i?/4, B=0.

Substituting this relation into either of the equations in (25) and solving for 7, we obtain the first-order approximation
to a traveling-wave solution, namely

1 7 - . . -
fi = fjo sech? (E /%’E(i — kf —xo)) with k = 1 + Jaijo,

® = fi — Jafi?.

Rewrite this appeoximate solution in the non-dimensional variables N, W, %, f to obtain

2 7 1 3No,, 50 . .
N(&,f) = Ngsech? (5 _JZ_O(x — ki —xo)> with k = 1+ N, 26)

W(£, 1) =N — jN?,

which we view as an approximation to a solitary-wave solution of the system (4). This approximation is familiar
from the unidirectional Korteweg—de Vries theory.
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Table 3

Solitary-wave height versus phase velocity

No Ns c/v/gh No Ns c/vgh
0.1 0.0995 1.0488 0.9 0.8109 1.3578
0.2 0.1975 1.0953 1.0 0.8847 1.3868
0.3 0.2936 1.1395 1.2 1.0201 1.4385
04 0.3875 1.1815 14 1.1384 1.4825
0.5 0.4787 1.2211 1.6 1.2393 1.5193
0.6 0.5669 1.2586 1.8 1.3226 1.5490
0.7 0.6518 1.2938 2.0 1.3885 1.5722
0.8 0.7332 1.3269 25 1.4804 1.6040
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Fig. 1. A solitary wave followed by a dispersive tail.

The formulas in (26) are used to generate clean solitary-wave solutions numerically. In the numerical computation,
we choose L = 150, Ax = At = 1/64, xo = 12 for Ny > 0.4 and xo = 18 for Ny < 0.4, so that the compatibility
condition at £ = 0, f = 0 was satisfied to within the tolerance 3 x 107>, To generate different size solitary waves, we
let Ng range between 0.1 and 2.5, which resulted in solitary waves with height N between 0.0995 and 1.4800 (see
Table 3). Solitary waves higher than 1.4800 can also be generated by using W (%, 7) = N(&, f) where N (&, ) is as
in (26) and using larger Ng. Of course no physical relevance should be imputed to solitary-wave solutions of larger
amplitude since as a model of physical reality, the system (4) subsists in part on a small-amplitude assumption.
Indeed for the full Euler equations, it is well known that there are no solitary-wave solutions beyond the so-called
wave of the greatest height (cf. [1]). However, the large-amplitude solutions provide a good test of the computer
code implementing the algorithm described in Section 3.

The time evolution of the solution for No = 0.7 (which generates a solitary-wave solution of height 0.6518) is
shown in Figs. 1(a)—(d), where a solitary wave develops, followed by a dispersive tail. In the approximate solution
at f = 109.375 (see Fig. 1(d)) has its dispersive tail cut out by shifting the solution to the left by a distance
115.625 and filling the right with zero, one obtains a relatively clean solitary-wave solution in the interval [0, L].
The resulting approximate solution can be further filtered by using it as initial data and letting it evolve, again
clipping the dispersive tail that emerges. To have the relative magnitude of the tail that emerges, Nya;;/Ns, smaller
than 3.5 x 1075, we used one filtering step for Ny > 0.8, two filtering steps for No = 0.5, 0.6, 0.7, three filtering
steps for Ny = 0.3, 0.4 and four filtering steps for No = 0.2. In the case Ny = 0.1, the relative magnitude of the
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Table 4(a)

maX(Ntra - N)/Ng

Ng t=20 t =40 t =60 t =80
0.0995 1.526(—4) 2.003(—4) 2.152(—4) 2.256(—4)
0.2936 6.720(—4) 8.1574(—4) 1.223(-3) 1.631(-3)
0.4787 3.654(—4) 7.309(—4) 1.096(—3) 1.462(-3)
0.6518 1.438(—4) 2.8755(—4) 4.316(—4) 5.700(—4)
Table 4(b)

Size of the tail

Ns 0.0995 0.1975 0.2936 0.3875 0.4787 0.5669 0.6518 0.7332
Ntait /N 2.2(-4) 3.5(—6) 1.6(—6) 2.1(—8) 3.7(-7 4.5(-9) 4.0(-9) 5.8(-9)

dispersive tail is 2.2 x 10~* with five filtering steps. The magnitude of the tail is recorded in Table 4(b). Smaller
values of L can save computational cost and memory, but require more filtering steps.

Outcomes entirely similar to that depicted in Fig. 1 are found for Ny ranging from 0.1 to 2.5. For each Np,
the normalized phase velocity ¢/+/gh and the height N of the resulting solitary wave are computed and listed in
Table 3. These data have been checked by halving the spatial and temporal discretization and by doubling the length
of the wave tank. For Ng = 0.5, which generates an approximate solitary-wave solution with N5 = 0.4786563 and
c//gh = 1.2211242, the change in Ny and c is less than 1.5 x 10~% and 8.7 x 1079, respectively, when the result
is compared with that obtained by doubling the number of mesh points. To further ascertain how near to a solitary
wave we arrived by the process of filtering the approximate profile in (26), another experiment was conducted.
The free surfaces and velocity profiles of some of our “clean” solitary waves were taken again as initial data for
the discrete analog (18) of (4), located so that the boundary conditions are sensibly zero. We then compared the
evolution of these data under the auspices of (18) with the initial data translated at what we recorded in Table 3to0
be its phase velocity. (The latter quantity is denoted Nira in Table 4 below.) The maximum norms of the differences
between the two just-mentioned versions of the free surface, E§°. as a function of ¢ are recorded in Table 4(a)
(which is scaled by N;). The maximum value of the difference occurs near the crest of the wave for all displayed
values of N; except Ny = 0.0995. The differences with regard to W and the L,-norms of the differences behave
exactly like ES, and they all comprise less than 0.1% of the mass or momentum in the waves. In Table 4(b), the
magnitude of the dispersive tail Ny;, scaled by N, is recorded. Tables 4(a) and (b) provide further evidence that
the waves we generated are indeed very nearly solitary waves which travel with the speed noted in Table 3. Even
with five filtering steps, No = 0.0995 was apparently the least exact of the approximate solitary waves reported
here.

The data in Table 3 record approximately the relationship between maximum wave height and phase speed for
solitary waves. According to the convergence study in which the spatial and temporal meshes were halved and the
comparisons displayed in Table 4, we have considerable confidence in at least the first three decimals in Table 3.
In consequence, the relationship between wave height and phase speed for solitary-wave solutions can sensibly
be compared with theoretical results obtained from the Euler equations and with existing experimental data. This
comparison is helpful in determining the range over which the model system (4) might be a useful approximation
to reality.

The theoretical result we compare with is the systematic expansion of the phase velocity with respect to the height
of the solitary-wave solution of the Euler equations for the flow of a perfect fluid, namely

c= @M1+ INg = Z(N)?+ FIN +-+) 7)
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Fig. 2. Comparison between (27), (28) and numerical simulation of (4): (o) numerical data using (4); (— + —) experimental prediction
(28); — two terms of (27); (—) three terms of (27); (— —) four terms of (27).

(cf. [17,25]; the convergence of this expansion has not been proven). The explicit solitary wave solutions to uni-
directional models, for example the KdV equation and the regularized long-wave equation (see [2]), have phase
velocities which are the first-order approximation of (27),

c = (gh)'2(1 + 1Ny).

On the other hand, Scott Russell’s experimental results were accurately mirrored by the presumption

c= (g% /T + N, (28)

(Russell [24]). In Fig. 2, we compare our numerically generated data (‘o’ points) with (28) (*— 4 —’ line) and the
Y+ SO ey X1 LI [ e . SO i PRQE ey 4 1 ! lhamnaY nemd tlaicd Amdan /¢ Y Lma) aememeencrtamntimne AR DTN Tha censb ol
LIdL-UIUC] \ h— “llc}, JACLLNU-VIUCL | 7 11IC) diild Hinu=sulucl | — — uney appxu/\uuauuu Ul \&/ ). 1110 EIGPN UIVUWD
that the numerical results using the model (4) are close to the prediction made on the basis of experiments and to
the third-order approximation of (27) for a wide range of solitary-wave heights.

The data in Table 3 that are displayed in Fig. 2 are instructively used to fit a Taylor polynomial. That is, suppose
the solitary-wave solutions approximated in Table 3 belong to a continuous branch of solution (see [6]) such that
the phase speed c is an analytic function of the maximum amplitude Nj, say with Taylor expansion about the origin

of the form
c=f(Ns) =ap+ayNs+aaNZ + - --. (29)

If we consider k entries (c;, N;), | < i < k, in Table 3 starting with the smallest value of N = N, then it is
elementary to obtain an approximate Taylor polynomial of degree k — 1 that passes exactly through these k points.
That is, if fi is the truncation of f so that

SNy =ao+ N + - +a@- 1N,
then fi is uniquely determined by the equations

ci= fiN), 1<i=<k. (30)
Using the first three points, it is found that

f3(N) = 1.0001 + 0.4968N — 0.0750N2,
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while the use of the first four or five points gives

fa(N) =0.9999 + 0.4999N — 0.0922N2 4 0,0291N3,

and
fs(N) = 0.9997 + 0.5053N — 0.1306N2 + 0.1411N3 — 0.1145N*.

Comparing these polynomials with the formal expansion (27) and Scott Russell’s formula (28), it is evident that
the first two terms were captured rather well, despite the fact that the values of N used to obtain them are neither
small, nor especially close together.

5.3. Head-on collision of solitary waves of equal sizes

An interesting numerical experiment to be discussed now is comprised of a pair of solitary waves of equal height,
but propagating in the opposite direction, interacting in a head-on collision. As is well-known, this interaction is
equivalent to the ideal reflection of a solitary wave on a vertical wall, a fluid motion that has some practical interest
as a crude approximation to what happens when a train of long waves reflects off a coast line. The head-on collision
of two equal-sized solitary waves is classified as wave-wave weak interaction in [21] because the interaction time
is very short when compared with that of two solitary waves interacting as they travel in the same direction. Qur
numerical results will be compared with existing theoretical and numerical results obtained from the Euler equations
and with experimental outcomes.

The numerical computations are initiated using the clean solitary waves generated as previously described. Two
equal-sized solitary waves moving in opposite directions are set in motion by letting

. [ NG, 0<#<4L,
Noew(3) = I NL-%), YLsisL,

o _ | W, 0<%=<3L,
Woen = [ —W(L-%, L<iszL,

where (N, W) is a clean, right-moving, solitary-wave solution of (4) whose elevation is placed near the left-hand
end of the spatial domain. For the integration of (4) with these initial data, Ax, At and L are chosen as before,
namely Ax = At = 0.5/32 and L = 150.

Fig. 3 shows a typical time evolution of the head-on collision of two equal-sized solitary waves with the amplitude
to water depth ratio Ny = 0.4787. From (a) to (b), the solitary waves traveled for a time period f = 23.42 with
essentially no change of shape or amplitude. Part (c) shows the interaction of the two waves; notice that the maximum
wave height at interaction is 1.0504, which is substantially more than double the incident wave height. Fig. 3(d) is
taken after the interaction when the two waves are moving away from each other. In (¢), the two solitary waves are
further apart and are seen to be quite similar to those in (a). A closer look at the interval between the separating
solitary waves in (d) and (e) shows that there has been generated a secondary dispersive wave of extremely small
magnitude. As is usual for purely dispersive waves, it spreads and its amplitude diminishes with time.

Figs. 4 and 5 provide a more detailed view of the interaction. Fig. 4 shows the numerical approximation imme-
diately after the interaction at { = 54.88; the genesis of the dispersive train is clearly evident. The dispersive tail
has at this time an amplitude of 0.000372 (scaled by k) which is about 0.077% of the incident wave height. The
presence of the dispersive disturbance indicates that the interaction is not “exact”, so these traveling waves are not
solitons.
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Fig. 3. Time evolution of a head-on collision.
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Fig. 4. Dispersive tail.

In Fig. 5, we study carefully the solitary-wave amplitude before and after the interaction. The maximum value of
the wave is plotted against time in Fig. 5(a) and magnified at the vertical axis between 0.4785 and 0.4790 in Fig. 5(b).
Before the interaction (f ranging between 0 and 34), the two solitary waves are moving towards each other with no
change of amplitude. Between about / = 34 and f = 60, the two solitary waves interact in a head-on collision and
the amplitude jumped to 1.050449 at = 40.78, which is more than double the incident wave height (cf. Fig. 5(a)).
After the interaction (f ranging between 60 and 80), two elevations emerged and moved away from each other.
These appear to settle down to solitary waves with amplitudes slightly smaller than those of the incident waves. The
loss in mass and momentum is reflected in the generation of the dispersive train. One observes in Fig, 5(b) that after
the interaction, the amplitude of the waves emerging from the interaction reaches a minimum and then recovers
to very nearly the height before the interaction. The permanent loss of amplitude, which went into the dispersive
tail, is very small. The reduced height immediately after the interaction is transitional. Notice that if the temporal
integration is not carried far enough, one would observe a larger loss of magnitude because the solution would stil]
be in this transitional phase.
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Fig. 6. A typical phase-shift diagram.

The amplitude of the wave at the interaction being more than double the incident wave height is a typical feature
of a nonlinear interaction. Another feature of the nonlinearity of the interaction is the phase shift. This is the
property often exhibited by interacting solitary waves having their center of mass translated in a way not described
by movement at constant speed. A typical phase-shift diagram is presented in Fig. 6 (N5 = 0.6518), in which the
location of the two peaks is plotted against time 7, It is clear from Fig. 6 that the solitary waves are shifted back
(delayed) due to the interaction.

Results similar to those just described are found for computations conducted with Ny ranging between 0.0995 and
0.8847. The outcome of a series of such numerical experiments is summarized in Table 5. The incoming solitary-
wave amplitudes N, are recorded in column 1. The maximum amplitude run-up at the peak of the interaction Nmax
is shown in column 2. The gain of the maximum run-up when compared with twice the incident wave amplitude
(Nmax/2Ns) — 1 comprises column 3. The phase shifts cghin are written in column 4, which are the amounts of
time the wave was delayed due to the interactions. The transient loss of amplitude |Ng — Nmin|/Ns is displayed
in column 5, where Nmip is the minimum wave amplitude following the interaction while the maximum excursion
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Table 5

Head-on collision of two identical solitary waves

Ns Nmax (Nmax/2Ny) — | Cshift (Ns — Nmin)/ Ns Ndisp
0.0995 0.2037 0.0235 —0.1753 2.36(—4) 1.83(-5)
0.1975 0.4128 0.0450 —0.2460 2.34(-5) 1.1(-5)
0.2936 0.6250 0.0643 —0.2978 3.97(-5) 5.01(-5)
0.3875 0.8382 0.0816 —0.3382 6.24(-5) 1.88(—4)
0.4787 1.0505 0.0973 —0.3684 8.47(~-5) 3.72(-5)
0.5669 1.2601 0.111] -0.3971 2.12(—4) 6.33(—4)
0.6518 1.4656 0.124 —0.4203 1.35(-4) 9.60(—4)
0.7332 0.6656 0.135 —0.4406 1.49(—4) 1.34(-3)
0.8109 0.146 0.146 —0.4585 1.76(—4) 1.77(-3)
0.8847 2.0450 0.156 —-0.4730 1.97(—4) 2.22(-3)

of the dispersive tail after the interaction is recorded in column 6. It is seen from columns 2 and 3 that Nyax and
Nmax/Ns are increasing with Ns. For N ranging between 0 and 0.7332, (Nmax/2Ns) — 1 varies from O to 0.135,
which means the maximum run-up at the middle is between 0% and 13.5% more than double the incident wave
height. The data are consistent with the proposition that (Npmax/2Ns) — 1 — 0 as Ny — 0, so going over (o the
linear theory in the limit of infinitesimal amplitude. The phase shift in column 4 also increases as Ny increases and
likewise points to the property cshiee — O when Ng — 0. Column § confirms that for this model system, there is a
transitional loss of magnitude, which is small when compared with the existing experimental results. It was noticed
during the computations that the magnitude of this transitional ioss and the height of the dispersive tail (column 6)
are sensitive to the cleanness of the incoming solitary wave. One observes much larger secondary excursions due
to the tails of the incoming disturbance when the initial configuration is not quite so close to a true solitary wave.
If we use one, instead of four, filtering step for No = 0.2, and then interact the resulting approximate solitary wave
with itself in a head-on collision, the entries corresponding to row 2 in Table 5 are as follows.

Ns Nmax (Nmax /2Ns) — 1 Cshift (Ns — Nmin)/Ns Ndisp
0.1975 04128 0.0450 ~0.2460 1.7(=3) 5.8(—4)

Thus the noisier approximation generates considerably larger values of the transitional loss of magnitude and the
maximum excursion of the dispersive tail.

The relative magnitude of this transitional loss of amplitude and the height of the dispersive wave both increase
as N, increases. (The values associated with Ny = 0.0995 may not be accurate because the incident solitary waves
are not especially clean.) In our computations, we did not observe large permanent loss of amplitude. The solitary
waves appear to always recover from their transitional loss and return to very nearly their original height. These
observations are at odds with the experimental results of Renouard et al. [23]. The discrepancy between experimental
outcomes and our numerical simulations owes to at least two major aspects. First, dissipative effects are always
substantial in wave tanks on laboratory scales (cf. [4]). Second, it is quite difficult to generate a truly clean solitary
wave in a laboratory setting. As just indicated, numerical simulations with less accurate approximations to solitary
waves led to significant permanent loss of amplitude due to interaction, just as observed in the laboratory.

A quantitative comparison is now undertaken between numerical data in Table 5 and existing theoretical and
numerical results obtained via the Euler equations, and with existing experimental results. We first compare the
maximum height of the wave during interaction and the phase shift after the collision. Since the collision of equal-
sized solitary waves is equivalent to the reflection of a solitary wave against a vertical wall in the absence of viscous
effects, comparisons of the numerical simulations reported above can be made with theoretical and other results for
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Fig. 7. Maximum run-up, interaction of two equal solitary waves: ‘o’ Numerical simulation using (8); (— —) one term of (31); (—) two
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this latter problem. From the Euler equations, one obtains a systematic expansion of the maximum wave amplitude
Nmax along the wall in tems of N, which is (cf. [9,22,25])

Nmax = 2Ng + $(Ns)? + 3(N)* + - - 1)
and similarly for the phase-shift cei
B
R = (Ne/3)' U+ {Ne ) (32)

(the convergence of these series is again an open question, even for small values of Ny).

InFig. 7, the maximum wave height at the center of the interaction is compared with both the first- and second-order
approximations in (31). The numerical simulations agree with the second-order approximation more closely for a
wide range of incident wave heights. The third-order approximation is more accurate only when Nj is sufficiently
small,

If the numerically generated data in Table 5 are used to fit a cubic polynomial in the same way as indicated in
(29) and (30), it is found that

Neax =~ 1.9993N; + 0.4967N2 — 0.1916N3 + - --

The phase shift introduced by the iteraction of the two solitary waves is shown in Fig. 8 along with the associated
graph of the leading-order approximation (32) to the phase shift according to the Euler equations. The numerically
generated values lie close to, but below those predicted by (32). One possible reason for the slight discrepancy is
that we did not wait long enough in our computations for the outgoing waves to recover, and a small error in the
phase speed could result in a relatively large error in Cghit.

Again using the numerically generated data to fit an approximation to a putative Talor expansion, one obtains

Chift
h
which has a leading term agreeing reasonably well with that in (32).
Overall, our numerically generated data show the system (4) models well solitary-wave propagation and inter-
action even when the amplitude of the wave is not especially small. Indeed, our numerical methods could handle
amplitudes N; at least as high as 7, which is of course not relevant to practical situations.

~ (Ns/3)'72(0.9632 + 0.0106Ng = 0.1663NZ + -+ ),
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Comparison is now made between the numerical data and existing experimental results found in [11,20], and
in particular with more recent results obtained in [23]. Regarding the reflection of a solitary wave from a plane
vertical wall, the maximum run-ups on the wall in all the experiments agree pretty well with (31) and the phase shifts
reported in {23] agree with (32) qualitatively and to some extent quantitatively. Reasons for the lack of detailed
agreement with experiments certainly include the viscous effects in the boundary layer along the channel walls,
which is not modeled here. Indeed, the comparisons of experimental data taken in a flume with the predictions
of a unidirectional model related to (4) in [4] show clearly that detailed agreement at least for laboratory scales
depends on accurate modeling of dissipative effects. In addition, the solitary waves generated in the laboratory are
not clean, so the incident wave is not clean and the reflected wave encounters a dispersive tail as it comes off the
wall. This aspect also was essentially absent in the numerical simulations. In [23], they also reported the transitional
loss of magnitude and dispersive tails after the interaction, but with much larger magnitude than observed in our
numerical computations. They found that (Ns — Now)/Ns and Ngisp depend on N at third-order. The magnitude
of either the loss of amplitude or the dispersive tail is about 10% of the incident amplitude when N is about 0.6.
As mentioned previously some of this discrepancy might come from the effect of the dispersive tails following
the incident waves and the absence of a model for dissipative effects. Especially dissipative effects together with
the process of generation mean that the waveform encountering the vertical wall may differ from that of a solitary
wave. Because of the nature of our model system, which is only formally first-order correct with respect to the small
parameter €, we are not in a position to say if the change of amplitude is fifth-order in € (see [10]) or third-order in ¢
(see [25]). We are currently working on higher-order Boussinesq systems for two-way propagation of water waves
[14] and expect in due course to better understand these phenomena. We are also preparing our own experiments in
which we will observe directly the collision of solitary waves rather than as modeled by interaction with a vertical
wall.

Numerical experiments of head-on collisions have been reported in various papers. A modified Marker and Cell
technique (SUMMAC) was used on the full Euler equations in [12,26], while Fourier methods were used in [18] on
the Euler equations. In [25], the authors computed solutions using a Boussinesg-like system. Qualitatively, (31) and
(32) agreed with all these numerical results. The major difference is the existence and the magnitude of permanent
loss (the heights of the outgoing solitary waves are lower than that of the associated incoming solitary waves),
the transitional loss and the dispersive tail. We concluded from our numerical results that there is a dispersive tail
and a transitional loss of magnitude associated with the interaction, but the incoming and outgoing solitary waves
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eventually have essentially the same height, the difference being less than 107, a value which could not be observed
in experiments.

5.4. Head-on collision of waves with different heights

Our third set of numerical experiments pertain to the head-on collision of different-sized solitary waves. The
systematic expansion derived in [25] for the run-up at the height of the interaction is

Nmax = Nr + NL + 3 NRNL + -+, (33)

where Nr and Ny, are the wave heights of the right- and left-moving solitary waves, respectively. The phase shifts
for the right- and left-going waves are

Chin _ (M\"? | 3
Zshift _ (YL 14— t
h ( 3 ) ( + 8NL+ 4NR+ )

CsLhm Nr b ! 3
~5 _——(T) <l+§NR+ZNL+--->, (34)

and

respectively.

It was observed in our numerical experiments that after the interaction, the higher wave first lost amplitude and
then very nearly recovered its original height and the lower wave first gained height and then decreased almost to
its original elevation. After this transition period, the two waves moved away from each other at almost the same
heights they possessed before the interaction. Should the intergration be terminated too early, one might conclude
that there is a considerable mass transfer from the higher wave to the lower wave. Both waves were shifted back
(delayed) and there was a small dispersive wave between them after the interaction. For a series of wave heights of
the right- and left-moving waves, we computed the maximum wave amplitudes at the interaction. These are listed
in Table 6, while the phase shifts for the left-going waves are listed in Table 7. The phase shifts of the right-going
waves can be found by switching the positions of the left- and right-going waves.

In Figs. 9 and 10, we compare the theoretical results in (33) and (34) by fixing the height of the left-going wave
at NL, = 0.4787, and letting the height of the right-going wave vary. Our numerical results accurately agree with
(33) and with the leading term of (34).

Table 6
Run-up in head-on collision of different-sized waves
N Nr
0.0995 0.1975 0.2936 0.3875 0.4787 0.5669 0.6518 0.7332
0.0995 0.2037
0.1975 0.3060 0.4128
0.2936 0.4064 0.5170 0.6250
0.3875 0.5042 0.6185 0.7300 0.8382
0.4787 0.5990 0.7169 0.8316 0.9429 1.0505
0.5669 0.6907 0.8118 0.9296 1.044 1.1540 1.260
0.6518 0.7788 0.9030 1.0236 1.1405 1.2533 1.3620 1.4656

0.7332 0.8632 0.9902 1.1136 1.2329 1.3481 1.4590 1.5646 1.6656
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Table 7
Phase shifts of the left-going wave
M Nr

0.0995 0.1975 0.2936 0.3875 0.4787 0.5669 0.6518 0,7332
0.0995 0.1753 0.2538 0.3120 0.3570 0.3960 0.4318 0.4595 0.4925
0.1975 0.1782 0.2460 0.3024 0.3531 0.3854 0.4246 0.4546 0.4741
0.2936 0.1782 0.2436 0.2978 0.3403 0.3809 0.4145 0.4439 0.4694
0.3875 0.1714 0.2400 0.2943 0.3382 0.3738 0.4066 0.4399 0.4641
0.4787 0.1655 0.2366 0.2893 0.3337 0.3684 0.4001 0.4323 0.4561
0.5669 0.1627 0.2315 0.2849 0.3285 0.3637 0.3971 0.4234 0.4527
0.6518 0.1648 0.2248 0.2819 0.3226 0.3597 0.3942 0.4203 0.4426
0.7332 0.1590 0.2288 0.2800 0.3183 0.3589 0.3873 0.4151 0.4406

Maximum Runup at the cenler

04l Numerical resut: ‘0"
0.2
0 0.1 0.2 03 04 05 06 07 08
amh

Fig. 9. Run-up at the place of the collision: (o) numerical; solid line: second-order expansion.
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Fig. 10. Phase shift.
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6. Summary

In this present paper, we investigated various aspects of a Boussinesq-type system of equations for the evolution
of disturbances on the surface of water. For waves that do not vary significantly in the coordinate perpendicular to
the primary direction of propagation, as with waves in a channel or long-crested waves on large bodies of water,
we find the system studied here to be a good candidate for modeling long waves of small to moderate amplitude.
In addition to admitting an appropriate theory of well-posedness for suitable initial-boundary-value problems, it is
straightforward to construct accurate, efficient numerical schemes for the approximation of the system’s solutions.
We suggested a numerical scheme which is fourth-order accurate in both its spatial and its temporal approximation,
which is unconditionally stable and which features good accuracy for work expended. The scheme is based on a
pair of integral equations equivalent to the system of differential equations that comprise the Boussinesq system.
Because of this formulation, it is comparatively easy to impose boundary conditions without disturbing either the
order of accuracy or the convergence and stability properties.

Our study also featured preliminary comparisons of the model’s predictions made via acomputer code constructed
on the basis of the numerical scheme analyzed in Section 3, with theoretical results derived from the Euler equations
and with experimental results. In the numerical experiments connected with the head-on collision of solitary waves,
we find our results to correspond well with facts about such interactions derived from the full Euler equations. There
are quantitative differences between what is predicted on the basis of our model and experimental results, however.
Earlier works based on unidirectional models for water-wave propagation indicate that it is likely that the absence
of an accurate rendering of dissipative effects accounts for a good deal of the discrepancy.

A further study is planned along the lines set forth in [4] for unidirectional propagation, in which dissipation is
incorporated and detailed comparisons are made with dynamically recorded wave data.
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