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Abstract. The generalized Kadomtsev-Petviashvili system of equations

in three space dimensions,
ug + uPug + Ugor — Vy — Wz = 0,
Ve = Uy, (*)
Wy = Uz,

has been shown by de Bouard and Saut to possess solitary-wave solutions

if and only if 1 < p < 4/3. It is demonstrated here that these localized

traveling-waves, when considered as solutions of the initial-value prob-
lem for (), are dynamically unstable to perturbations.

1. INTRODUCTION

Considered herein is the 3-dimensional generalization of the Kadomtsev-
Petviashvili equation (KP-equation henceforth)

up + UPUL + Uggy — Vy — Wz = 0,
Vg = Uy, (KP'3D)

Wz = Uz,

where (z,y,z) € R3 and t > 0, say. The KP-type-equations are universal
models for the propagation of weakly nonlinear dispersive long waves that
are essentially uni-directional, but which allow for weak transverse effects
(see Kadomtsev and Petviashvili 1970, Petviashvili and Yan’kov 1989, the
monograph of Enfeld and Rowland 1990, and, for commentary in a plasma
physics context on the cylindrical solitary waves considered here, Kuznetsov
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and Turitsyn 1982 and Mikhailovskaya and Erokhin 1987). In certain tech-
nical senses, (KP-3D) is a natural extension of the classical one-dimensional
Korteweg-de Vries equation (KdV-equation henceforth) and the Benjamin-
Ono (BO) equation to three dimensions, as pointed out by Spector and Miloh
(1985), for example.

The initial-value problem for (KP-3D) consists in posing a suitable start-
ing point ug(z, y, 2) for the dependent variable u. This problem has been the
subject of a number of studies, and a satisfactory local (in time) existence
theory in both two and three space dimensions with data posed in all of
R"™, n = 2,3, or with periodic boundary conditions is now in hand (see Ukai
1989, Saut 1993, 1995, Bourgain 1993). The issue of whether or not par-
ticular initial data generate a global solution is more subtle. For example,
certain classes of initial data posed on all of R? for (KP-3D) with p > 2 are
known to lead to solutions that form singularities in finite time. The essence
of this result is a virial identity written by Turytsyn and Falkovich (1985),
but a rigorous proof waited for the paper of Saut (1993). Moreover, it was
recently shown by Liu (2001) that solutions of (KP-3D) may form singulari-
ties in finite time even for p in the range 1 < p < %. This latter theory makes
use of some invariant sets for the flow which allows one to optimize the use
of the virial identity. Global existence in the range % < p < 2 is an open
question.

An issue that is often related to whether or not global existence obtains
for arbitrary classes of data is the stability of the solitary-wave solutions.

Solitary waves are special traveling-wave solutions of (KP-3D) that are lo-
calized in space. Often, when nonlinear digpersive wave equations have so-
lutions that lose regularity in finite time, the transition to singularity for-
mation is associated with a solitary wave going unstable. For (KP-3D),
de Bouard and Saut (1995a, 1995b) have shown existence of solitary waves
u(z,y,2,t) = @(z,—ct,y,z) for p in the range 1 < p < 4/3 (and non-
existence for p outside this range).

It is our purpose here to show that these solitary-wave solutions are in-
deed unstable when considered as solutions of the initial-value problem for
(KP-3D). Thus there are perturbations arbitrarily close to ¢c(z,y, z) which,
when posed as initial data for (KP-3D), lead to solutions that move away
from the solitary wave in a way to be made precise presently. These results
complement those of de Bouard and Saut (1996) which dealt with the same
issue in two space dimensions.

To establish the result in view, we follow the general approach to stability
and instability pioneered by Grillakis, Shatah and Strauss (1987) and Shatah
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and Strauss (1985), but using the detailed analysis of solitary waves provided
by de Bouard and Saut. Employed in our development are E and @, two of
the five known invariants

E(u,v,w)=%/Rsug+v2+w2—(p—+1~;(p—+2)/mu”+2 (1.1)
Q=3 [ @ (1.2
I(u)=/Rsu (1.3)

Pl(u,v,w)=/Ra i (1.4)

Pa(a,v,w) = fR . (1.5)

of (KP-3D). By modifying slightly the ideas in Shatah and Strauss (1985),
Bona, Souganidis and Strauss (1987) and Souganidis and Strauss (1990),
it will be shown that a sharp instability criterion involving the so-called
moment of instability applies in the present circumstance. Detailed proper-
ties of the solitary wave ¢, come naturally to the fore when analyzing the
moment of instability.

The plan of the paper is as follows. In Section 2, notation is introduced
and the principal results about the solitary-wave solution of (KP-3D) are
described. The main result of the paper is also stated to give focus to the
technical developments in Section 3, where instability is established. The
paper concludes with a short summary and further commentary.

2. PRELIMINARIES AND THE PRINCIPAL RESULT

Notation. Throughout, p will be a rational number m/n,m and n rel-
atively prime, and n odd so that, by choosing the proper branch of the
mapping z — z'/®, uP is real-valued whenever u is real.

If f € Ly(R?), its norm is written |f|;, whereas if f € W;(R"’), its norm
is ||/ lag If ¢ = 2, We abbreviate the norm of H*(R?) = W (R?) to simply
|lf|ls- The notation < f,g > connotes the Ly(R3)~inner product of the
two measurable functions f and g. The linear space C§°(R?) is the usual
collection of real-valued, C°°—functions having compact support in R3. Use
will also be made of a couple of non-standard spaces. For s > 0, define the
asymmetric Sobolev space

X, ={f € H*(R®): D' f € H*(R®)}
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with the obvious norm

IF1x, = s + 1Dz £lls-

Here and below, D! f is defined via the Fourier transform as

D11 (61,8, 63) = (i) "1 F(61, €0, 69).

As above, the dual variables to (z,y, 2) with regard to the Fourier transform
are denoted (&1, &2,&3). In a similar vein, the operator D;k, fork=1,2,...,
is the Fourier multiplier operator with symbol (1/i¢;)*. Let Y be the closure
of the linear space

{9:R®*—>R: g=08,f forsome f € C(R?)}
with the norm

lglly = 10:Flly = (18213 + 18, f1% + 18: 713 + 182 713)3.

Notice that D718, and D718, are well defined on Y. In fact, D !u, is the
unique element v € Ly(R3) such that v, = uy, and similarly for D 'u,. Of
course, X; C Y provided that s > 2. If u € Y, then by abuse of notation,
we will write

E(u) = E(u,D;'6,u, D;18,u).
This abbreviation, which will be used throughout, simplifies the appearance

of formulas in Section 3. If u € Y, a distinguished role will be played by the
action S = S, defined for a given phase speed ¢ > 0 to be

Se(w) = E(u) + cQ(u). (2.1)

Note that if u is a solution of (KP-3D) that, for each time ¢ lies in Y, then
the action Sc(u(-,t)) is independent of t.

The solitary waves. The detailed notation in de Bouard and Saut
(1995a, 1995b) will be incorporated into the present description. By a soli-
tary wave of (KP-3D), we mean simply a solution (u,v,w) whose first com-
ponent has the form u(z,y,2,t) = p(z — ct,y,2) where . € Y. Such a
solution satisfies the system of equations

—cBgpc + VhOpe + O30 — vy — w, =0,
Vg = 6y80c, (2.2)
Wg = az‘Pc,
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in all of R3. It follows readily that ¢. must satisfy the nonlinear elliptic
equation

1
—Acpe + Opc + m@%‘l’gﬂ =0 (2.3)

in R3, where
Ac=cd2+ 02+
Conversely, if ¢, € Y is a non-trivial solution of (2.3) and we define
w(z,y, 2,t) = pe(x — ct,y,2), v=D;luy, and w= D'y,

then (u,v,w) is a solitary-wave solution of (KP-3D). Notice also that the
phase speed ¢ can be normalized to 1 by the transformation
LI N
(P("D,yaz) = p‘PC(\/Ea C’ C).
Thus, if ® = ¢, € Y is any non-trivial solution of (2.3) with ¢ = 1, we

automatically obtain an associated smooth branch of solitary-wave solutions
of (KP-3D) by setting

1
we(z,y,2) = c?®(V/cz, cy, c2) (2.4a)
and
u(m‘i Y,z t) = WC(:B - Ct: Y, ,‘Z),
v(z,y,2,t) = (D;lé?yt,oc)(sc —ct, Y, 2), (2.4b)
w(z,y, z,t) = (D7 18xpc)(z — ctyy, 2).
If . is a solitary wave in Y, then the moment of instability d(c) associated
to the branch (2.4a) emanating from ¢, is
d(c) = E(‘PC) + eQ(pe) = Se(e)
. E(‘Pca -Dglay‘joc: D;laz‘}oc) + cQ(‘Pc)'
As mentioned already, de Bouard and Saut have given a sharp set of results
about solutions of (2.3) lying in Y. Their theory is summarized now for

the reader’s convenience. De Bouard and Saut obtain their solitary-wave
solutions via the constrained minimization problem

(2.5)

I = inf {Ic(u) cueYand | wPt?= ,\} (2.6)

R3
for a particular choice A = A* > 0, where

I(u) = / w2 + cu? + (D;'0,u)? + (D;10,u)%.
R3
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Indeed, they show existence of solitary-wave solutions which are ground
states, so minimizing the action S;(u) among all solutions of equation (2.2).
Such solutions u*, say, are proven to lie in Y and have the property that

K(u*)=0=inf{K(u) ru€ey, /I{Su,%:/Rs(u;y}, (2.7a)
where

i
K(u) = 7 )es cu? + (D;18,u)? + (D;10,u)?

1/ 2 1 / +2
TR " P —
6 Jrs (p+1)(p+2) Jrs

(see de Bouard and Saut 1995b, Lemma 2.1). Notice that if u* = ¢, is a
non-trivial de Bouard-Saut solitary wave, then

dle) = Sl = Klgo) + 3 | (@up? >0, (2.8)

(2.7b)

Theorem 2.1. (de Bouard - Saut) For any ¢ > 0 and 1 < p < 4/3,
the system (KP-3D) has non-trivial solitary-waves @, which are solutions
of the minimization expressed in (2.6) for a suitable choice of A > 0. These
solitary waves tend to zero at infinity, and are cylindrically symmetric in the
transverse variables (y, z), which is to say, @c(z,y, 2) = ¢c(z, |2'|) wherez’ =
(y,2) and |z'| = \/y2? + 22. They also have the properties that rép., r'+0V,
€ Ly(R3) for any 6 with 0 < § < 3/2, where r2 = z2 + y2 + 22.

Remark. The issue of uniqueness up to translations, even of a ground
state (minimizing solution of (2.6)), is open for this system. The restriction
p < 4/3 is sharp, as de Bouard and Saut show there are no solitary waves
for p > 4/3. In the theory put forward in Section 3, some of the auxiliary
results require for their proof properties established by de Bouard and Saut
of minimizers of (2.6). When these properties are needed, we so indicate by
stating the relevant result for de Bouard-Saut solitary waves.

Local existence and the main result. The last ingredient needed in
our development is a local existence theory for the initial-value problem.
This has been provided by Saut (1995) (see also Ukai 1989). In the absence
of at least a local existence result in a function class that includes the solitary
waves, the question of stability or its absence has no clear significance. The
following lemma takes account of Molinet’s (1999) commentary on Saut’s
basic result.
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Theorem 2.2. (Saut, Molinet) Suppose ug € X5, for s > 3. Then there
exists T > 0 and a unique solution (u,v,w) of (KP-3D) with

u € C([0,T); H*(R3)) n CY([0,T); H3(R?))
and
v,w € C([0,T); H"1(R?)).

Moreover, the functionals E(u(-,t)),Q(u(-,t)) and I(u(-,t)) take values in-
dependent of t when evaluated on the solution (u,v,w).

We say that a solitary-wave solution ¢, of (KP-3D) is stable for the space
Y if for any € > 0, there is a § > 0 such that if up € X, for some s > 3 and
lluo — @clly < 8, the solution u of the equation (KP-3D) with initial value
ug satisfies

I ut8) = el = Dlly < ¢

for all ¢ > 0. Otherwise, ¢, is considered to be unstable, at least with regard
to the space Y.

The principal result of the present paper may now be enunciated.

Theorem 2.3. (Main Result) Let p lie in the range 1 < p < 4/3 and
corresponding to this value of p, let ¢. be a de Bouard-Saut cylindrically
symmetric solitary-wave solution of (KP-3D) with phase speed ¢ > 0. Then
pe 18 unstable in Y.

3. PROOF OF INSTABILITY

In this, the primary section of the paper, a proof of the Main Result is
completed. Despite the extra complexity of KP-type equations, we are able
to adapt the development put forward for KdV-type equations in Bona et
al. (1987).

Let ¢ be a solitary-wave solution of (2.3) with phase speed equal to 1,
say, and let (. be the associated branch of solitary waves parameterized by
the phase speed c as depicted in (2.4a). Suppose ¢ € X, for some s > 3 as
well. Then the function d defined in (2.5) is differentiable with respect to c
and

2() = (Bpe) + @ (00, 22) + Qo) = Qo) =T Q). (31)

In this latter calculation, use has been made of the fact that the Fréchet
derivative S, = E' + ¢Q' at ., evaluated in the direction A may be written
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in the form
1
B(ph+ Qb= [ [=Aupe+ ot =82 h - (32)
R3 D +1
after suitable integrations by parts. In consequence of (2.3), this quantity

vanishes identically, independently of the choice of h. Differentiating d’ and
evaluating at ¢y yields

4-5p e
d'(c0) = 5™ Q1) <0
P
since 1 < p < 4/3. The proof of the main result is approached via a series of
lemmas.

Lemma 3.1. Let d be as defined in (2.5) relative to the branch {@c}eso of
solitary-wave solutions defined in (2.4a), where ¢ = 1 is a de Bouard-Saut
solitary wave. For ¢ > 0,

d(c) = inf{Se(u) : w €Y, [Bpulz = Brgel2), (3.3)

where S¢(u) = E(u) + cQ(u) as in (2.6).
Proof. Notice that

K(u) = Se(u) — %/ ul,

R3
where K is defined in (2.7b). Since K(y.) = 0 by the theory of de Bouard
and Saut, so

1
Se(ipe) = §/ (6:1:900)2
R3
and it follows from (2.7a) that

inf{Sc(u) ‘ueY, |Opulp = |a$%|2}

= inf{K(u) rueY, |Oguly = |8:1:‘Pc|2}+% /Rs(a’:c‘.oc)2 (3.4)
=3 [0 = Si(e) = d@). D

Lemma 3.2. Fiz c=co > 0 and let oo = ¢, be a solitary wave with speed
co of (KP-3D). Then for o > 0 and any C?—curve u : (—a,a) — Y such
that u(0) = @o and Q(u(A)) = Q(po) for A € (—a, ), it follows that

dd_,sz(“(’\))l 1o = ((E" (o) + c0Q" (o)) o, v0) (3.5)

where yo = u/(0).
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Proof. Differentiating E along the curve u(A) yields

d / du
o E) = (E'(w®), 75 (3.6)
and therefore
d? " du du p d*u
LI E@) = (B G 70+ (B@, 55 6
Since Q(u(A)) = ( 0), it must be the case that
" du du
- L0 = (@W% 2 QW DY 68)

Adding ¢ times (3.8) to (3.7) and evaluating the result at A = 0, there
obtains the advertised result

2
diiﬁE(u(A))’H: ((B" (o) + c0@"(0))v0, 0) (3.9)
because of (3.2). O

View g as a critical point of the energy E subject to constant values of
Q. The next lemma states that if d”(cp) < 0, then g is a saddle point of
the energy E under this constraint.

Lemma 3.3. Let cg > 0 be given and pg = ¢¢, a solitary wave with speed
co. Let ¢, connote the branch of solitary waves passing through ¢o defined
n (2.4a) and let

XC(miy’ Z) = (PC(O_:(EC)v 0_(?2)21 0(20)2)' (3'100’)

where (00)
5 _ Qlwo
o(c)® = =—=.
= Q)
Assume d"(co) # 0. Then it transpires that
@) 2B (xe)| _ < d'(eo).
Moreover, if d”(co) < 0, then
b) E(x.) < E(vo) for ¢ near ¢, ¢ # Co.
Proof. A direct calculation reveals that

E(xe) +cQ(xe) = / (D5 '8,xe)? + (D3 Buxe)? + (Buxe)?

1
p+2 2
(p+1)(p+.z)/ & +2/Rax°

(3.100)
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1
= 59(@° | (D100 + (D7 10,00 + (Buec)?

__1—005 2 So00)5 2
GG [, 5o [t

(3.11)

= 591 = () [ (D 8y + (D 0up0)" + (0u)?) + o (e(e)

Differentiating the last equation with respect to ¢ and evaluating at ¢ = ¢

leads to the formula

Qpo) = 50'() [ (D1 By00)* + (D510.40)" + (Buo)?)

5

_ ' p+2 , 9C0 2, 4
?)4_2)0(00)/1{3% +3 "(C")/Ra""“L (co)-

(p+ 1)(
Since d'(cp) = Q(w0), it follows that

30”2(00)/ ((D;lay900)2+(D;18z(,00)2+((9x()00)2)
R3

50" (co) / p+2 , Beoo’(co) / 2
. A -0,
P+ D)(p+2) Jrs 70 2 Jps PO

or, what is the same,

50" (co) (d(co) - %/Ra(D;laysvo)2 + (D7'80,00)* + (61900)2> = 0.

On the other hand, it is easy to see that

1d"(co)

“5da)

o'(co) =
and hence that
1 _ -

dleo) = 5 [ (D18,00)" + (D5 Bui0)? + (Buo)”

As ¢y was arbitrary in this computation, we see that for any ¢ > 0,

1 _ _
d(c) = 5 /Ra(Dz lay‘PC)z + (D 162‘P0)2 + (3Z‘PC)2-

It now follows from formula (3.11) that
E(xc) + ¢Q(xc) = 50(c)*(1 = o(e)?)d(c) + o(c)*d(c)

(50(c)® — 3a(c)®)d(c).

[SCR Rl N B

(3.12)

(3.13)

(3.14)

(3.15)
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Differentiating (3.15) with respect to c yields

2 (Bl +eQ(xe) = 5 (50(0)° ~ 30(0)*) (0

15

f= 7 (cr(c)2 —o(c)*) o’ (c)d(c); (3.16)

differentiating a second time gives
d2
3 (B(xe) + eQ(xe)) = 15(0(c)* = a(e)!) o’ (c)d'(c)

+ %(50’(6)3 —30(c)®)d"(c) (3.17)

+ (15(a(c) — 20(c)®) o’ (c)® + % (0(c)? — a(e)*)o"(c))d(c).

At ¢ = ¢g, where o(c) = 1, it is found that
d2
2 (Bl + Q) )| _ = d"(co) = 150" (0)d{co) < " (co).
C c=co

This proves (a) since Q(x.) = Q(wo). Part (b) follows from Part (a) because,
as in (3.6),

d
d_c'E(Xc)

= 2 (Bl + Q)

c=cg

=0 (3.18)
= (B(e0) + a@(w0), 2| Y =0
T ode g,

on account of (3.2) and (2.3). O
Lemma 3.4. With the notation in the last lemma, assume again that
d"(cp) # 0. It follows that

2) ((E"(120) + 0@ (¢0))vo, 0} < d"(c0),

b) (Q'(w0),¥0) = Jgs woyo =0 and

e) if d'(eo) <0, [rs OzpaBzyo > 0 where yo = %!c:co-
Proof. Let u(A) = x4+ as in (3.10a). Applying Lemma 3.2 and Lemma
3.3 then yields Part (a) directly. Differentiating Q(x.) with respect to ¢ and
evaluating at ¢ = cg gives (b). To establish (c), argue as follows. Differentiate
the formula

|8mXCI% = U(C)3|8m‘PC|%
with respect to ¢ and evaluate at ¢ = ¢p to obtain

d
2 / BapoBetio = 30(co)20"(co) / uiol? + o(co)® 55 | 10aicl
R3 R3 C JR3

c=co
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= 30’ (co)|8zpol3 + 3d'(co). (3.19)

Part (c) follows from (3.19), (3.13) and the fact that d’(co) = Q(wo) > 0. O

An important role will be played by the tubular neighborhoods of the
orbit of a solitary wave. For € > 0, these are defined to be

Ue = {u eY: Fierga lu —we(- — Py < e}.

Lemma 3.5. Fiz ¢ > 0 and a non-trivial de Bouard-Saut solitary wave
solution ¢, of (KP-3D). There is an € > 0 and a Cl—map o : U, — R3
such that for all u € U, and r € R3,

1) (u(- + a(u)), dz,pc) =0 i=1,2,3, and

i) a(u(-+ 7)) =au) —r.

111) Moreover, if u is cylindrically symmetric, i.e., if u(z,y, z) = u(z, |Z’|)
with ' = (y, 2) and |z'| = /y? + 22, then a(u) = (ao(u),0,0), where

/ - Oztpe(- — a(u)) ‘
%) = T B — at))’ (3.20

Proof. Define F: Y x R3 — R3 by
Flu,a) = / (@ + @)V po(Z)dE (3.21)
R3

with £ = (z,v, z) and @ = (@1, a9, a3). Since @, is cylindrically symmetric in
(y,2) (see Theorem 2.1), it follows from the decay properties of ¢, together
with Fubini’s Theorem that

(Ozpes Oype) = (Oxpe; Oatpe) = (Bytpe, Bztpc) = 0. (3.22)

It follows from (3.22) that the Jacobian matrix of F at « = 0 and u = ¢,
is diagonal with positive diagonal entries, so invertible. Therefore, by the
Implicit-Function Theorem, there is a unique C!—functional a(u) satisfying
(i) in a neighborhood of .. By translation invariance, a(u) can be uniquely
extended to U, for € small enough. By (i) u(: + a(u)) = u(- + r+ (a(u) — 7))
is orthogonal to V.. Hence by the uniqueness of a(u), (ii) holds. For (iii),
argue as follows. Again by the Implicit—-Function Theorem, making use of
the fact that

| (0pe(a, o) dada’ # 0
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it is adduced that there is a mapping og defined for w in a neighborhood of
e, which is such that

/ u(z + op(u), ') 0z (z, 2’ )dzdz' = 0. (3.23)
R3
On the other hand, if v happens to be cylindrically symmetric, then

/ u(z + ap(u), 2')8ype(z, ')dzdz’

i (3.24)

=/ u(z + ap(u), )0, (z, ') dzdz’ = 0
R3

since . is also cylindrically symmetric. Hence, by the uniqueness provided
by the Implicit-Function Theorem, it is inferred that a(u) = (ao(u),0,0)
for u in U, provided ¢ is small enough. The proof of Part (iii) is completed
simply by forming the Fréchet derivative of the relation

/ u(z, 2')Oppc(z — ao(u), z’)dzdr’ =0 (3.25)
R3

in Y with respect to u. O
Define another mapping B by

B(u) = yo(- - ﬁ(t)a ) ) - (yO(' - ﬂ(t)a " ')’ u) 6270"6('“‘)

(yﬂ('_ﬁ(t)!'!'):u> 2

= c=p(E), ) — 03 r= By

ol =B ) = 7 (- — B, N 0L T H)

for u € U¢, where U? = {u € U. : u is cylindrically symmetric}, yo =

édxﬂc:co, Yo = P, is a de Bouard-Saut solitary wave and G(t) = ao(u(:,t)).

The important properties of B are expressed in the following auxiliary result.

Lemma 3.6. The mapping B is a C'—function from U? to Y. Moreover, B
commutes with translations, B(wo) = yo and (B(u),u) =0 for allu e U¢.

Proof. It is shown first that yg € Y. Indeed, we may write p.(x,y,2) =

(3.26)

c%go(\/Em,cy,cz) where ¢ = ¢; is independent of ¢ and satisfies equation
(2.3) with ¢ = 1. A calculation shows that

dxc d 11 4 c c
Yo = = — [cry( z, Y, z)
de | e, dC( o(c) " a(c)2” a(c)? )c=co
1 = Vo co o
==c,’ z, , z
p “”(a<co> o(co)2” a(cw)

+eou0) (5)

1 1 C !
+ (cfydyp + cf 20:¢) (a(c)z)

c=co c=cg
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= c1p + ca20;0 + ca3yOyp + c420, (3.27)

where c;,c2,c3 and ¢4 are constants depending only on cg,p, @(po) and
Q' (o), and, in the last line, @, 85, 8y, O, are all evaluated at the point

V€O Co Co
z, , z).
™ e en)

To show yo € Y, it thus suffices by (3.27) to show that y0;0,¢, yD 183(,9,

yD;18,0,0, 20;0,0, 2D;18%p and 2D;16,0,¢ lie in Ly(R?). Rewrite equa-
tion (2.3) in the form

=0 (28)

with ¢ = 1. This is possible since ¢ € Y, being a de Bouard—Saut solitary
wave. Multiplying equation (3.28) by —y*D; 1o,y and integrating by parts
leads to the relation

|me_1‘Pyy|% + 'yD;l‘Pyz|% + <2yDz_1(Pyz, D;lgoz> + lyﬂoyg + 2 (ye, 90y>

1
+ Iy‘Pmylg +2 (y(Pz, ‘Pmy) + m <y290p+1’ ‘Pyy> =0. (3.29)

—D;lgoyy b D;lsozz — Pz + Przz +

This in turn implies that
|yD;1‘Pyy|% + |yDz_1‘PyZ|% + |y‘Pmy|g + |y80y|% (8.30)
<e1| D7 a5 + caley |3 + |yesl3 + lpzyl + 013 + ealoyyloolelBs Hyel < oo

Thus, yDg lcpyy, yDg 1<pyz and ypzy € Lg(Rg). One shows similarly that
2P52, 2D3 0y, 2D 0y, € La(R3). Tt is thus concluded that yo € Y. Since
Yo € Y and 82¢p €Y, it is clear that B(u) € Y. To show that B is C, it
is sufficient to show 0;yo € Y which follows if £@gsz, T@zy, TPz, € Ly(R3),
YPzzys YPyy, YPyz € L2(R3) and 2Qgzz, 2Pzzy 2Pyz € LZ(Rs)' Multiplying

equation (3.28) by 9(x2¢s,) and integrating the result by parts leads to
|"380:cm|% + (25'3‘me::, Som} i |93‘Pma:|% . /R3 xzﬂoxm‘Pw
1
+ As (L‘Z(Pmm(pzz — m /l:;a mz(pmz((pp'*‘l)xz e 0-

It follows from (3.31) that

(3.31)

[0osel} + 0pael} + ooyl + lopeslf S 2 [ [oparsipe (3.32)
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+2/ |Z@ay Pyl +2/ |02 +2/ |20 e Pl +/ |m2‘Pp80mm‘Pz|
R3 R3 R3 R3

and, therefore,
|x‘PzM|% + I-’I"Pmlg + |$‘sz|g + leOng <G, (3.33)

where C is a constant depending only on ||¢||2 and |z@z|2. To prove ypzzy,
Ypyy and Yoy, lie in Ly(R3), multiply equation (3.28) by 0z(y?pyy). Upon
integrating the result over R3 and after integrating by parts, one obtains

|y(,0yy|% + |1»"‘P‘-ﬂy|% + |y‘Pyz|% +2 ./R.3 YPayPz + 2 jn’d YPy=Pz

. yz‘Pp_i_l‘Pa:myy =0.

(3.34)
2
+ |y‘Pu::|:y|2 + 2L3 YPxzyPrx — m
This implies that
lyeyyl3 + [ypayld + lyey=l3 + lyeemyls < C, (3.35)

where C depends only on |yp|2 and ||¢||2. Hence, yoyy, ypy. and ypzzy €
Ly(R3). Similarly, one shows 2¢uzz, 2022, 2@.. and zpy, € Ly(R3). By
Lemma 3.4 (b), (v0,%0) = 0, hence,

B(0) = yo — (40, o) Fzap(u) = o

and
(B(u),u) = (o( — B(®),+-),w) = (yo(- = B(t), ", "), u) (B=0p(w),u) . (3.36)
Since (B Do )
/ _ TAGgW, Oppolr — )
(Bzaig(u),u) = — ot Bogol —a)) — 1 (3.37)
for u € U¢, it thus transpires that
(B(u),u) =0. (3.38)

Finally, note that for v € U? and a(u) = (0a0(u),0,0) as in Lemma 3.5, we
have

— (e — ol (w4l -+ ..
B(u( +’l")) = yo( ( )+7‘) (u( +7‘), ‘PU( ) +T‘)} a:.': ( + )
ayO( a))

=yo(- —a(u) +7) — ( ) d3po(- —a+r) = (Bu)(- +1).
(3.39)

This completes the proof of Lemma 3.6. O

u, OZpo(- — @)
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Remark. It follows from the above ruminations that B’(u) is bounded
on bounded subsets (see (3.33) and (3.35)). Hence, B is locally Lipschitz
continuous.

Lemma 3.7. Let B be the operator defined in (3.26) relative to a de Bouard-
Saut solitary wave g = @e,. Let € > 0 be such that B is a C'—mapping of
U into Y. Corresponding to any u € U? there exists a solution uy = R(\,u)
of the initial-value problem
du),
D B(uy), Uy = U,
and a positive number Ao(u) for which
i) R is C? as a function of A for |\| < Ao(u),
it) for each fired A\, R commutes with translations,
i) Q(R(A,u)) is independent of A, and

iv) RO v0)|_ = w.
Moreover, Ao(u) is bounded below on bounded subsets.

Proof. Let v € U? and consider the initial-value problem

duy)

di
Here, € > 0 is chosen so that B : US — Y is a C'—map. Since B is C!,
there exists Ag(w) > 0 for which (3.40) can be solved at least in the internal
[—Ao(u), Ao(u)] and uy is a C?—function of A there. The fact that B is
locally Lipschitz allows one to infer a non-zero value of Ag corresponding
to any bounded set in U} that applies uniformly there. That is, for any
bounded set S of data, there is a Ag > 0 such that the differential equation
with initial value drawn from S can be solved in [—Ag, Ag]. Conclusions (i),
(ii) and (iv) are obvious from the properties of B delineated in Lemma 3.6.
For (iii), simply note that

= B(w), wua|,_o="1u0=u. (3.40)

d@Q(ux)

dA
Lemma 3.8. Fiz ¢g > 0 and suppose d"’(co) < 0. Let oo = ¢, be a
de Bouard-Saut solitary-wave solution of (KP-3D). Then there is an € > 0

such that for any u € U} which is not a translate of po, but which satisfies
Q(u) = Q(wo), there is a A = A(u) € (—¢, €) such that

E(p0) < E(w) + A (E'(u), B(v)). (3.42)

= (un, B(up)) = 0. (3.41)
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Proof. Let uy be the curve defined in Lemma 3.7. Straightforward calcula-
tions show

(%E(UA)‘,\:O B <E'(U), %ﬁ‘h& = <E’(u),B(u)>, (3.43)
el = (TR R 0GR, o
an

o ny \Qux duy y d?u,,
0= WQ(UA)I,\=O = <Q (U)ﬁ, 'ﬁ>‘)\=0 + <Q (u), W>‘)\=0. (3.45)
Combining (3.44) with (3.45) yields

o? " " d'u.)\ du,\
EyY —<W(@+%Q“mzrzxﬂho

<HM+@@LMQ|

Apply this calculation to the curve uy starting at u = g (see (3.41)) to
obtain

E(u
( A)| o Gnlf)

2
S 3 B(0) = (B (90) + 0@ (0) 0, o) (3.47)
since
E'(p0) + coQ (o) = 0.
By Lemma 3.4 (a), the quantity on the right-hand side of (3.47) is negative.
If u is near g, B(u) is near B(go) and hence the solutions of the differential

equation in Lemma 3.7 starting at ¢o and u are close, along with their first
two derivatives. Hence, for u near ¢ in U¢,

3‘2
WE(W)\H <0 (3.48)
when uy|y_o = u. The Taylor expansion thus implies
E(uy) < E(u) + A (E'(u), B(u)) (3.49)

for A near 0 and u near yg. On the other hand, if we consider again the curve
uy starting at o, then by Lemma 3.4 (c), since d”(cg) < 0,

Q(azu,\)i =2 / 8200850 > 0. (3.50)

Consider the function G defined as follows. For u near ¢g and A near zero,
solve the differential equation of Lemma 3.7 with initial value u. As remarked
previously, if attention is restricted to a bounded neighborhood S of (g, say,
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then uy = R(\, u) exists on [—Ag,Ag] X S for some positive value Ag. In
particular, we may take S to be a small enough ball around ¢ and A¢ small
enough that R(\,u) exists and (3.50) holds throughout. Then, for (A, u) €
[— A0, Ao] X S, set G(A,u) = Q (Ozuy) . The mapping G is plainly C! and the
transversality condition in (3.50) allows us to apply the Implicit-Function
Theorem. As G(0, o) = Q (8z0) , it is concluded there is a neighborhood
N of ¢o and a C'—mapping A : N — R?* such that

Q(8zp0) = G(0,90) = G(A(u), u) = Q(Fzup(w))- (3.51)
Because of Lemma 3.1, there obtains
Seo(ur) = E(u) + coQ(ua) = E(p0) + coQ(¢po) = d{co). (3.52)
This implies that E(uy) > E(po) and hence it is adduced that
E(po) < B(w) +Aw) (F'(u), B@). O  (359)

Lemma 3.9. Let co > 0 be given along with a de Bouard-Saut solitary wave
@0 = ey Let @, given as in (2.4a) be a branch of solitary waves passing
through @o at co and let x. be as in (3.10a). Assume d"(co) < 0. Then the
curve X, satlisfies

i) E(xc) < E(gq) for ¢ # cp and ¢ near ¢y,

) Q(xe) = Qo) and
i) (E'(xc), B(xc)) changes sign as ¢ passes through cg.

Proof. Part (i) was noted in Lemma 3.3, while (ii) is obvious from the
definition of x.. Applying Lemma 3.8 with u = x. and ¢ near cg, there
obtains the inequality

)‘(Xc) <E,(Xc), B(Xc)> >0 forc 76 co. (3-54)
Thus, it suffices to show that A(x.) changes sign as ¢ passes through co. Let

w(c) = R(A(xe)» Xe)
and remember that because of (3.51),

|82w(c) 3 = 8z¢pol3.
Differentiate the last relation with respect to ¢ to derive the relation

OR 8)\ OR dx.
=0. 3.
/Ra 213 (55 5, t 5. Bc ) (8:59)
Evaluate this at ¢ = ¢p, up = X, and A =0 to reach the conclusion
dA
/R \ Oz 0 (Bmyoa - + 3xyo) =0. (3.56)
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Since
f@ztpoamyo > 0,

it must be the case that
ai

— =-1#0 3.57
dc c=cg 76 ( ° )
almost everywhere. As A(cg) = 0, it is ascertained that A changes sign as ¢
passes through cp, thereby concluding the proof of Lemma 3.9. a

Lemma 3.10. Let @ = ¢, be a de Bouard-Saut solitary wave with speed
co > 0. Let . be the solitary-wave branch defined in (2.4a). Let

v = D3y,

where Yo = 2 omcy, Xe(T,y,2) = ee(5G s T’Q)z) and o(c) = %%% as
before. Then v € La(R3).

Proof. Write ¢, = cp(y/cz, ¢y, cz) where ¢ = ¢ is independent of ¢ and
satisfies equation (2.3) with ¢ = 1. As before, this amounts to taking cp =1
or to rescaling . A calculation shows that

v = D;lyo == C1D; ¢ + Cazp + CsyD; ¢y + CazD; ps,  (3.58)

where Ci,C2,Cs and Cy are constants. Thus v € La(R3), if zp, D7le,
yD;lp, and zD;l¢, all lie in Ly(R3). In fact, by Theorem 2.1, we have
zp € Ly(R3). To be convinced that D7 ¢ € Ly(R3), consider the following
argument. Since ¢ satisfies (3.28), its Fourier transform satisfies the equation

= _ £1 1 —
690 = g g (1) (3.59)

where £ = (£1,£2,&3). Thus it transpires that

1
p+1

DIlp=h« ( 1), (3.60)

where fl(& ) = mg—i‘m‘q Applying Young’s inequality and Sobolev embedding
gives

1
p+1

1 ~
—1,(, < \ +1‘ < P+l _
1Dz ek < Ihle| (557) |, < g ikl (3.61)
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It follows from (3.61) that D¢ € Lo(R3) because of the following estimate
of h:

2
hf3 = 3 dédad
= [, (6ol + G + [P+ e p))? s

_ / 3 ( / déydés )des

R [&1[*(1 + [€1]*)% \ Jre g3+ef \?

(1+ gh%)

_ [ &-a0+laP), 1/ didip

r 1641+ [61]%)? r2 (L+nf +n3)?

déy / diidny
= < 00.
/R (1+€7) Jre (1+nf +n3)?

Next it is established that yD;'ep, and zDz;ly, € Lo(R?). Multiplying
equation (3.28) by rpD;! where r# = y? + 22 and integrating over R?
yields

(3.62)

Iriel3 + [r1D; ey l3 + [r1 D7 .5 + 2/113 yD;'e - D',

2 2
Tltpp+ .

(3.63)
2 | zD;'eD;! §=—r
i Asz z ¥ z‘Pz+|7"1<Pz|2 p+1 R

The Cauchy-Schwarz inequality then implies
1105 pyl3 + 1r1 D5 a3 + Iripsld < CIDZ el + Cllrele, llpllz)  (3.64)

for some constant C. This means that r1.D;1p, and r1D;lp, € La(R3).
Hence, the proof of Lemma 3.10 is completed. O

The preceding lemmas lead to a proof of the Main Result, which is the
instability of the solitary wave ..

Proof of Theorem 2.3. Let € > 0 be given in Lemma 3.8 and U the
cylindrically symmetric subset of the associated tubular neighborhood of the
orbit of ¢g. Since 0,C§° (R3) is dense in Y, we may choose ug € 8;C§° with ug
close in Y-norm to x. for ¢ near ¢ and such that Q(uo) = Q(xc). Moreover,
by Lemma 3.9, for ¢ sufficiently close to cp, it must also be the case that
E(ug) < E(po) and (E'(up), B(ug)) > 0. Since ug € X, with s > 3, it follows
that the solution u of (2.6) with initial value ug lies in C([0,T*), X,) for some
T* > 0. Let T* be the maximum time for which v € C([0,T%),Y). We may
assume T* = 400, for otherwise Hmsup,_,p» o ||u(t)|ly = oo and ¢g is
strongly unstable in Y. Assume now the solution u(-,t) € U¢ for t € [0,T.
We intend to show that T' < +oo which means that u(-,t) eventually exits
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the tube US. This will complete the proof of instability. Define a Liapunov
function

A(t) = /R3 v(z — B(t),y, 2)u(z,y, 2, t)dzdydz, (3.65)

where B(t) = ag(u(-,t)), v = D;lyo where yo = 3‘9—6x|c=co and u is as above,
the solution of the equation (KP-3D) with initial value ug. By the Cauchy-
Schwarz inequality and Lemma 3.10,

|A@®)] < [vl2fu(-, t)l2 = |v]z|uolz < +oo. (3.66)
On the other hand, using the Hamiltonian formulation
du
— =G, F
= (u)
of (KP-3D), one computes as follows:
dA du
=80 [ w@—pOmu0 + [ oe-609.0F
R3 R3

— (b, 2wl — w1, + (o0 — alul ), F)
= —(B'(u(1), Bl 1))- (3.67)
Since
0 < E(po) — E(u) = E(po) — E(u(1)),
Lemma 3.8 implies that
Au(-, 1)) (E'(u(-, 1)), B(u( 1)) > E(go) — E(uo) > 0.

Because u(-,t) € U2, for 0 < t < T, we know that (E'(uo), B(uo)) > 0. Hence,
A(u(-,t)) > 0 and since A(po) = 0, it may be assumed that 0 < A(u(-,t)) <1
by choosing e smaller if necessary. Therefore for all t € [0, T},

(E'(u()), B(u( 1)) > (o) — E(ug) > 0. (3.68)
Hence (3.67) yields the lower bound
—(Z—Ij i E(QOQ) = E(UQ) > 0. (3.69)

Comparing (3.66) and (3.69), it is concluded that T < co. This completes
the proof of Theorem 2.3. O
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4, CONCLUSION

Consideration has been given to a natural three-dimensional version of
the Katomtsev-Petviashvili equation. The KP-equation has a certain uni-
versality as a model for nonlinear dispersive wave motion that propagates
in essentially one direction, but with allowance made for weak effects of dis-
persion in the transverse direction. This model has been discussed in the
context of issues in plasma physics. De Bouard and Saut have discussed this
system of equations from the perspective of existence of lump-type solitary
waves, showing that in a certain range of the power of the nonlinearity, there
are such solutions and that in the complementary range, there are not.

As a rule, we expect solitary-wave solutions of nonlinear dispersive wave
equations to play a distinguished role in the evolution of certain classes of
initial disturbances. On the other hand, there are at least two different
paradigms that one observes. The first is when the solitary waves are stable,
in which case we expect initial disturbances to go over asymptotically to
solitary waves and other more dispersive structures. In this case, the under-
lying evolution equation is usually globally well posed in reasonable function
classes. Another situation is that obtaining when the solitary waves are un-
stable. In this case, we sometimes (see e.g. Bona, Dougalis, McKinney and
Karakashian 1995), though not always (see Bona, McKinney and Restrepo
2000), see singularity formation in finite time associated with the instabiity.

For the system investigated here, it is shown uniquivocally that all the
solitary waves are unstable. Thus we would tentatively predict, and in fact
it is known to be true (see Liu 2001) that the initial-value problem is not
globally well posed. In particular, this shows clearly the system cannot serve
as a model for smooth processes in situations where other than small initial
data is contemplated.
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