ON THE STRUCTURE OF SINGULARITIES IN
SOLUTIONS OF THE NONLINEAR SCHRODINGER
EQUATION FOR THE CRITICAL CASE, p = 4/n

J. AnguLo,! J.L. Bona,2 F. LINARES, AND M. SciaLom’

1. Introduction

This paper is concerned with nonlinear dispersive wave equations whose solutions some-
times develop singularities in finite time. Here, attention is given principally to the initial-
value problem in the critical case for the focussing nonlinear Schrodinger equation (NLS-

equation henceforth),

iug + Au + Tlu|Pu =0, zeR,t20,
(1.1)

u(z,0) = uo(x),

where A is the Laplace operator on R*, 7> 0,and u:[0,T) x R* — C for some T > 0.
For p < %, it is well known that the problem (1.1) has global solutions no matter what
the size of the initial data uo(z) in H'(R™) (cf. [C], Chapter 6). Moreover, for any p with
0<p< n—fg (any p >0 if n=1or 2), the NLS-equation admits standing-wave solutions

of the form

ux(z,t) = G(x)e™, (1.2)

where A > 0 and G = G, is a real-valued, positive, radially symmetric function (called a
ground state) which is rapidly decreasing to zero at infinity [BL1], [BL2], [BLP], [S]. When
p < %, these standing waves are orbitally stable in the following sense (see [C], [CL], [W4]).
For every ¢ > 0, there is a § = 6(¢) > 0 such that if up € HY(R") and |lug — Gll1 =6,
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then there are maps 0 : R > Rand o : R — R® such that if u is the solution of (1.1) with

initial data wup, then

u(-,t) — e?DG( — o)l S € (1.3)

for all t > 0, where ||B]|? = lIAll* + |Vh||> connotes the standard norm of a function
h € HY(R™) and the unadorned symbol || - || is the L2(R™)-norm. It is worth remark also
that G is unique up to spatial translations and phase shifts.

If the initial data ug is small enough in the H'(R™)-norm and p > 4, there still exist
global solutions for (1.1), but the ground states are known to be unstable in this case (cf.
[BC-

The case p =

|

is called the critical case for the NLS-equation because solutions of (1.1)

with 7> 0,p 2

e

and initial data uo € H'(R™) may blow up in finite time, whereas those
for p < % do not. This singular behavior is an indication of certain physical phenomena,
for instance, the energy transfer to particles via the “] angmuir collapse” in plasma physics
[Z], and, in nonlinear optics, the collapse of solutions is the “gelf-focusing” of light pulses
in a nonlinear and dispersive medium [CGT].

The existence of solutions and stability or instability of standing waves for the NLS-
equation has been considered in detail by many scientists. A small sample of papers that
emphasize especially the aspects of interest here might include [BL1], [BL2], [C], [CL],
[GSs], [GV], [LBSK], [S], [W1], [W4] and the references cited in these works.

As mentioned, our focus is on the critical case p = % where light will be shed on hoW
the blow-up occurs. (Some of our results are still valid for p > %) To understand the

blow-up phenomenon, consider a ground state G = G which defines a solution of the

NLS-equation as in (1.2). The function G necessarily satisfies
AG — AG + G =0, (1.4)

where 7 has been set equal to 1. (As long as 7 > 0, we can always assume T = 1 by

rescaling the dependent variable.) If one assumes in (1.1) with p = 4 that uo € H HR")
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has |Juo|| < ||Gl|, then the corresponding solution is globally defined (cf. [W2]). This result
is sharp in the sense that for any R > ||@||, there are initial data uo with ||uo|| = R such
that there is a t* < oo for which the solution of the NLS-equation corresponding to ug

belongs to the class C([0,t*); H L(R™)) and
i (|Vu(- 8)l| = +oo. (1.5)
trtr

It is well understood that for (1.5) to hold, it must be the case that the energy H, which

is a conserved quantity under the NLS-flow, satisfies

H (uo) = || Vuoll® = |uo[ET5 < 0.

p+2

p+2

As above and henceforth, the unadorned symbol || - || is the L2(R™)-norm while the symbol
|| represents the L4 (R™)-norm, 1 < ¢ < oo and, incidentally, the inner-product in L?(R")
will be indicated by <, >.

The first result describing the asymptotic behavior of blowing-up solutions of the NLS-
equation appears to have been that of M. Weinstein in [W3] and [W5]. Later, Laedke et
al. in [LBSK] studied Weinstein’s result and attempted to extend it to a larger class of
initial data. Our purpose here is to provide some details related to the last cited work,
and to add precision to some of the resulting theory. Roughly speaking, the result in
view is that for suitable, negative energy data that are close to an unstable ground state,
the corresponding solutions blow-up in finite time. Moreover, it will be shown that the
blow-up near ground-state solutions for the case p = % is stable in a sense made precise
in Theorem 2.2 below. We also give a detailed description of the evolution of the stability
parameters § and o, analogous to those in (1.3), that appear in the proof of Theorem 2.2.
These results are modelled on those provided by Bona and Soyeur (see [BS], Theorem 7)
in the case p < %.

This note is organized as follows. Section 2 is devoted to the proof of the stability result

and Section 3 is concerned with the evolution of the stability parameters ¢ and o.



2. Main Result

Henceforth, it is assumed in (1.1) that 7 =1, p = 2 and up € H L(R™). If it is further

assumed that either

a) n=1 and H(up) <0,
(%) b) n=2, H(ug) <0, and up is radially symmetric, or
¢) n=1, |z|lup € L2A(R") and H(uo) =0,
then it is known that (1.5) holds for the corresponding solution u of (1.1), (see [N] and
[OT]).
Following [LBSK] and [W2], introduce the functions
$(z,t) = p(t)~ Fu(ygy, 1), with -
u() = uipl,  oge<tr, and u(0)=1,
where #* is the maximal time of existence of the solution of (1.1) under consideration.
Note that, unless u is the zero-solution, 0 < u(t) < oo for 0 <t < t¢*. The normalization

1(0) = 1 is a temporary one made to simplify the presentation of the argument. It will be

dispensed with later. It is easy to check that the function ¢ verifies the identities

i) (Ol = lul Ol = lluwoll, (2.2)
i) [Vo(, )|l = IVGI, (2.3)
2 2 pr2 _ 1
“7’) H(d’()t)) = ||V¢(at)” - mlqs("t)lpiZ - uz(t) H(u(at)) (24)

The identity i) follows from the fact that the charge N(u) = ||u|? is a conserved quantity

for the NLS-equation. Our first lemma states that the function ¢ is in the same class as u.
Lemma 2.1. Ifu e C([0,t*); H(R™)), then ¢ € c([o,t*); HY(R™)).

Proof. This follows immediately since p € C ([0,t*); R) and 0 < p(t) < oo for 0 St<th
B

As the stability considered here is with respect to form, i.e., up to translation in space

and phase, it is propitious to introduce the orbit

O(G,) = {glg(z) = Ga(z + ao)eial, (ap, 1) € R™ X [0,27)}
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of Gx. An induced metric on the space H'(R") factored by the closed subset O(G»)
provides a pseudo-metric on H*(R™) (see [B], [Bo], [CL] and [W4]), namely

pAG(,8),Gn)’ = Tnf  {IV6( + a0, ) = VGO

a1€[0,21r)

+ Ao+ + a0, t)e*™ — G()|I*}. (2.5)
Define the set S to be
S = {uglup € H*(R™) and condition (*) holds for uo}. (2.6)

Observe that for initial data ue € S, the conditions (*) implies the corresponding solution

u of (1.1) obeys (1.5) for some ¢* > 0.

Theorem 2.2. Letp = %, A > 0, and let G = G be a ground-state solution of (1.2). For
any € > 0, there is a § = 6(€) such that if ug € S with pa(ug, G) < 8, and u is a solution of

(1.1) corresponding to ug whose blow-up time is t*, say, then u € c([o,t*); HY(R™)) and

Inf {)\Hu(,t) — /'L% (t)G(u(t) . +a0)e—ia1 Hz
agER”™
a1 €[0,27)

T 2OV, ) — pE OV - Fao)e @ P} < e (2.7)
for all t € [0,t*), where pu(t) is as in (2.1).
Proof. Suppose at the outset that p(0) = 1. The proof is based on the explicit time-

dependent functional (see [LBSK], [LBS] and [LS])

rful = a0+ ALl w0 e, s

where k € N is a parameter that will be determined later. Observe that if u is a solution of

(1.1), then at any time t € [0,¢*), Ls[u] = L¢[uo] since both the energy H and the charge
|| - || are preserved by the NLS-flow. The functional L [u] may be written as a functional

defined on ¢ for which the explicit dependence on p disappears, viz.

20 = 1t = 1, 0) (L qoc. o - 16 e




Suppose we are able to establish the inequalities
i) ALy € colluo — G|y and (2.9)

4 2k
i) AL 2 cillg(o) — G2 — e S8 1) = GIT? = - erglld,8) = GITP,
j=1 j=1 (2.10)

for AL, = Et[qb] — zt[G], modulo translations and phase, where co, ¢;, i, ; are fixed con-
stants. The result in Theorem 2.2 will then follow. Indeed, if |lug — Gll1 < do, we have
from (2.9) that

AL; £ coo. (2.11)

As will be argued in more detail later, (2.10), (2.11) and the identity

16, ) — GIIZ = lul, 8) — pF G2 + 12 @)Vl 1) — uF (O VEEEI

lead to the desired result.
The upper bound (2.9) is a straightforward consequence of H(uo) < 0 and H (G) 20,
where the constant ¢y depends on ||G||.

To prove (2.10), write a renormalized version of ¢ as G plus a remainder w, thusly;
d(z + ao,t)e'™ = G(z) + w(z, ), w = a + b, (2.12)

where ag = ao(t) and a1 = a1 (t) will be chosen later and where a and b are real functions.
Thus w depends on ag and ;. Using the representation (2.12) of the translated and

phase-shifted ¢, we calculate

AT, = Lol (- + ao)ei®] — L4[G] = Ly[G + w] — L[G)

G+ wl|\ 2+
- (@ +w) - 1@ + A S 6 4w - e
—< —Ag,a> + < —Abb> +2 < a,AG > -2 < a,GPT > —(p+1) < GPa,a>

- <G”b,b>—|—2)\<a,G>—|—>\<a,a>—I—/\<b,b>—|—4”—g)l\|—2 < G,a>%+R.

The remainder R can be bounded below in terms of powers of ||w||; of cubic order and

higher by using the Sobolev imbedding of H L(R™) into L?(R™), which is valid since p = 4

n'



The upshot of these ruminations is the inequality

AL 2 < Lt bb>+<£,aa>+ (< G>)—cz)\)Z||w||J+2

2
e 2
2k '
=3 en Wl (2.13)
i=1
In (2.13) we have followed [LBSK] in introducing the naturally occurring differential op-
erators
LT=-A—-GP+), (2.14)
L™ =-A—(p+1)G? + A, (2.15)

which are, respectively, the real and imaginary parts of the operator L, linearized about

the ground state.

The first step to obtaining a suitable lower bound on the quadratic form comprised of
the first three terms on the right-hand side of (2.13) is to show there exist maps co = a(t)
and oy = a1(t) minimizing the function

(e, ) = V(- + ag, D) — VGO)|? + Mg(- + a0, )™ = GO
The following lemma is the analog of [Bo], Lemma 1, in the present context.

Lemma 2.3. Suppose that for some to € [0,t*) and some (Go, 1) € R x [0,2m), it is the

case that
Qo (@0, @1) < [[(=A + N3G (2.16)
Then, it follows that
Inf {Q4, (o, @1)| (@0, 1) € R™ X [0,2m)} (2.17)
is attained at least once in R™ x [0,27).

Proof. Tt is immediate that €4, (0, @1) is a continuous function of (ag, 1) on R” x [0, 2).

Moreover, for any a1 € [0,27), we have

lim 4, (0, a1) = V(- to)lI? + VG + A6 to)l* + ICGI°)

|aol—)00

= |(=A + N2 + Mluol1® + IV (-, to)l*- (2.18)



The hypothesis (2.16), the continuity of £,, and (2.18) imply the result. [ ]

Next, it is established that the infimum in (2.17) is attained at points (g, 1) at least
for to in some interval of the form [0,T]. To this end, it is sufficient to obtain condition

(2.16) in such an interval. Let € > 0 be such that
2 _ 1 12
€€ < —émax{l,)\}||(—A+/\)2G|| :

The standing-wave solution G(z)et is globally defined, and hence by the continuous
dependence theory for (1.1) (see [C], Chapter 4 or [GV]), for the value of € just specified
and T > 0, there exists a § > 0 such that if [|uo — Glj1 < d, then the solution u of (1.1)

corresponding to ug exists at least for 0 < ¢ < T and, in addition,
lu(-, t) = G(-)e™[lL < /2,

for all t € [0, T]. Of course, if ug € S as well, it follows that there exists t* > T such that
u € C([0,t*); H'(R™)) and u blows up at t* in the sense of (1.5).
Because both ¢ and u are continuous mappings of the time-axis into H L(R™) over the

interval [0,¢*), it follows that there is a 71 > 0 such that for all t € [0,Ty),

I6¢,6) = 6,0l £ 5 and  Ju(,8) —u(, 0 = i'
Then, for 0 £ ¢t £ T = min{T, T}, we have
16( 1) — GeM[lx < [|g(,t) = ul, )l + [Ju(t) = Ge™
< N6 1) — $(O)l1 + llu(0) — u(-, )]l + % <e. (2.19)

Thus, the infimum (2.17) is taken on at values (ao(t), a1(t)) throughout the time-interval
0, T] We take such values of ap and oy as providing a meaning for the definition of w in
(2.12), at least for t € [0, ).

The result of Lemma 2.3 together with (1.4) provide us with compatibility relations on

a and b, namely

/ o(5, )G (@)Go, (@) dz =0,  i=1,.,m, (2.208)
JR



and,
/ b(z, £GP (z) dz = 0. (2.20b)

for all t € [0,t*). These relations are obtained by differentiating Q; with respect to oo and
oy and evaluating at values that minimize (2.
The issue of obtaining the lower bound advertised in (2.13) is addressed in the next

several lemmas.

Lemma 2.4. If L1 is as defined in (2.14), then there is a positive value C such that

Inf <f,LTf>2 C. (2.21)
Il fll=1
filgreti

Proof. Because of the variational characterization of the ground state G as the minimizer
of the action (see [BL1], [BL2]), it follows that £t is a nonnegative definite, self-adjoint
operator on L?(R") with null space spanned by G. Hence, the infimum on the left-hand
side of (2.21) is non-negative. (cf. [C]).
Supposing that this infimum is zero, let {f;} be a sequence of H(R™)-functions with
1f5]l =1, ;LGP and
jlirglo< fi LYfi>=0.

Then, for any 1 > 0, there is a J such that for j > J,

0<A§/|ij|2da:+)\/ |fj|2dx§/Gp|fjl2dx+n. (2.22)

Since ||Glloo < 00, (2.22) implies || f;]|1 to be uniformly bounded as j varies. By standard
arguments, it follows that there is a subsequence of the {f;}, which we denote again by {fi},
and an f* € H(R") such that f; — f* weakly in H 1(R"), pointwise almost everywhere,
and in L2 _(R™). By virtue of the weak convergence, f* satisfies the condition f*1Grtl,
It is a straightforward consequence of the just mentioned properties of the sequence f; and

the exponential decay of G to 0 as |z| — oo that

/G”]fj|2d:c—>/Gp|f*|2dm



10

as j — co. Taking the limit in (2.22) as j — oo thus yields
0< A< / GPI 2 do + 7.

As n > 0 is arbitrary, it must be the case that f*#0.
It is now shown that the infimum is achieved. Indeed, weak convergence is lower semi-

continuous, SO

IVl £ lim in IV £l

Since, also, < GPfj, f[; > = < GPf*, f* > as j — 00, it is adduced that
< f* LT > < liminf < f;, LY f; >=0.
j—roo

Since f* # 0, define g* = I_Ifﬁ*‘ﬂ Then, we have ||g*|| = 1,g*LGPtL, and < g*,LTg* >=0.
A consequence of the last reasoning is that there exist non-trivial critical points (g*, §,6)

for the Lagrange multiplier problem,

Lt f=pf+ 0GP, subject to
If/ll=1 and (2.23)
FLGPH,

Using (2.23) and the fact that < Ltg* g* >=0, it is easily seen that 8 = 0. It is thereby

concluded that

£tf=0Grtt (2.24)

has nontrivial solutions (g*,0) satisfying the side constraints. Taking the inner product
of (2.24) with G it is determined that 6 = 0, and therefore g* = vG for some v # 0,
a contradiction since G is not orthogonal to GP*!. Therefore, the minimum in (2.21) is

positive and the proof of the lemma is complete: B

It follows readily from (2.21) that for some Dy >0,
< f,Ltf>zDafI}, i fLGPT (2:25)

The next lemma will be used to prove an estimate similar to (2.25) for the operator L.
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Lemma 2.5. Let A be a self-adjoint operator on L?(R™) having ezactly one negative
eigenvalue B with corresponding ground-state eigenfunction fg = 0 and let g € N1(A).
Assume < g, fg ># 0 and that

—co<a= Min <Af,f>.

(I £]l=1
<f,g>=0

If < A=1g,g ><0, then it must be the case that « 2 0 .
Proof. See Lemma E.1 in [W2]. &

Corollary 2.6. There exists v < 0 such that if g = G+ YAG, then

Min (£=f,f)=0. (2:26)
(f,9)=0

Proof. The operator £~ has a unique negative eigenvalue with eigenfunction fy > 0 from

Sturm-Liouville theory in dimension n = 1 (see [CLe], [ABH]), and variational methods

and the mini-max principle in dimension n 2 2 (see [W4]). Notice that whatever the value

of v, it follows from the equation (1.4) for G that
< fang>=<FnG>4+y< fr,\G -Gt >

Since both fy and G are everywhere positive, it follows that for small values of vy, the inner
product < fy,g > is non-zero. On the other hand, for any given v, define the function f

by
Ay +1
2\

n
f(2) = -5 Glz) - z - VG(z)
for x € R™. Short calculations show that £~ f = G+ YyAG = g and that

_(r 2 i 2 2—-n 2\ 2
< 1= (31617 + I96I7) 7+ (2TEIVGI )

It thus becomes obvious that for small, negative values of -, it is possible to have both

< frag>#0and < (L) 1g,9g>=< f,g> < 0.
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Since N (£™) = Span{Gy,|i = 1,...,n} (see [W2], [K] and [M]), it is clear from its
definition that ¢ € N+(L£™). Tt follows immediately from Lemma 2.5 that the minimum
in (2.26) is non-negative. On the other hand, G,, suitably normalized, is orthogonal to g,

has norm 1 and £~ vanishes there, so the minimum cannot be positive. B

Lemma 2.7. If g = G + YAG, with v < 0 as in the last Corollary. then,

Inf{< L f,f>:|fll=1,<f,g>=0,fLGPGs,1 Si=n} = D2 >0. (2.27)

Proof. Because of the Corollary, we know that Dy 2 0. Suppose that Dy = 0. Fol-
lowing the proof in Lemma 2.4, one ascertains that there exists f* such that || f*[| =1,
< Lof* f*>=0,< f*g>=0and < f*,GPGy, >= 0, i = 1,...,n. Thus there exists

&, 0, x such that

Tn consequence of the conditions satisfied by f*, it must be that < £~ f*, f* >= ¢ =0and
< L f*, Gy, >=< f* LGy, >=0=x [ GP(Gy,)? dz, which implies x = 0. Therefore,
L~ f* —0g = 0. But, if f is the auxiliary function arising in the proof of Corollary 2.6,
then L~ f = g, whence £~ (f* — 0f) = 0, and therefore f* — 6f € N(L7). From the
property < f,g > # 0 established in Corollary 2.6, it follows from the preceding that
0 = 0. Therefore, for some non-zero | € R™, it is true that f* = [ - VG, which is a
contradiction since such a function cannot be orthogonal to GPGy, for 1 £ ¢ < n. This

completes the proof. B

Remark 2.8. Comparing the results of Corollary 2.6 and Lemma 2.7 with similar
results of Weinstein (the case v = 0 in [W4]), it is worth pointing out that in his work, the
identity (2.26) is true for p £ 2, but (2.27) is only true for p < =3

Attention is now turned to estimating the term < L7 a,a > +ﬁ%ﬁg(< a,G >)? in

(2.13), where a satisfies the compatibility relations (2.20a). We continue to carry over

the notation from Corollary 2.6 and Lemma 2.7. In particular, v is chosen so that the
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conclusions of Corollary 2.6 are valid. Let a, = Sﬁﬁ% g and let a; = a — a,. It follows
from the properties of @ and g = G + yAG that < ay, g >= 0 and [ GPGga1dz =0,
i =1,...,n. Without loss of generality, take it that < a, g > < 0. Thus, from Lemma 2.7,
the Cauchy-Schwarz inequality and the properties of a,a,a, and g, it follows that
<ay,L7ar> 2 Daoflar|?
<a,,La,>= J|||"’Q—HE < g, L™ g> (2.29)
<ayi,LTa,>= %ﬁ%z <ai, L™ g> 2 —Dsllayllllall,
with D; > 0,7 = 2, 3. Identity (2.3) and the elementary properties of Hilbert spaces imply
that

2 < a,AG >= ||Val|* + ||Vb]|.

Thus, from the Cauchy-Schwartz inequality, we obtain (remember, -y and < a,g > are

both negative)

4k 4k 4k
(< a,G>)?2 <a, g>— <a, g>(|Val|®+|Vb
(< 0,6 >)? 2 1 <o, 052 =17 <o 9> (IValP + I VOI)
AN gl o, 4K gl gl
> 22O, ZALIN gl Vall? + |V
2 LA a2 o S a7l + 90
4k 2
2 08 o+ 4kxyDallo + il (2.50)

with D4 > 0 also.
If 9 > 0 is chosen so that Dy — 20Ds = D5 > 0 and k is fixed in such a way that

AkM| gl | < g, £ g> Ds
- 4+ 27 97" = Dg >0,
EE IIE g~ °

it follows from (2.29), (2.30) and Young’s inequality that

kA
< L a,a> +HG“2(< a,G >)? = Dgllay||? + Ds|lay||® + 4k yDaf|wl|3

2 D'lja||* = D"|lwll7, (2.31)

for some positive constants D' and D”. With (2.31) in hand, it follows easily from the

specific form of the operator £~ that,

4k ~ ~
<L~ a,a >+ =g “CHZ (< G,G >)2 Z D2”aH% - DBHw”i (232)
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with 152, 153 > 0.
Finally, collecting the results (2.25), (2.32) and substituting them in (2.13), there obtains

4 2k
AL, = Dy b))} + Dallall} — Dsllwl$ —c2 ) lwll] ™ — ch,juwu{”
=1 j=1

4 2k
> crljwlf —e2 Y lwlidt? = ensllwll™, (2.33)
j=1 7=1

where cy, ca, g, ; are constants that depend only on )\ and the dimension of the space.

Now we are in position to prove Theorem 2.2. Suppose first that uo € S (defined in
(2.5)) and |lug — G|l1 = 4. Then, for T as in (2.19) and at least for ¢ € [0, T, it follows
from (2.9) and (2.10) or (2.33) that

Q(P)\(¢(',t), G)) é Azt é C05 (234)

where ¢(z) = c17? — ¢2 Z;=1 I t? — Z?il ek, ;7972 and pa(¢(:,t),G) is as in (2.5).
Since ||w(t)||2 = pa(¢(t),G)? is a continuous function of ¢ € [0,¢*) (see Lemma 2 in

[Bo]), it follows from the inequality

qa(p(4(-,0),G)) < cod (2.35)

and from (2.34) that for ¢ € [0, T) we have

p(¢(-1),G) S e (2.36)

provided the ¢ is chosen small enough at the outset.
To finish the proof, we show that the inequality (2.36) is still true for ¢ € [0,2%).

Following the ideas in [Bo}, let
A = {t : the infimum in (2.17) is attained at finite values of (o, ai1)}.

As shown above, [0, T] C A. Let Ty be the largest value such that [0,T1) C A and suppose

that T} < t*. Then from (2.36) we obtain that

(-A+ NG

It 2 = pa(9(,1),0)? < @ < 12

(2.37)
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Since Inf € is a continuous function of ¢ for all ¢ € [0,t*), there is a T' > 0 such that
Inf Q < ||(—A + M) Y2G)|?

for t € [Ty, Ty + T). But then Lemma 2.3 implies that the infimum in (2.17) is taken at
finite values of (co, ;) and this contradicts the choice of T1. Therefore Ty = * and the
stability Theorem 2.2 is established for p(0) = 1.

Now we discuss the general case where we do not necessarily start with p(0) = 1. First,

remark that if Gy is a solution of (1.4), then G (z) = A/PR(A\/2z) where R satisfies,
AR-R+RF' =0.
Let ug € S obey the restriction
AMluo — G| + |Vuo — VG| < 62, (2.38)

where § will be determined presently. Corresponding to A; > 0, a solution G5, of (1.4) has
VG, |2 = M||VR||?. Tt is therefore possible to choose A; such that |[VGy, 12 = | Vuoll?.

Then if
IVu(, )l
i) = g

it is obviously the case that px, (0) = 1.
The idea is to apply the preceding theory to the case A = A1 and then use the triangle
inequality to conclude the desired result for the given value of A and ug. Thus the program

parallels that given first in the context of Korteweg-de Vries-type equations in [B] and
[Bo].
An estimate of the quantity

Ly(u(, ), Gy 1) = p=2(OIVul, £) — p2 OVGRE O + Mu(, 1) — wF OGO

will be helpful. Denoting G, and px, by Gi and ui, respectively, it follows from the

definitions of p and p; that
L(u(1),G p) < 2[#”2 113 VG(p() = uf VG O)I” (2.39)

At GQ() — i Calm O] + 32 I (01 8), Gy ).
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Now, we estimate the right-hand side of (2.39). First observe that

Mu? Gu() — uf Gilpm()I? =0

and
2 |uE VG(()) = V1 (m (I = 0.

Thus we only need to estimate the term Iy, (u(-,t), G1, p1) in (2.39). For this, it suffices
to show that py, (uo,Gx;) < Cé, where C = 6’()\,R) > 0 and then apply the foregoing
theory for the special case u;(0) = 1. Because py, (uo, Ga,) < pa, (0, G) +pa, (G, Gy, ), We
may estimate py, (uo, G) and py, (G, Gy, ) separately and still reach the desired inequality.

First, estimate the term py, (G, Gy, ), viz.

[0 (GG S MG = Gu P+ IVG = VG |2

[ |r@)- iRV de

1,\/ VR )—(ﬁ) VR((A 1/%)[ % (2.40)

The first integral in (2.40) can be bounded above as follows:

M
Jrn

< 2/\1<);\1) / R(z) — R((%)l/%)ﬁ dz +2

R() - Gt R(GHYa)| da

1

i 12
AAF — A%
AE

IR|%.

Thus, the Fundamental Theorem of Calculus together with Minkowski’s inequality yield

[ |r@ - r o) aos [ /4)1/2 | R(t2) de) e

1/2
’d t
/_1)1/2 /n t (tm)l :ﬂ) d)
nt2 2 4INF = T2
— ||z - VR (/ g2 dt) ﬁ|_17|
(%)1/2

&l VRl
Consequently, it transpires that

Yy
JIRn

n2

2)\1 |A1 -
)\%

R(z) - QY *R(HY20)| d <

Elirie+ Sie- vaIE). @41
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Similarly, the second integral on the right-hand side of (2.40) may be bounded above

2

thusly:

VR(w>—< Sk VR((AIWZ >| do

< 2N —AE 2 &
< ‘—,\‘—" S (102, BIF + S5l - VOuRIP]. (2.42)

i=1
The inequalities (2.41) and (2.42) imply

oaa¥ — a32 4
2« AN 2 . F .. 2
(GG < P LRI+ e VR
AT — AT |2 & 2, 4 2
+ AT 5™ [10acRIP + lla - Vou R

i=1

)\-I-)\l

n

I — AT (2.43)

C1(R)
Tt is now determined that there is a positive constant C' = C(), R) such that
A1 = A = C) (2.44)
at least for small values of §. In fact, from Young’s inequality and (2.38),

A=Al = IVuol® = IVGI?| £ o IVEI* + orr (t + 5)||Vu0 - VaG|?

HVRH2 B HV'HII2 IlVRH2

3
< rorEAMVERI*+3) 6
IIVRll

The inequality (2.44) certainly implies that, |/\i1 -1} £1and IXlz‘l — A1| £ Cyé, where
Cy = Ca(\, R) > 0. From (2.43), it then follows that

px(G,Gx) = C3(R)S. (2.45)
From (2.44) we have that A<+ €5. Therefore the assumption (2.38) implies
A
[, (0, G)J2 < max{Tl, 1} [Alluo = GI” + 1| Vuo - vG|?| £ Cue?, (2.46)

where Cy = Cs()\, R) > 0. Inequalities (2.45) and (2.46) lead to the conclusion

o (20, Gay) S C§, and therefore that

I)\1 (u('vt)aGlall’l) é 62- (247)

Theorem 2.2. is now established. H
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3. Behavior of the Stability Parameters ag = ap(t) and a; = o;(t)

Tn the proof of Theorem 2.2, it was actually shown that there is a choice of ag = ap(t)

and a1 = a;(t) for which
26,1, @) = (IV8(+ as, e — VGO + Mlg(-+an, 0 ~GOIP) " S (1)

for all t < ¢*, and that a choice of ag and oy for which (3.1) holds may be determined via
the orthogonality conditions (see (2.20))

Im | GP* (@)= Og(s + ao(t), )| dw =0, (3.2)
Rn .

Re | GP(2)Ga,(z) [eio‘l(t)qﬁ(m + ao(t),t)] dz = 0, (3.3)
R’n

fori=1,..,n and ¢(z,t) = p~ % B)u(p() tz,t).

By an application of the implicit-function theorem as in [BS], it may be shown that as
long as ¢ satisfies (3.1), there is a unique, continuously differentiable choice of the values
ao(t) and ay(t) that achieve (3.2) and (3.3).

The principal result regarding the behavior of the parameters o and o is stated in the

next theorem. Its proof will appear elsewhere.

Theorem 3.1. Let p = % and G = Gy be a ground-state solution of (1.4). For any
€ > 0, there exists § = 6(€) > 0 such that if ||uo — Gl|l1 < 6, then there are C'-mappings
ag @ (—t*,t*) = R™ and ay : (—t*,t*) = R such that
(i) [|¢(- + ao(t),t)et*r® — G()|l1 S ¢, fort € (—t*,t*), and
(i) for ag(t) = (@0,1(t), ..., ao,n(t)) and t € [0,t%),
t

ial(t) + )\/O uz(s)ds\ < C’e[/o]t p2(s)ds + /Ot % ds],
‘Oﬁg,i(t)} < Ceu(t)[/ot p(s)ds + “le () ds], 1 =15, N,

o H(s)

where C depends only on G.
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