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The Kadomtsev—Petviashvilli (KP) equation,
(4 vy + un + tyi) + ety =0, (*)

arises in various contexts where nonlinear dispersive waves propagate principally
along the x-axis, but with weak dispersive effects being felt in the direction parallel to
the y-axis perpendicular to the main direction of propagation. We propose and
analyze here a class of evolution equations of the form

(u +uy +ulu + Lug) + euyy, =0, (%)

which provides an alternative to Eq. (*) in the same way the regularized long-wave
equation is related to the classical Korteweg—de Vries (KdV) equation. The operator
L is a pseudo-differential operator in the x-variable, p>1 is an integer and ¢ = +1.
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After discussing the underlying motivation for the class (* *), a local well-posedness
theory for the initial-value problem is developed. With assumptions on L and p that
include conditions appertaining to models of interesting physical phenomenon, the
solutions defined locally in time ¢ are shown to be smoothly extendable to the entire
time-axis. In the particularly interesting case where L= —02 and &= —1, ()
possesses travelling-wave solutions u(x, y, t) = ¢.(x — ct,p) provided ¢> 1 and 0<p
<4. Tt is shown liere that these solilary waves are stable for 0<p <% and ¢ > 1 and for
i <p<4if ¢ > (@dp)/(4 + p). The paper concludes with commentary on extensions of
the present theory to more than two space dimensions. « 2002 Elsevier Science (USA)
Key Words: regularized long-wave equation; anisotropic Sobolev spaces; non-
linear dispersive waves; Kadomtsev—Petviashvili equation; transverse propagation.

I. INTRODUCTION

Studied here are initial-value problems of the form

{ (uy + uy +uPu, + Lu,) +euy, =0, (x,p)e R%, >0, an

u(x,y,0) = ¢(x,),

that include natural generalizations of a regularized version of the
Kadomtsev—Petviashvili equation for the propagation of surface water
waves. In (1.1), e = +1, p>1 is an integer, and L is an operator formally
defined by

Lk, 1) = m(k)f (K, D). (12)

Here a circumfiex over a function denotes the function’s Fourier transform
and the symbol m of L will be assumed homogeneous, though this is not
necessary for most of the results in view.

The goal of the present paper is to establish qualitative results for the
initial-value problem (1.1). Thus a theory is put forward that asserts, under
suitable assumptions about the symbol m of the operator L, the power p in
the nonlinearity, and the initial data ¢, problem (1.1) is globally well-posed.
That is corresponding to a given ¢, there is a unique solution u defined for
(x,y,£) e R* x R and, moreover, u depends continuously on ¢. A more
detailed aspect of the evolution equation is then considered for the special
but important case where L= —2 and e¢= —1. In this situation, the
equation admits solitary-wave solutions (see [14-16,41]). Building on the
global well-posedness, a theory of nonlinear stability of certain of these
travelling waves is developed. The paper also includes commentary about
the extension of the present ideas to more than two space dimensions.

Before embarking on the mathematical development, it is worth putting
the evolution equations featured in (1.1) into context. The Kadomtsev—
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Petviashvili equations
M+ 1y +3 M, + 5 e +5 Wy =0, 3
Wx - n_y . 09

were first put forward as a model to describe wave propagation on the
surface of water of constant depth 4, say. Here, x and y are longitudinal and
lateral coordinates in the horizontal plane and these variables, the wave
height #, the transverse velocity w and time ¢ have been rendered
nondimensional with respect to 4 and the gravitational acceleration g. The
underlying assumptions leading to (1.3) are that the motion is that of an
ideal fluid, so viscosity is ignored, that the flow is irrotational, the wave
amplitude small, the wavelength in the x-direction large, and the variations
in the y-direction even more gradual. Moreover, it is assumed that the
waves move primarily in the direction of increasing values of x. If
the nondimensional variables in (1.3) are scaled so that » and its first
few partial derivatives are all of order one, Eq. (1.3) takes the revealing
form
'1/ + ’74\' + 5117’\ + 511_\'.\'x + 5Wy = O’ (1 4)
wy —1, =0, '

where & represents the order of the ratio of wave amplitude a to the
undisturbed height s. The parameter 6 is assumed also to be the order of
W //li., where 1, is a typical wavelength in the x-direction, and is also
assumed to be of order of 4/A,, where 1, is a typical wavelength in the y-
direction. (The constants 3, { and 1 naturally appearing in the original
nondimensionalization have been scaled out in (1.4).) In fact, the zeroes on
the right-hand side of (1.4) appear from ignoring higher-order terms, and a
more complete accounting would reveal terms of formal order 6° on the
right-hand side of the first equation, and of order § on the right-hand side of
the second equation. At the lowest order, #,+#n,.= O(5) as § - 0, a
reflection of the essential unidirectionality of the wave motion. If this
relation is differentiated twice with respect to x, it appears formally %, =
—N oy + O(B), as 6 — 0. If this latter relation is used in the first equation in
(1.4), there obtains the system

{ 4+ 5'7’14\' - 5;1,\‘,\‘1 + 5w}’ = O’ (15)

wy—1n, =0,

which is formally equivalent to (1.4) in that the difference between the two
equations lies at order &%, and such terms have all been systematically
ignored.
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Another way to draw the same conclusion is to consider the linearized
KP-equation

U+ Uy + %u.\‘,\'.\‘ +% wy =0,
wy —u, =0,

which can be written as the single equation
(ul + Uy + % u.\:\‘\‘),\- + % Uyy = 0 (1 6)

by cross-differentiating. If we search for a simple-wave solution of the form
ek +ly=oh then the dispersion relation

K437 — 15

w=wlk,l) = p

(1.7)
is determined.

Indeed, (1.7) results from truncating the linearized dispersion
relation

w?(k, ) = K tanh(x), (1.8)

where x> =k?+ 2, for the full Euler equations under the scaling
assumptions in force here (that k> = O(8) and I = O(8) as 6 — 0). Since «
is small, we may write

o (k) =1° — 0 i + higher-order terms

=k + > —L(k* + 2k** + - )+ higher-order terms

7
=K <1 + % — % k2> + higher-order terms,

where the higher-order terms are all 0(55/ %), and so formally negligible
compared to k* and /2, both of which have order §°. Taking the positive
square root of w corresponding to waves moving to the right, there
appears

wwn—/1+1ﬁ
s I} )

o
T :l—_h_ + higher-order terms, (1.9

1
- k2> + higher-order terms



CAUCHY PROBLEM AND SOLITARY-WAVE SOLUTIONS 441

just as in (1.7). With the same scaling assumptions, (1.8) may be
approximated to the same order in é by

k? 432

Bk, Iy = 2
a)(C ) /C(1+%k2)

(1.10)

(since k*I2 is of higher order), and this is precisely the linearized dispersion
relation for the regularized version

(M + 0+ 30—t N)s +31,, =0 (1.11)

of (1.3).
Note that in case the wave motion does not vary at all with y, (1.3) and
(1.11) reduce to the Korteweg—de Vries equation

M+ 1+ 3 M+ § M = 0 (1.12)
and the regularized long-wave equation or BBM-equation

r’l—}_nx—"_%nn.\'_%n.\‘xt . 07 (113)

respectively, which govern to a good approximation the unidirec-
tional propagation of small-amplitude long water waves in a chan-
nel where variation across the channel can be safely ignored (see
{10, 18,21, 22, 44)).

There are many other physical systems besides the surface of water under
gravity that feature waves where a balance is struck between nonlinearity
and dispersion. Sometimes, the lowest level description of such systems is
(1.12) and (1.13), but not always. Nonlinearity occasionally enters at other
than quadratic order while the linearized dispersion relation need not be a
quadratic polynomial. This has led to a study of the generalized Korteweg—
de Vries equations

w + uy +u’u, — Lu, =0, (1.14)
and their regularized counterparts

U+ uy +uuy + Lu, = 0, (1.15)
(cf. [1,3,5,11,27, 42,43]), where p=1 is an integer and L is as in (1.2),

Lu(k) = m(k)sk),
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but the Fourier transforms are taken with respect to a single spatial variable.
The linearized dispersion relations corresponding to (1.14) and (1.15) are

(k) = k(1 — m(k))
and

k

o) =T mk)’

respectively. These are typically close to one another for long waves (small
values of k) for symbols m that arise in practice (see [3, 11]).

If weaker, but not vanishingly small variations along wave crests are
contemplated, it is natural to start with a quadratic dependence on
wavenumber in the y-direction, and this leads immediately to the augmented
relations

w(k, ) :k<1 —m(k)+/lc—22> (1.16)

or its regularized version

K+ P

o) = e T i)

(1.17)

analogous to (1.9) and (1.10), respectively. At this level of modelling, (1.14)
and (1.15) become

(w, +ue +ulu, — Tny)  + =il (1.18)
and
(4 +ux +uuy + Luy), + uy, =0, (1.19)

where the sign depends on the particular system being modelled. Class (1.18)
has been studied recently in [36,39] (see also [19,20,24,26,34,35,40,45] for
studies of subclasses of (1.18), and in particular for the original Kadomtser-
Petviashvili equation). In this script, attention will be given to the collection
of models depicted in (1.19).

The first goal with regard to (1.19) is to establish that the pure initial-
value problem in R? is globally well-posed. To obtain such a result, it is
shown in Section 3 that under assumptions that include physically
interesting models, the problem is locally well-posed. This is accomplished
by means of the contraction-mapping principle in a suitably chosen space.
Global existence, uniqueness and continuous dependence on initial data is
proved in Section 4 making use of the special structure of the equations
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exposed in Section 2. Section 2 also features notation and some formal
manipulations that motivate the rigorous theory to follow.

It is worth remarking that settling the issue of global existence is not just
an idle exercise in making rigorous what is otherwise easily understood.
Indeed, the Cauchy problem for a generalized Kadomtsev—Petviashvili
equation of the form

w4+ ue +u’ue — Duy), + euy, = 0, (1.20)

where D, = (—6_%)'/ 2 is the positive square root of the Laplace operator, has
been studied by various authors most especially in the case o = 2. Bourgain
[17] has proved that the pure initial-value problem for what is usually called
the KPII equation (. = 2, ¢ = +1, p = 1) is locally well-posed, and hence, in
light of one of the conservation laws for the equation, globally well-posed
for data in L,(R?). A compactness method that uses only the divergence
form of the nonlinearity and the skew-adjointness of the linear dispersion
operator was employed by Iorio and Nunes [23] to establish local well-
posedness for data in H'(R?), s> 2 for the KPI equation (6 =2, ¢ = —1,
p =1). The Iorio-Nunes approach applies equally well to KPII-type
equations. It was shown that Eq. (1.20) has global solutions corresponding
to large initial data for ¢ = —1 and «>2 provided that p<(4a)/(4 + o) (see
[39]). It has also been shown that certain solutions of (1.20) cannot remain in
the Sobolev space H'(R*) for all time if ¢ = —1 and p>4. Indeed, it is
demonstrated that the L,(R*)-norm of u, blows up in finite time (see
[33,41]). This blow-up result has little to do with the dispersion in x and
depends solely on the transverse dispersion. Indeed the same result can be
shown to hold for the inviscid Burgers version of the KP equation in two
space dimensions, viz.,

(e + uy + uuy). —uy, = 0.

One of the important features of the one-dimensional equations (1.12)
and (1.13) is their solitary-wave solutions (see [6,9,28,41]). In many
particular instances of these equations, the solitary travelling waves play a
distinguished role in the longer-time asymptotics of solutions. In the special,
but important case where L = —&2, it has been shown that (1.1) possesses
nontrivial travelling-wave solutions if and only if e=—1 and 1<p<4
[15,41]. The symmetry of these travelling-wave solutions with respect to the
transverse coordinate y and the fact that they decay to zero as x*> + 3% —
+o00 was proven by de Bouard and Saut [15]. In [41], the set of ground-state
solitary wave solutions was shown to be orbitally stable if p<‘§‘, while a
proof of instability of the solitary waves corresponding to p >4 was also
offered. Several of the technical points in the proof of the instability in [41]
were carried out in detail in [14]. When ¢ = —1 and L = —&2 + 0%, Eq. (1.1)
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is the regularized version of a two-dimensional fifth-order KdV-type
equation introduced by Abramyan and Stepanyants [2] and Karpman and
Belashov [25]. In this case, for ¢ = —1 and for any integer p, (1.1) possesses
nontrivial solitary-wave solutions (see [15]). These were observed numeri-
cally for p =1 and ¢ = —1 in [25].

In Section 5, the prospect in view is the stability of the de Bouard—Saut
travelling-wave solutions. Thus attention is given to the case L = —° and
conditions on the speed of propagation ¢ and the power of the nonlinearity p
are determined so that the associated solitary-waves are stable when
considered as solutions of the full evolution equation. Unfortunately, our
theory relies on the homogeneity of the operator L, and so it does not apply
as it stands to the operator L = —2 + &%, for example.

2. NOTATION AND PRELIMINARY DISCUSSION

In the present section, notation is introduced and some preliminary
mathematical points are brought to the fore. The calculations in this section
motivate the theory to follow in the later sections. Some are presented
without formal justification, but this is easily provided as soon as the local
well-posedness result is in hand.

The norm in Ly(R?) will be written || - llg, while || - ||, will stand for the
norm in the classical Sobolev spaces

H®R) = {f € LyR): (1 + & + n?Y*RE n) e Ly(RH},

where the circumflex connotes the Fourier transform as before. For
1 < p < o0, the norm in L‘,,(IRZ) will be written |- |,. For any s>1, let

X, = {f e H'R): 0,'f, e H'"'(R?)}
equipped with the norm
1k, = 1l + 1185 Syl
Here and below, 8;'f, is defined via the Fourier transform as
5.1, = g &)

Note that if s>1, then 8. !f, e Ly(R?), so there is a g € L,(R?) such that
= Ys at least in the sense of distribution. On the other hand, since f
HY(R*) < H'(R*), so f; € L, 2(R?), whence g, € Ly(R*). Thus g lies in the
Hilberl space H'(!lvk ), where

HIR®) = {f € Ly®: (1 + )"?f¢, n) € Ly(R?)}.
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In the same vein, let
HIRY) = {f € Ly(RD): (1+ 1))’ n) € LR}

supplied with the obvious norm and, for =0,
N AT Nz 2
V(R = {f e Ly(R%): [E°f¢, ﬂ),gf(é,ﬂ) e LR )}

with the norm

11 —< / <1+|é|2”+f)|f”(5 )|2d5d>1/2
ZCOR N Iz M N =

If f0, let
Wy(R?) = {f € HF'(R?): 8, 'f, e HI(R®)}

with norm

1 ey = W1l gy + 1195 llpz e,
and let Wj(R”) be the space

Wy(R*) = {f € HI(RY): 8,'f, e HI(R*)}
with the norm

LA i,y = 1N oy + 1105 Syl ez

Note that if #>1, then for any f € Wp(R?),
| pwnax=o @n

where for almost every y, the left-hand side of (2.1) is an improper Riemann
integral. As above when delineating &;, 'f,, define 8;f,, via the relation

—
a3y = ?f(é, n).

If this quantity lies in Ll{'Rz), then f,, = /i, for some h € Lz(Rz), and thus as
in (2.1), if @.%f,, € HA(R?) for some f#> 1, then

/ h / fp 61, 9) dxy dx =0, 2.2)
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where, again, the left-hand side may be interpreted as an iterated improper
Riemann integral. The local existence theory for the initial-value problem
(1.1) subsists in part on the fact that the initial data ¢ lies in H; 2(IR%). This is
implied if ¢ € Wap(lﬂi )for «>2 and equally if ¢ € Wa/z(R )for #=4. In the
interest of sharpening the theory a little, we have chosen to work with the
two different versions of these W -spaces.

We now enter into a set of formal calculations wherein it is presumed that
the wave-profile u(x, y, r) decays to 0 suitably rapidly as x — + oo, and that
u is appropriately bounded in the y-variable. Integrating the evolution
equation in (1.1) with respect to x and applying zero boundary conditions at
X = £ 00 in concert with our decay-assumptions, it is determined that

o0
/ Uy(x,y, Hdx =0
-0
and thus that

[ " w0 = i)+ e, 2.3)

o0

where ¢; and ¢, are independent of y. The boundedness condition in the y-
variable forces ¢;(f) =

If, as will be d‘-\l.llTl(..d later, the initial data ¢ has the property that ¢, =
¥, for some L,(IR*)-function , then the initial-value problem (1.1) may be
written as an equivalent system

U+ uy + uluy + Lu, 4 ev, =0,

Li;x_ i,iy,

(2.4)

(see de Bouard and Saut [15]) with u(x,y,0) = ¢(x,y) and v(x,y,0) =
¥(x,y). In the original application to water waves where p = 1, L = —ai. and
¢ = +1, v represents the horizontal velocity along the crest, so in the y-
direction. Integrating the first equation in (2.4) with respect to x, and using
the assumption that L = No, where the symbol n(§) = m(&)/i¢ of M is
assumed to be bounded near ¢ = 0, it transpires that

x o0 xd
6,/ u(x,y, t)ydx = —e/ v,(x,y, Ddx = —say/ v(x,y, Hdx. (2.5)
- —00 —00

o0

The left-hand side of (2.5) is c|(f), which is independent of y. Averaging (2.5)
over the interval {y: —k<y<k}, where k > 0, leads to

i) = %{ [ " onk, 1) dx — /_ " k. ) dx}. (2.6)

o0
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Imposing boundedness of the integrated transverse velocity,

o0
/ v(x, y, 1) dx,

o

as a function of y and taking the limit as k — 400 in (2.6) gives ¢|(#) =0,
whence c1(f) = ¢1(0) = ¢, say. Note this conclusion was drawn without
asking that the solution u tend to 0 as y — +oo. If this latter condition is
imposed then it follows formally that ¢, =0, or that u satisfies the
compatibility condition

/OO u(x,y, 1) dx =0, 2.7

[00]

for all y € R and ¢ for which the solution exists.
Now if (2.7) holds, let w=wu, Then w formally satisfies the
equation

W, + wy + (@Pw), + Lw, + aa;lwyy =0,

where L = N9, as above. Integrating the above equation for w with respect
to x over R, it is adduced that

d -
E/Rwdx—ks/ﬂaxlwyyzo.

Because ¢|(f) = 0, as determined above, it follows that

d
E/Ru(x,y, t)dx—/Rwdx—O,

whence,

/ 8, 'wy,dx =0
R

and thus

/a;‘wyydxz/a;‘uyy, dx = 0.
R R

It is thereby inferred that

/ 0=y (x,9, 1) dx = / 07 6,,(x, ) dx
R R
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and, in particular, if

/IR/- ¢y_v(xlay) dxl dx = 0; (28)

then

// 1wy, (x1,y, 1) dxy dx = 0
R J—-00
for all ¢ > 0.

If the initial data ¢ is such that ¢, =y, for some y € Ly(R?), then it
seems likely because of (2.7), and is in fact true as will appear later, that
0, 'u‘ € Ly(IR*) for all £>0. If the equation in (1.1) is multiplied by u and the
|eaull integrated over R?, then after appropriate integrations by parts, it is
found that

/ [ + uLu]dx dy = — / uuy dx dy — / uPu, dx dy
2 dr R2 R

. s/ ud, 'uy, dx dy = 0,

R
since
1
/2 uagluy',, dxdy = —/ uya u,dxdy = ——/ 0 uy) dxdy =0.
R R
Hence, the functional V' defined by
1
V() = 5 / [’ + uLu] dx dy (2.9)
RZ

is independent of ¢, being therefore determined by its value on the initial
data ¢. Under added restrictions on the initial data, the same is true of the
functional

i 2

E() = — / [ @7 w) + g

—_ldx dy. 2.10
(p+ IJ(;H-”J e 2.10)

To see this, assume that the initial data ¢ is qut.h that ¢yy = ;‘.r“ for some
h e Ly(R?). Because of (2. 8), we expect that 6 *u,, will lie in L(R?) for ¢ > 0.
Introduce the function

Mad'
w=—(1+L)" 86 U, +u+
( ) |: VY P‘f‘l]
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A simple calculation reveals that
-1 -
wy = —(1+ L) '[e0, luyy + uy + uuy] = u,

and hence

1/ = (57" )2+ +—L dx d
@t Je |20 W e+ e+

1
:e/ 6\_.1uy6\f'uv,dxdy+/ wu dxdy +—— | u’Tlu, dxdy
R t K2 p+1Jg

677 u/r+] b d
—/2(1 + Lyww, dxdy = 0.
R

In the last step, use has been made of the fact that the operator (1 + L)o, is
skew-symmetric. Because

d
Zi; V(M) = 0,

we have

a Rzu dxa’y——E/RzuLudxdy,

and hence the functional E(u) can also be written as

E(u)——/ F(a_lu )2—luLu+L] x d
T Jrel2t 2 (p+ 1)y +2) :

Using the conserved quantities V() and E(u), it is possible to draw some
preliminary conclusions. Suppose that L is homogeneous, say, L = D% for
some o > 0, where D, as defined earlier has the Fourier symbol |£|. Then the
term

/ uLu dx dy = / (D“*uy? dx dy,
RZ RZ

and lhe uwdllunu. of I expressed in (2.9) implies thal if the initial data
e ;H "*(R?), then the corresponding solution u of (1.1) with L = D7 lies in
HY(IR?) for all =0 for which it exists. To draw an inference based on the
invariance of E, the following lemma is helpful. This lemma is closely related
to the imbedding theorems for anisotropic Sobolev spaces studies in [7].
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LEMMA 2.1. Let a1 be given and let p<4o/(4 — o) for 1<a<2 or p<
20 for o >2. Then there is a constant ¢ depending only on o and p such that for
any f € Vm[[ﬂt“)

p+2 214 £/ 51 p/2
T, ey S Q™ A s, 0y Sl (2.11)
where
2 +2) ) 2t + 2) .
T C—0mt ) = —= 1<a<2,
q 20+ 2 —a)p+2) 4 dop — (4 — %), if o
and
g=-" ’ ni if a>2.

G—ap T am—@G—ap

As a consequence it follows that there is a constant ¢ such that for all f e

Vo2 (R,
iy <l oy
which is to say Va/z([R{z) is embedded in L,,+2(R2).
Proof. The lemma is established for C;°(R")-functions and then limits

are taken to complete the proof. First, consider the case a>2. Because of
Sobolev theory and interpolation, we have that if g € H*/2(R), then

(f+2 1)+2 +2
g1 s sany < cllglt st Mgl oy 2/ e+,

(see [29]). It follows that

L asdy < [ 17CoM g &
/ £ G g L o DH2

, p/(20)
C</R||f(',J’)||H«/2(R) dJ’)
o — 2 20—
x ( [ e gt g,

2
< el g 116" sup 117G DIy, (2.12)
Al

) (20—p)/(29)
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where y = ?w'[fi‘-i‘j&—lri.—fi”‘l. But, for each y € R,
1M = [ 1) d

Y

=2 [ [ seyoneondyas

R J—-00

Y

=2 [ £wrer S dran
—00 JR

< C/R||fx(',y)lle(R)lla;lfy(',y)lle(R) dy

<e /R 1 Car@ldz 6 gy d

. 12
a( [ 16 dy) ( /R 102, dy)

. 2 4 )
%r-( [A7CHE S WC e dy) 165l
JIE H2 (R)

1/2

It follows that for any y € R,

I FCIIE

4

4 3 1/2
SC</R||f(~,y)ll?,a/Z(R)IIf(-,y)||L3(|"w) dy) 19, '£llo

2/ |2 1/2

i 3(1-2)
<C< /Rllf(-,y)lli,q/z(m dy> </R||f(-,y)lliz(m dy> 185l

2
o

2
s -
<l flly N 18,195 Sllos

and hence
2

> 2

Il ! o o —

= “f(,y)”L2(IR)<C”fHO ”f” 1/2( 2)“6)\ lf,‘V” - (213)
el H R 0

Combining the last inequality with (2.12) yields the result for o> 2. Observe
in particular that when ¢ =4, ; =0 and ¢' = 1.
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Now consider the case where 1 <a<2. Again, interpolations gives

Lrrasay<e [/, a

1232 @)

<e [ Myml Mgy, 214

where

== Vel - _
_p=20+) s dptD-p

f)
o — 2r o — 2r

?

with r to be chosen presently. The next step is to gain control of the norm
L Cs Wy~ In this regard, write

00 py
= [WrPae= [ [ Nponase s dzax
—00 J —00
in which A" is a standard Bessel potential given by

Ag = (1 + &74(2).

Suppose that 8 'f, € Ly(R?), say 8;'f, = g and use Fubini’s theorem to
derive

M= [ [ Nf0N 2 dv s
N [ ; /_ Z N'F(x, 2007 N f(x, 7) dx dz
- /l | [ BN f(x, 2)A g dx dz
- - / . /' 0N f(x, 2)g dz dx

[e.e]
<e / 1 Gl los ol dv

[e0]

—1
< ellf Mgy 195 S lo-

Choose r so that 1 + 2r = §. (Notice that <0 since ¢ <2.) With this choice
of r, we have

sup | C NGy < ll Fll vy 185 Folo- (2.15)
vl N )
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Putting this inequality back into (2.14) gives a helpful relation.
With the present choice of r, the quantities 8 and 0 in (2.14) take the
values

2 2 2 ~ (o —
2p+ Q2 —w)p+2) and b 4o + 2plo 1)
o+ 2 o+ 2

0:

To make further progress with this line of argument, we need 0<2. This
amounts to the restriction

4o
4—o

p<

Supposing p respects this inequality, let g1 be such that 8g = 2, and let ¢’
be the conjugate index. Applying Young’s inequality to the right-hand side
of (2.13) yields

1/¢ oo /g
/R Zlfl”“dxdy<< / 1G5y ) ( / ||f(-,y)||§11/z(u@)dy> ,

where
B z o 2o + 2)
1= "+ -ap+2)
and
= q9 2o+ 2) o 2x+2)

g—1 20@+2)—[2p+Q2—-a)(p+2)] 4dou—@—oa)p

It thus transpires that

é,_2[4oc+2p(oc—@
 4u—@G—ap

The right-hand side of the last integral inequality is

1/¢ 2/
(/ re, y)“H'([R) y) ||f||ﬁ_3/2(R2)'
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Considering what we have in hand, it is natural to bound the first term
above by

Qq’,__z 00 5 /¢
o T
yeR —00
Using (2.15) and the fact that <0, the latter quantity is bounded above by

_1’_

0y—2
A1 o 185 foll ™ 7157

2 (m2)

Summarizing, we have derived the inequality

md)

!Jl—)iz ”,L,._ 2
2 2 q
1P axar<iinn 2 s A 11,

On the other hand,

and thus the last inequality is the advertised result for the case | <a<<2. #

Remark. When inequality (2.10) is used, we will need the exponent of
0-'f,llo to be less than or equal to 2, and this entails the restriction p<4.
vl

Now suppose initial data ¢ in the class ¥, /1(IR ) is such that ¢, = ., for
some f‘unwon Y & Ly(R%). Because of the invariance of ¥, u(-, f) is bounded
in HY*(®R?) for all >0 and any p=0. The time-independence of E(u)
implies

_4}['!—._
ep+ Dip +2)
u?*2 dx dy.

2

1
L@twrasa= [ 06,7 +1e+ dedy — g
R R &

B ep+ Dp+2) /Rz



CAUCHY PROBLEM AND SOLITARY-WAVE SOLUTIONS 455

Applying Lemma 2.1, there appears the relation

L’ 3 P
05 "uy -, DG < 1165 ¢, 115 + Nl BlI5 + C||¢||o ||¢||” @) o5 )13

2 ,J_! 2

4
o 1l AR+ el DI I, DI, A o 105 3, 0IR
‘)+—v _—
< el ) + I 165 0 O, (2.16)

since |¢] = 1. It follows that if p<4, then

Sup 105y, Dllo < ellielly, - 2.17)
1>

Note however, that for 1<a<2, inequality (2.17) will only be valid for

p<;%. In particular, for the regularized Benjamin-Ono-KP model where
oc—l we require p<%. The following proposition emerges from this
discussion.

PROPOSITION 2.2. pré it ~for 1 <a<2or p<4 foraz=2, then a solution
u that starts in V, /Z(R ) er .tenmm in this space throughout its period of
existence, regardless of the sign of e. In case =2, n'w same conclusion holds if
p = 4 and the initial data ¢ is not too large in Hy '(IRZ)

3. LOCAL EXISTENCE AND UNIQUENESS OF SOLUTIONS
Hereafter, it will be assumed that the dispersion operator L has the
homogeneous form D% for some a > 0. Thus (1.1) takes the form

(u, + uy +ufu, + D*u)), +eu,, =0, (x,y)€ R?, ¢=0,
x vy (31)

u(x,y,0) = ¢(x: »).

The first step in the analysis of the initial-value problem (3.1) is to establish
existence and uniqueness of solutions over a small time interval. This is
accomplished by writing the solution of the initial-value problem (3.1)
formally as

u(x, y, ) = Ko — / K. fQ(“ ”HI I”) i, 32)
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where the operators K, and Q are defined via their Fourier transforms, viz.,

HL |-ty }r

KfEm=e LT f&n),

= iE .
of (&, n) = Wf(é’ 1.

The first result records the way in which convolution with K; and Q, and
thus the composition K;Q, maps various function spaces.

PR(}POSITI()N 3.1. The operator K, is a unitary operator on all the spaces
Lo(R%), HY (R, X,, H’{[FE‘) V., (RY), W([R ) and W, ([Nt ) Af o= 1, then Q is a
hn.-mdu! linear upuurm Jrom iw{R) into HY HR™), Srom HF{R) into

Vo 1 (IR, ,‘mm H'(R?) into W, (R*), from H'(R) into W, 1(R] and
from H* (IR? ) inta Xy, for any s=1,

Proof. The operator K, is unitary operator on the indicated spaces
because its symbol has modulus 1. The facts about Q are also straightfor-
ward. For example, if g € H (IR2) then

2 o a—1 ’1 lég 2
19dlly, @) = _/Rz<1 1<l 5_2) 1+|§|
= 1 il ’7_> déd
/R( -l 4 "o o (g A dedn
= [1 Fsup. J (1+n2)lé(é,n)|2 de dn

<2
= ”g”HJ',(IRZ)
since x>1. W

COROLLARY 3.2. (1) The composite operator K,Q is a bounded linear
operator from Ly(R?) into H>~'(R?) for all a>1.
(2) KQ is bounded from H)',([Rz) into Vy_1(R?) for all a>1.
() K,Q maps H'(R?) and H\R®) into W,_|(R®) and W,_\(R?),
respectively.
(4) K,Q is bounded from H'(R?) into X, for all s>1.

The following embedding result will be helpful in the proof of the local
well-posedness of the initial-value problem.
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LEmMMA 3.3, For f>1, Wy(R?) is continuously embedded in Cp(R®), the
bounded continuous functions defined on R

Proof. The norm of a function f in W,;([Rz) is equivalent to

2 1/2
(L1 La | dentacan)
Note that if g € Ly(R"; w(x) dx) where w>0 and 1/we L|(R"), then ge
Li(R"). Thus if f € Wy(R?) and
a
142 1531+ o)

lies in L(R?),

then f e Li(R?) so [ e Cp(R?) and f — 0 at oo by the Riemann—Lebesgue
Lemma. To prove the lemma at hand, it therefore suffices to show that if
B >3, then

e L (R?).
T 8PP 4 (14 12P)

¥

Letz = '—"—lf!;}hlr‘-i;. The following calculation is decisive in proving the above
claim: )

/' d dy
T 1 1P 1P
- E| dE d=
) /u (L+1EPH 70+ 18P+ 22)

[ ([ )
Ju 1+ mPH' AT 4 (P 4 2

_ [

4
. a1, L 3 tanil P I N
/R{'l + 1EPPY(L 4 2Py ((1 i |€|2/}+2)1/2>

oo

d¢

—00

_ n/ 1< e
J l(l 4 |¢|-ﬁ)(l 3+ ié‘;izﬂ-i.?}]h’; -
- I3 {\;
écrr/ Lﬂ?m
Ju 1+ [

< 4+ 00

if p> %, and hence the weight w is in L,. This implies the desired result as
indicated above.
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Here is a local existence theory under very weak hypotheses.

THEOREM 3.4. If a>1 and if the initial data ¢ is such that ¢ e L(R?),
then there exists a T >0 and umque weak solution u of the integral equation
(3.2) such that ie CQO, T, LI(R ). The correspondence ¢ i is continuous

from Ll(le) into C(0, T; LI(IR2)).

Proof. In the Fourier-transformed variables, the integral equation has
the form

A, 1) = Kp(n) + /0 I?ZSQ‘(pi 1 m) ds = A = Ay(). (3.3

If Bg(0) is the closed ball of radius R about zero in C(0, T;L;(ﬁz)) and w
and ¢ are both in Bg(0), then

CoL o .
AW) — A@W) = / Kt—xQ— (wrtl — prtly ds
!
:/ — xQ (W—U) [wp—|—wl’ IU—‘r— +U~”]ds
0

Since a>1, ; +| THeF is bounded and therefore there is a constant ¢; such that

for 0<1<T,
|[A(P) — A@), < TV — 6},c R

With this estimate, we see that if R = 2|¢|, and then T is chosen so that
c¢TRF :% then A4 is both contractive and maps Bg(0) into itself. From the
contraction mapping principle, it is inferred that there is unique solution u

of the integral equation (3.2) such that u € C(0, T; Li(R?)). Since i € L, it is
implied that u e Cb(ll%‘zj, and that ¥ — 0 at co. The continuous dependence
of the solution upon the initial data follows immediately since A,(u) —
Ay(u) = K, (¢ — ). Indeed, if ¢,y are both initial data whose Fourier
transform lies in L;(R?), and R = 2max{|d3|1, |l/;|1}, then if T is chosen so

that ¢, TR” =1, it follows that

sup |a(, ) = o(, Oy = o |43, 1) — Ay (@), Dl

0<I<T
<0§1t1£> |4 @), 1) — Ay@C, DI + JSup |4y @D, 1) — Ay (), DI,
<3 s sup_ (., ) = 3¢, Dy + 16 — ¥,

O<r<
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where u and v are the solutions in C(0, T E) of (3.2) corresponding to
initial data ¢ and , respectively. It transpires that

[lee — U||C(0,T;£|)<2|¢ — Y.

Thus the correspondence ¢+ u of data with the associated solution is in fact
locally Lipschitz. @

Attention is now turned to a well-posedness theory in function spaces
small enough to yield classical solutions, and in which the stability theory of
Section 4 can be cast.

THEOREM 3.5. Suppose a>=1 and let ¢ € W,;([RZ) (respectively W3(R2))
where B> 1. Then there exists a maximal time Ty depending only on ¢ such
that for each T < Ty, the initial-value problem (3.1) has a unique solution u that
lies in C(0, T; W/g([R2)) (respectively C(0, T; W/;(Rz)). The maximal time
interval has a lower bound that is related inversely 1o ||§||y, g2y and approaches
+o00 as ||<,b||WI (R?) approaches zero.

For given R > 0, there is a T(R) > 0 such that the mapping that associates to
the initial data ¢ € Wﬂ{ﬂ% ) (respectively W;;{[R‘]} the mhnmu uof (3.1) is
wnrmumn from the ball a/ radius R about zero in I’V“r (R%) (respectively
W(R®)) into €O, T; Wy(R%)) (respectively C(0, T; Wy(R*))).

Proof. The proof is made for the case « =2 and f§ = 1 just to simplify
notation. The proofs for the general case follow the same line of argument.

The strategy is to first show that corresponding to given ¢ € Wi(R?), the
integral equation (3.1) has a solution in C(0, T; W (R?)) for suitable values
of T > 0. This will be accomplished via the contraction-mapping principle as
in Theorem 3.4. For given ¢ in W (R?) and any v € C(0, T; W, (R?)), define
the action of the operator 4 = A4 on v to be

pit ![ T)

Ao(x,y, £) = Kib(o, ) — / K. TQ( - )(x wdt  (34)

for (x,y, ) € R?* x [0, T]. The aim is just as above, to show that the operator
A is a contraction of the closed ball Bg(0) of radius R about the zero
function in C(0, T; W (R?)) provided R and T are well chosen. The crux of
the matter is to understand the temporal integral in the definition of A.
Let u,ve CO, T; Wi(R*) be given and consider the difference Au
—Av. The norm of this difference in W (R?) is bounded thusly: for
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fixed 7 € [0, T,

! 1 d 1
_ = g pHl _ L pHl
H/o K/_TQ<P+ " )dT /0 Kl_1Q<P+ 1’ )dr

Wi (R
1 1 p+1
<T sup [K,.Q @t —prth
0<I<T +1 W)
1 n p— | )
<cT sup ||(u—v) W’ +uo+.. 407 ,
OSatsi +1 H(®) (3.5

where ¢ is a universal constant coming from the use of Corollary 3.2. Of
course, H'(R?) is not an algebra, but on account of Lemma 3.3, both u and v
are bounded in terms of their W,(R?)-norms. In consequence, Leibniz’s rule
comes to our aid in the following calculation:

1
(u—v)<p+ ] [u”+u”_lv—|—‘--+v”]>
1

H'(®)

) —1 U
<m||“—v||m(w2)|“l +ulTv+ ol
1
ol (10u? + uP e P
+p+ 7 11 = Oloo(ll0x(” +u? v 4+ 07)llg

F10,@” +ul o+ -+ 0")]lo)

1 / 3 i 7 N
< FEN ([t — v||W|(R3) UlullIW,([Rel) St ”u||“W|(R3)”U||W|(Rl) +-+ ||U”IW|(R2))

p _ V4 p—1 P
g o= gty (10 g, + I G ol gy -+ [0 )

_ X P P
<l = ol ey (1146 g, + 00, )

where the constant ¢ depends only upon p. Hence, if # and v are both in
Bz(0), then

lAu — Avll co 7., 2y < CTRlu — vl 2y (3.6)
. T; W (k) 1(R7)

Just as in Theorem 3.4, if we define R to be 2||f,-’;||Wl(Rz) and if T is fixed so
that ¢7T’R" = L, then A4 is a contractive map of Bg(0) in C(0, T; W](IR{E)) into
itself. .

It follows from the contraction-mapping principle that with these choices
of Rand T, the mapping 4 has a unique fixed point u in Bg(0). That is, there
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exists a unique u in Bg(0) such that

! ult(, 1)
u(x,y, ) = Au = K,¢p — / K, _.Q 7> dr. 3.7
0 P+
Moreover, if (3.6) is differentiated with respect to ¢, there appears the
relation
_ i of? _/’ ;o ()
w=Ki¢— Q| — 1) A K .Q Tyl dr, (3.8)
where

yye2 A (E )
I(C_'" £+ gqg} 7rI-: +i17)
—_——e

K/ f&n = (1D S+ fEm)
- R TEn (39)
From relation (3.8), it follows that
K| = —(0x +¢0;')(1 + &) 'K, (3.10)

and since Q = (1 + 8%)7'd,, (3.7) becomes

a1+ af.)u, = —ulu,

‘ !
o w1 ()
— (0x +¢0,°9,) l:Kl¢ _A K’TQ({J—T> dT]

= —ulu, —uy — €0 'uy, (3.11)

at least as an equation relating distributions in W, (Rz). Furthermore, it is
clear that

lim u(, ) = ¢,
(=0

in W,(R?) since
o J'tu;'! Fap )
K&, m = e S0 $(E ).

Following the arguments exposed in [3,6,12], it is determined that the
solution u# obtained by use of the contraction-mapping principle is
automatically unique in the large, not just on [0, 7] and in the ball Br(0).

Iterating the contraction-mapping argument leads to an increasing
sequence {T%}re, such that a solution of (3.1) exists on the time interval
[0, Ty]forallk = 1,2, ...2, ... . By its construction, the solution u on each
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interval [Ty, Ty11], £ =1,2,... is given as the fixed point of an integral
equation like (3.7). Two possibilities can occur here, either

klim Ty = T < + 00 or the sequence {Ty};, is unbounded.
—+00

If Too = 400, then the solution of (3.1) is global, while if T,, < + 00, then it
must be case that

11_1)17{1 sup||u(-, t)”W,(RZ) = 4o00. (3.12)

Otherwise, if M is an upper bound for ||u(:, DIy, g2y for 2 € [0, T',), then the
local existence obtained via the contraction-mapping principle can be
applied with initial data u(-, #5), where # € [0, T) is close to T, to extend
the solution by at least g = 1(1 + (2M)?) 'c~', where ¢ is the constant
appearing on the right-hand side of (3.5). As a consequence of this lower
bound, the solution is certainly extended to the temporal interval [0, Ty, +
Seo), say. This would contradict the definition of Th.. It follows from these
arguments that

T =sup{T: there exists a solution u € C(0, T; W,(R?))
of (3.1) with u(-,0) = ¢}.

Moreover, the solution u can be extended over any time interval [0, T for
which one has an a priori estimate on the norm of u in W,(R?).

The argument for continuous dependence follows the lines given in the
proof of Theorem 3.4. Thus let u be a solution obtained at least locally in
time by iterating the operator 4 on any function in Bg(0). More precisely, let
R >0 be given and let 7} be determined by the relation ¢7(1 + R") =1, Let
¢, and ¢, be in W, (R*) and suppose b iy, 2y ||q‘)2||”,|{.}g:’<%R. Define A,
and 4, to be the operators given by the right-hand side of (3.2) with ¢
replaced by ¢, and ¢,, respectively. Then, as above, we see that

lleey — MZIIC(O,T;WI(RZ))<2”¢1 - ¢2”W|(R2)'

Thus the solution depends continuously on the data at least on [0, T]. In
particular

lleer (-, T1) — ua(:, Tl)”WI([RZ) <2/l¢; - ¢2”W1([R{2)‘

Using the same argument starting with the data u(-, T) and u»(-, T)) rather
than ¢, and ¢, leads to the conclusion that the solution depends
continuously on the data on the interval [0, T3]. Continuing in this manner
leads to the full conclusion about continuous dependence.
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The statement concerning the maximal interval of existence approaching

+00 in case ¢ approaches zero in W;(R?) is now verified. To this end,
consider the equation (3.11) in the form

= -1+ '8, [u—i—ﬁ]—s(l-l-az) 8. 'uyy.

It is not hard to see that for sufficiently smooth solutions,

= 2
2dt/ [ +u +un—|—(6 uy) +u)dx dy

= —/zu(1+a2) a(P >dxdy

- /R (L +8) 7 0w uy) dx dy
- /R we(1 4+ 8%) ™' 0(uuy) dx dy
B /R 1+ 3) 0wl u), d dy
N /R @ 'u)(1+ ) wuy) dx dy
- /Rz uy(1 + 82) ' 0u(u’uy) dx dy

1 1
< Cllulloll”* o + Cllsaallollee” o + Clletnllollee "l

+ C105 uyllolle Puyllg + Clluylollee Pyl (3.13)

where use has been made of the fact that (1+ &%) (1+62) '8,
and (1+*)7'® are all bounded linear operators on Lz([R{) since
we are working on the case a« = 2. (For other values of «, the energy
functional

/R i [ + 2 + (D%’ + (85 'uy) + ] dx dy

comes naturally to the fore.) It then follows from (3.13) that

d 2
7 UG Oy, ey < ClluC:, t)ll’;;(Rz)-
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Integrating the differential equation obtained by demanding equality in the
last inequality leads to the upper bound

“(f)”:, i ”p-‘}

(1= Cpllll, e,

Inequality (3.14) was obtained assuming the solution is smooth. As we will
see in the next theorem, smooth data leads to smooth solutions, and the time
interval of existence depends only on the W;(R?)-norm of the initial data.
Hence the continuous-dependence result just established allows one to infer
that (3.13) continues to hold for W;(R?)-solutions. On the other hand,
bound (3.14) implies that

e, DI, oy < (3.14)

;]4';*'

i rwn,i Y

By combining this with the result of the last paragraph, the stated
conclusion on the maximal time of existence is obtained. &

THEOREM 3.5. Let a>>1and let ¢ € X, with s > 3. Then there exists T > 0
such that the initial-value problem (3.1) has a unique solution

ue CO, T; X;) n C'(0, T; H2(R?)).
In particular, the solution u also satisfies
ue C(0; T; H'(R?) and 3;'u, € C(0, T; H'(RY).

The solution depends continuously in these function classes on variations of ¢

in X,.

Proof. The proof is similar to the one given for Theorem 3.4 except that
in showing that 4 maps C(0, T; X,) into itself, one first recalls from
Corollary 3.2 that K,_.Q maps H*(R?) into X,, then uses that fact that
H'®R?*) is a Banach-algebra since s > % Once a solution of the equation is at
hand, the equation implies

fp-:-|

!
U = —Q[u+;)+l

p+1

u Y
—Q[u—i— +J —e(1+ D% uy).

+ sagzuyy}

Since both Q and (1 + D%)~' and are bounded on H*(R?), it follows because
d,'uy € H*'(R”) and s >3 that

u, € CO0, T; H"X(R%). 1



CAUCHY PROBLEM AND SOLITARY-WAVE SOLUTIONS 465
4. GLOBAL EXISTENCE

Having established local well-posedness for the initial-value problem
under study, attention is given to whether the locally defined solution can be
extended to the entire time axis.

THEOREM 4.1. (1) If24a<2\/§ and ¢ € Wa/z(IR ) is such that ¢, = .,
Jor some function \y € Ly(RY), then there exists a unique solution u to h":e
initial-value problem (3.1) which for any T >0, lies in C, T W,/z(lR )

I ifo— I;
provided p < 7r—

Q) If 2\/§<oc<4 and ¢ € W, /Z(Rz), then the conclusion in (1) continues
to hold provided only that p<4.

(3) Ifa=4and p e W, ;«{[R ), then for any T > 0, the rrm‘:m'—m!uc problem
(3.1) possesses a unique solution u in the class C0, T; W, /a{H@ ) if p<4.

(4) The conclusions in (2) and (3) are still valid if p = 4 and the initial
data is small in H*(R?).

Proof. Recall that the condition that ¢, =y, for some Ly(R%)-
function i is needed to show the quantity F(u) is mmelvcd The invariance
of E(u(-. 1) allowed one to infer that |I P e I'xp(ll% ), then the corresponding
solution remains bounded in V, a{IR ) throughout its time of existence il
p<4. As noted earlier in the prool of Theorem 3.4, the local solution u can
be globally u.,onunued if it can be shown that u is bounded in W,p([F& )
(respectively W ,-;{[T& )) on buundul time intervals.

If 2<a<4, and ¢ € W, (R, then ¢, ¢, d; ', € HY(R). lt follows
ltom the dlsummn in Section 2 that if p<4, the ~.0!ulum w(- 1) e HY ‘{[FR }‘md

(-, 1) € Ly(B?) independently of time ¢. Thus, to show u € IfV,p(Ii@ ') for
any T = 0, it suffices to obtain bounds for the terms u, and d; 'u, in Hy ”"(!Hi ).

First, differentiate Eq. (3.1) with respect to x. Multlply the resulting
expression by u, and integrate over R? to obtain the relation

o/ 2 )
3o [ @ = = [t

= / R upuxuxx
R

< el laaxllo el lo
L L 4 4
+1 1 +1
< cllullg ™ 105 a1 ey 15 el
o f+1
< clfuylI§ eexxllg

4.1)
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where use has been made of the fact that u, and d;'u, are both a priori
bounded in L,(R?) independently of ¢ This relation obtains formally for
sufficiently smooth initial data. The extra smoothness needed for the
derivation may be dispensed with upon resorting to the continuous
dependence result.

Next, apply the operator 9;!0, to both sides of (3.1), multiply the
resulting expression by 9;'8,u and integrate over R? to find

14 [ s v - [, wua
< [l 1o 1105 ' 1yl

2

2oy
I6 " el

A
< ClluxHSllaC uyHg ””yl 0
P
< cllully Nexsll3. (4.2)
By adding relations (4.1) and (4.2), the inequality

d
L / L2+ (@ 'w)? + (D) + (D% Y]

4 G+ 7+l i
Scllluplig iy + lgllf ™ Ileaxadll3] (4.3)

emerges. The above inequality is then integrated with respect to ¢ from 0 to
T to yield

2
”u( T)”W H(R?) = C||¢”W1/Z(R2)

P

T P %-H 4+1 4
+C/0 e ligeeclls ™+ lallg ™ Muallg] . (4.4)

Interpolation is applied as follows to control the terms under the integrand
in (4.4): first since o <4,

D’

, |
lteello < ol gz, < el i (W)””“u iy 45)

and secondly, for any & =0,

1

1o - I+
el < el 195 5, .
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Choosing ¢y = (a/2) — 1 which is nonnegative since o> 2, the last inequality
is specialized to
2

2
= 1 1-%
lyllo <cllpll* e N0 wlly = (4.6)
HZ (R

Relations (4.5) and (4.6) are then inserted into (4.4) to obtain

Vis

i
s I, iy < IBIE, ) + /%w%ln|

' n 2(@1

(i)
=

|d D@

51

HE (R 2 (R?)

2hen | Bo-D)
Sl 27 [ A 17 K pE: }dt,

where as previously noted, ||u||” ) and ||8;1uy||0 are known to be bounded

independently of ¢. In consequence,

“u( T)”W/([RZ Hd)HW/(Rz

4 LL 22 & £ 42,0 b2
+c/{wfm, Hwnvﬂg}ﬁ @7
5 ()

and so a Gronwall-type argument may be applied to conclude that

sup. It DIy, g, <Ol e, x0T, 48)

0<tigT

provided
p P D o
= el el __._< R
Zoc+2 8+2 2 2
and
)4 p pa
—+—-+7 =<
2w Tt g s?

It then follows that there is a uniform bound on the solution « in the space
W, /2(R2) on the interval [0, T'), and since T >0 was arbitrary, global well-
posedness then follows. Since 2 <<a <4, a calculation reveals
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and therefore

16— 1)
T4 4 Ay — o

As p<4 in any event, this inequality is only binding when 2<oc<2\/§. For
oc>2ﬁ, the restriction p<4 (or p = 4 and ||¢||”_.,3{n,‘_-} small) is the stronger
restriction. Thus the situation for a<4 is seen to be as advertised in the
statement of the theorem.

For a=4, let ¢ € Wa/z(Rz). Since |[ul[4.2qe2 and |3 "uyllp are a priori
bounded independently of ¢ if p<4, u,, € Lg{[ﬂiz) because a>4. Hence, to
derive a uniform bound on the solution  in the space Wa/z(Rz), it is enough
to estimate a;'u, in the space H_';’-x “(R%. From relation (4.2), it follows

that

1d
2dr /R (@ ) + (D0 )]

= /R2 u’u,0;'u,

<l o107 g

< cllully 103 w IO N |87 a1

<cllu [, 49

On the other hand,

2
eyl = /[Re2 Uyl
—1
= /R ) Uy, 0 Uy

—1
< C”a\- uy”o”“.\'y”O

—1 2/(x—2) (a—8)/(0—=2)

< C”a\- u)’”Olluj’”!,;l.:-'Z)—l(Rz)”uy”() s

and so
2/(a-2) -l 2/(a=2)

Izl < |0 u)’”O“”_V”Ht\:_.Z)—l(Rz)a

or, what is the same,
1 1-(2/a 2
e llo < el ylly ™/ oy 4 (4.10)

HeP wYy’
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Hence, (4.9) may be extended to

2/ ((p/4)4 1) (411)

_1(1/2) '(IP y

—1 2
0 1 gy <l

where ¢ depends on ||¢||V SR Integrating relation (4.11) with respect to ¢
and noting that for ¢« >4 and p<4

§(§+1> = p<l.

Gronwall’s lemma may be applied to obtain

2 l ¢
s 10,6 Dy <10 3l

tef0,

This completes the proof of the theorem. 1

Attention is now turned to specifying conditions under which the local
solution obtained in Theorem 3.5 can be extended to a global one. If ¢ €
XM Wa/a([R{ ) (FL‘-‘[}eLlthly Wa/Z(IR! %)) is such that ¢y, =1, for some
function € Ly(R*), then by Theorem 4.1, the solution u lies in C(0, T;

a /Z(R )) (respectively C(0, T; W, /2(R2)) for any T > 0 when p and o satisfy
the conditions of Theorem 4.1. Thus, to show that the solution is global in
X,, say, it is sufficient to estimate 8 'u,, and u,, in L,(R?). To this end, the

integral equation
l LA 32
= K e _ .
u b K K, IQ(p—i—l) T (3.2)

comes to the fore. It follows from this relation that

B B ! B up+1
165 sy llo <125 b, o + / K. 00;"
O + 1 )’)7

Observing that K, .00, :K,,T(l—i—Df'\:)*l is a bounded operator on
Ly(R?), it follows that

dr.
0

{
—1 — 1
105 upyllo <1185 6 1l + € / 1P+l .
0

Similarly,

{
1
iyl <, llo + / 1), Il d,
0
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and therefore

T
195ty llo + ity llo < 118, b, llo + H1gpy llo + C/O ), llo d
T
<1105 by llo + Ny llo + C/o llpu” uglly + Il uyyllo}) de

T
<110, ' yyllo + by llo + C/ (Il uty 3 + ey llo} de
U]
<110, @y llo + 1, 1l

— 1 1/2) A 2
I / (T TN R TP R TP T o

+ Jullslluyyllo} d

< “a,\—-ld)yy”() + ”¢yy”0
- 1/2 1
/ {005 wyylly Nty 15/ + lltyyllo} d.

In these inequalities, use has been made of the fact that |u|,, is bounded on
[0, 7] by virtue of the condition u € C(0, T; Wa/z(IR )) (respectively C(0, T
a/Z(R ))) for any T >0 and that

1/2 i/2 2= 1/2
oty 5 < el oty lut 105 sl .
it foiiows that if X, n W, /2(R2) 18 normed by
”¢”x2mWa/2(R2) == ”4)”,\’2 i ”¢||W1/2(R2):
then an application of Gronwall’s Lemma yields
||6‘ tyyllo + ||uyy||0< H(b“/\’zﬂW/z(R ) exp(cT)

for 0<¢t< T or equivalently,

Sup, (-, Dllx, <1l x,nm, , 2 EXPCT). (4.12)

A similar estimate obtains for o >4, but the right-hand side of (4.12) features
the norm in the space X; N Wa/z(Rz).

For s> 2, the integral equation (3.2)~(3.2) may be used again to derive
the inequality
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{
llly, < bl + /0 a2, de
!
< llblly, + /0 eyl e,

where a is a monotone increasing function (see [26]). Thus

!
||u||xx<||¢||xx+/0 a(M_)||u(-, 7|y, dr, (4.13)

where for any real number ¢,

My = M/(T) = -0 lluC, Dllx, -

<I<T

From the previous paragraph, it is known that

MyT) = sup_[[uC, D, <Ilblly o, e

SIS

for any T >0. By applying Gronwall’s Lemma to (4.13) and arguing
inductively from the bound on M,(T), it is ascertained that M(T) is
uniformly bounded on [O T] for any s such that ¢ € Xy Wa/z(R)
(respectively X n Wa/z(R) when «>4). Hence, |u(-, )|y, is uniformly
bounded on [0, 7] and in consequence, we have the following global
existence and uniqueness result.

Tue OREM 42. Let a=2 and r/ae X: N Wq/z{[m ) (respectively ¢ € X; N

W, 2(R?) if a>4) be such that 07" / € Ly(R%). Assume p and o satisfy the
conditions of Theorem 4.1. Then for any T >0, the initial-value problem (3.1)
has a unique solution

ue C, T; X,) n CN0, T; H2(R?)).
In particular, for any T > 0, the solution u of (3.1) has the properties
ue CO, T; H'(R?),  8;'u, e CO, T; H ' (R?)).

For any T >0, the solution map ¢>u is locally Lipschitz-continuous from
X;n Wa/2(R2) (respectively, X, N Wa/z(Rz)) into these spaces.

Remark 4.3. (1) For the generalized RLW-KP equations (1.5) and
(1.11) with a power nonlinearity or (1.18) with L = —&2, global unique
solution exists for large data in X, if p<2 regardless of the sign of ¢ (even
though the solution belongs to ¥|(R?) independently of ¢ if p<4), while for
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the generalized KPI equation (¢ = —1), global solutions persist for large
data in ¥;(R%) if p<$ [36].

(2) The regularized version of the fifth-order KP-equation has a unique
global solution in X, N Wz(R2) if p<4. On the other hand, its counterpart,
Eq. (1.12) with « = 4 possesses global solution in V5(R?) if p<2.

5. STABILITY OF SOLITARY-WAVE SOLUTIONS

In this section, attention is restricted to the case « =2 and ¢ = —1. The
case o = 2 arose in the original derivation of the KP-equations as a model
for surface water waves, and it continues to hold a distinguished place in the
pantheon of KP-like models, including those considered here. The
mathematical advantage to the case a = 2, and the principal reason why
we restrict to this case in the present development, is that the dispersion
operator L = —8 is local. Thus the evolution equation takes the special
form

(ul + Uy + ul)ux - uxxt)x = ”yy- (51)

Here, as before, the parameter p>1 is a positive integer.

The focus of the development in this section is the solitary-wave, or lump
solutions of (5.1). Localized, travelling-wave solutions of nonlinear,
dispersive wave equations are known in many circumstances to play a
distinguished role in the long-time evolution of an initial disturbance. In
consequence, and because the issues are interesting in their own right, the
orbital and asymptotic stability of these special solutions has been a central
theme of development for more than three decades (cf. [4, 8,30, 31,41, 42],
etc.).

In the context of (5.1), if ¢>1 is a specified speed of propagation, a
solitary-wave solution u(x, y, 1) = ¢.(x — ct, y) satisfies the time-independent
partial differential equation

1
¢y + (¢ — Do, + 0%, = " =o0. (5.2)

A central role will be played by the functionals I = I. and K defined for
ue Vi(R? by

I(u) = /[R le~ Du? + cu? + (85 'uy)*] dx dy
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and
K@) =;/ u?*2 dx dy
r+1J/r ’

respectively. The functional K is well-defined on ¥;(R?) by virtue of Lemma
2.1. Equation (5.2) is the Euler—Lagrange equation of the functional

L) = 3 L@ - ]ﬁ K@),

Thus it is interesting with regard to the analysis of travelling-wave solutions
to consider the minimization problem

M, =inf{l.: ue VI(IR2) and K(u) = 1}. (5.3)

If e Vi(R?) is a minimizer of problem (5.3), so that M, = I.({,) and
K(u) = 1, then ¢, is necessarily a solution to the equation

—cdW, + (c — Dy + 8,28, = Wi, (5:4)
for some Lagrange-multiplier A. As i #0, it is easy to see that A >0 and so

d)c . ’Il/plpc

is a solution of (5.2), often referred to as a ground state of (5.1). It is clear
that

I($.) = K(p) = M = 2P L y).

The following result is proved in [15, 30, 31, 41].

THEOREM 5.1.  Suppose ¢ > 1 and 0<p<4. Let {,};2, be a minimizing
t'qu{’mc’for problem (5. 3) Then there exists a subsequence (W, =y}~ of
Wiedilys a sequence {y;};~, of real numbers and an element e V |{|]'&2) such
that Y,(- — y) = Y.in V \(IR%). The function v, is a minimizer of (5.3) subject
to the constraint K(r,) = | and is therefore a solution of the Euler—Lagrange
equation (5.4). It then follows that ¢, = /1[/”1//c is a ground state of (5.1),
where ) > 0 is the Euler—Lagrange multiplier associated to the solution Y, of
(5.3).

Remark 5.2. 1In[15], the problem that was actually posed and solved by
de Bouard and Saut was to minimize

J(u) = /2 [u2 + ui + (a;lu),)2] dx dy,
R
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with K(u) = A>0, say. Solutions of the de Bouard-Saut minimization
problem are related to ground-state solutions as defined above by a simple
change of variables; if

¢ (x,9) = (c — I)WW<\/C; 1 x’c;\/;y)

where ¢, is a ground state, then w is a ground state of
1
p+1

—Wxx +W— w[H-l + a.;zwyy =0

and
L(¢,) = (c — )FIP J(y).

For a given c¢> 1, the set of all associated ground states S, may be
characterized as

S = {p. € Vi(RY): K(¢,) = I.(p.) = MP+DI7},

By Theorem 5.1, S, is not empty. Moreover, as both I, and X are invariant
under translations in the spatial variable x, y, S, is also invariant under such
translations.

DerINITION. Let X be a Banach space of real valued functions whose
domain is R?. A set S = X is called X-stable for the RLW-KP equation
(5.1) if for any & > 0, there exists § > 0 such that for uy, € X n W, (R?) with

inf flup — ol <3,
the solution u of Eq. (5.1) with initial value u(:, 0) = uy(-) can be extended to
a global solution in C(0, 00; X n W, (R?)) and

sup inf [|u() — v||y <eo.
0<i<oo VES

Otherwise, S is called X-unstable or just unstable if X is understood.
Define the function d of the wavespeed ¢ to be

d(c) = E(¢,) + cV(9,)

for ¢, € S., where as in (2.10) with ¢ = —1,

m p2

1 1
Ew= | |0;'w)—zut——"  |dxd
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and
1
Vi) == / @ + u%) dx dy.
2 R2 :

It is easy to see that d(c) depends only on ¢ and not on the element ¢, € S..
In fact, from the definition of d and the characterization of S, it follows that

MEDIp,

1
4(©) =5 16— > K@) = 55—
TuEOREM 5.3 (Nonlinear Stability). The travelling wave S. is V|(R?)-
stable if either (1) 0<p<$% and c¢> 1, or (2) $<p<4 and c > (4p)/(4 + p).

Remark 5.4. Actually, it will turn out the nonlinear stability just
asserted is determined by the sign of d”(c). In the present circumstances, it
is easy to determine the sign of d”(c). Just note that

d(c) = (c — NP2 ek (w),

p
2p+2)

where
K(w) = I(w) = / W + w? 4 (0 'w))1dx dy > 0,
r’ ' '
and w is a solution of
—Wyx w0 —Lwﬂ+I =0 (x,y)eR?
X yy p +1 H .

Of course, w is independent of ¢. Simple calculations show that

L 4+p
d'(c) = Y= (c — N30/ -1 K
()=V(p)=(—-1 T 2(p ) (w)>0
for 0<p<4, and that
1
") = — (4 — _ _N\é-m/w P
d'(c) =7 o (4-p)X@&+pec—4p)c—-1) (p 2 K(w).
In consequence, we have
d’(¢)>0 (5.6)

if and only if (1) or (2) holds. Condition (5.6) turns out to imply stability.
In dealing with the stability issues just raised, the following two lemmas
will be helpful.
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LEmMMA 5.5. Let ¢>1 and suppose d"(c) > 0. There exists a 6> 0 such
that if |c| — ¢|<$ then

d(cr) > d(c) + d'(e)(e1 — &) + 3d"(e)(er — ).

Proof. The functionals E and V are C®-mappings of V|(R?) into R.
Similarly, the mapping c— I, is smooth from R into C®(V(R?);R), the
class of smooth maps from ¥(R?) to R. Hence the value M, varies smoothly
with ¢ € (1,00), and consequently  is a smooth function of ¢ > 1. Taylor’s
Theorem applied to d implies the advertised result. K

For & >0 and ¢ > 0, define an ¢y -neighborhood of the set of solitary-
waves of speed ¢ to be

UL‘,I:() . {u € Vl(Rz): 4112£ ”u - ¢L‘||V|(R2)<60}'

Suppose 0 <p <4 so that for ¢> 1, d'(¢) > 0. The Implicit-Function Theorem
implies that for each ¢>1 there corresponds an g >0 and C'-mapping
C: U, — R" such that C(¢,) = ¢ and,

Cu)=d™! (2 ) K(u)) (5.7

for allu € U, ,,. For any compact subset [m, M] of (1, 0c), the value of ¢, may
be chosen so that (5.7) is valid uniformly for ¢ € [m, M] (cf. [13]).

LeEMMA 5.6.  Suppose d"(c) >0 for some c> 1. Then there exists ¢, >0
such that for any ue U,,, and ¢, € S,

Ew) — E(¢.) + C)(V(w) = V() =4d"(0)|Cw) — cf,
where C(u) is defined in (5.7) above.

Proof. Because

K@) = (””) d(Cw) =

2
2("; ) [E@ o) + CO) V(b))

and, for any u and c,

EG) + eV () = 1 Iefw) ~ —— K()
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It follows since I.(¢,) = K(¢,) that
K(u) = K(¢C(u))- (5.8)
This implies that
Icay() = Teay (D)

because ¢, is a minimizer of Ic(, subject to the constraint K(u) =
K(¢cq,)- Lemma 5.5 implies

B+ CV 00> 5 L) ~ 4 Kbaw) = d(C0)
> d(c) + d'(e)(Cw) — ¢) +4d"()(Cw) — o)’
=E(¢.) + C)V($,) + 4d"(c)(Cw) — ),
as advertised. 1
Proof of Theorem 5.4. Arguing by contradiction, assume that S, is

Vl([R2)-unstable. This means there exists 6 > 0 and initial data u(0) € U
and times ¢, >0, k= 1,2,... such that

inf (e, 1) = Blly, ey = 9. (5.9)

Because the functionals E and V are continuous on V(R?) and are
conserved quantities for the RLW-KP flow, there are elements ¢, € S,
k=1,2,..., such that

|EGui(, 1)) — E(i)l = |E(ui(-,0)) — E(¢)l — 0 (5.10)
as k —» oo and
[V (ui(, 1)) — V(g = [V(u(-,0)) — V(g — 0 (5.11)

as k — co. Choose é small enough so that Lemma 5.6 applies, which is to
say

E@ui(-, 1)) — E(@y) + ClurC, i)V (i 1)) — VI(di))
>1d"(e)(Clu(, 1)) — ¢ (5.12)
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for all k =1,2,... . Observe that for any k> 1,

|27 lk)”Vl(RZ) < ”¢k”V,([R2) +20
1 |
< ([ +: i ﬁ)lc(qbc) +26

1
=(I+l+ )MS"*Z)/”+25<+00.
p

c—1

Thus the sequence {u(:, t)} 4., is uniformly bounded in ¥, (R?) It follows
immediately that the collection {K(u(-, )} ;~, is bounded and hence so are
the values {C(u(-, 2))}5o, since d ! is continuous. Combining this with
(5.10)—(5.12) yields that

Clu(- tx) — c. (5.13)

Relation (5.13) implies in turn that

Jim Kt 1) = Jim 2("’; 2 4(Cul, 1))
A tD o,

From the foregoing facts, it follows reading that

L, ) =2 (E(uk) T cV(uk)) + ﬁK(uk(-, 1) — 2d(c) + 3 d(c)
2Ap +2)

-7

= d(c) as kK — oo,
o (

which is to say

L(u(, 1)) > MEDP = 1(8,).
Define wy by

wie = K(ui(, 1) 0P, ).
Then K(wi) = 1 and

L(wi) = (K-, ) H DL (g (-, 1))

Mg!"i‘z)/P

— +2)/p pr—2/p) —
TN QD g2 =M M; = M.,.
'fl ,
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Thus, the sequence {wy} -, minimizes E subject to the constraint ¥ = 1. In
consequence of Theorem 5.1, there is a subsequence, still denoted {wy}77 |,
and a corresponding sequence {l//}f‘:I < Vi(R) such that

dim e = il = 0,
where K(,) = 1 for all k. This in turn implies that
Jim {fuiC, ) = Billy, ey = 0

where ¢, = Mcl/pl//k € S,, which contradicts (5.9). 1

6. EXTENSION TO SEVERAL SPACE DIMENSIONS

In this section, we offer commentary on an extension of the foregoing
theory to several space dimensions. The extension we have in mind is the
Cauchy problem

{ (u + uy + uPu, + Di”t)x +eA,_u=0, 6.1)

u(xX, Y1, 5 Yn=1,0) = 00, y1, ..., Yue ),

where A, | =& +---+ 82 _ and n>2. Two conserved quantities in this
case are

Vu) = / [ + (Df’\‘./zu)z] dxdy;...dy,_
IR”

and

E(u) —/ 20wy 205 ) +“—2 +L
e R A Y1 oNx V-1 2 w+])(p+2) :
Define V,2(R") to be the space of functions f such that f € HY *(R") and
a; 'V'L.f‘ € Ly(R"). The associated semi-norm is
185"Vl gy = /R " 10!V ul* dx dy; ... dy,_
= (/R (3 'y )+ + (a;‘uy,,_l)"’]) dxdy ...dy, ;.

The basic inequality

+2 2—(pm/a)—(p/2)(n—3) e —1 (p{24(n-1)
It ey < el ™=l 1105 (6.2)
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> valid for 22, =2 and (Jgpgm—l;‘f“m—h; (see [37-39]). As before, a
necessary condition for a function /* to be in the class V,,,(R") is that
fy = gix for some functions g; € Ly(R") for i=1,...,n— 1. It therefore
follows that if initial data ¢ € V,,,(R") is imposed, then the conserved
quantities V(u) and E(u) and inequality (6.2) imply that the associated
solution u defined at least for 0<¢t<T will lie in the space
Lo(0, T; V, p(RM) if p<[4/(n — 1)]. If p = [4/(n — 1)], the same conclusion
holds if |||l =2y is small.

This remark should be compared with a similar one for the initial-value
problem

(6.3)
“(X,yls e '5y’l—|) . d)(X,yl, ) -5yll—1)5

{ (4, + uPuy — D3uy), — Ay qu =0,
for the Kadomtsev—Petviashvili equation in several space dimensions. It was
recently shown that if ¢ e Vz/g{ll"&”), n>1, then all solutions u belong to the
class Loo(R": V,2(R™) provided p<[4a/(2n + (n — Da)]. (In the case n = 1,
this result reduces to the result of Saut [32] for the existence of global
solutions for generalizations of the Korteweg—de Vries equation of the form

u +u’u, —Dlu, =0

with p<2a.) Since 4a/[2n + (n — Da]<4/(n — 1) for n=2, there seems to be
an improvement in the range of values of p for the existence of global
solutions for the RLW-KP-type equations over the KDV-KP type. Indeed,
this difference is real and not just an artifact of the proof. It is known (see
{33, 38] that smooth initiai data ¢ leads to a local solution u of (6.3), but if
p=4/(n—1) it can happen that the H'(R")-norm |[u(-, g ey = +00 as
I — <+ 00.
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