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Abstract. We study the component Hn of the Hilbert scheme whose general point parameterizes a pair
of codimension two linear subspaces in Pn for n ≥ 3. We show that Hn is smooth and isomorphic to the
blow-up of the symmetric square of G(n−2, n) along the diagonal. Further Hn intersects only one other
component in the full Hilbert scheme, transversely. We determine the stable base locus decomposition
of its effective cone and give modular interpretations of the corresponding models, hence conclude that
Hn is a Mori dream space.

1. Introduction

The Hilbert scheme Hilbp(m)(Pn) parameterizes closed subschemes in Pn with fixed Hilbert polynomial
p(m). Grothendieck [G] proved that Hilbp(m)(Pn) exists as a projective scheme and Hartshorne [Ha]
showed that it is connected. In general, Hilbp(m)(Pn) can be very complicated, possibly having many
components of various dimensions [C1, C2] or generically non-reduced components [MDP]. Investigating
the geometry of particular components has been one of the main themes in the study of the Hilbert
schemes. For example, Piene and Schlessinger showed that Hilb3m+1(P3) has two smooth components
which meet transversely and gave an explicit description of the component whose general member is a
twisted cubic curve [PS].

In this paper, we study the component of the Hilbert scheme whose general point parameterizes a pair
of codimension two linear subspaces in Pn. Let X be a pair of general codimension two linear subspaces
Λn−2 and Λ′

n−2 in P
n that intersect along a codimension four linear subspace Λn−4. The exact sequence

0 → OX → OΛn−2
⊕OΛ′

n−2
→ OΛn−4

→ 0

implies that X has the Hilbert polynomial

Pn(m) = 2

(
n− 2 +m

m

)
−

(
n− 4 +m

m

)
.

Since a degree two irreducible, reduced, codimension two subscheme of Pn is contained in a hyperplane
but X is not, there exists an irreducible component Hn of the Hilbert scheme HilbPn(Pn) whose general
point parameterizes X .

For n = 2, it is well-known that H2 is the full Hilbert scheme Hilb2(P2) parameterizing length-2
zero dimensional subschemes of P2 and is isomorphic to the blow-up of Sym2P2 along the diagonal. For
n = 3, the Hilbert polynomial of a pair of skew lines in P3 is 2m+ 2. The structure of Hilb2m+2(P3) was
sketched in [H, 1.b] and elaborated in [L, 3.5, 4.2]. It consists of two irreducible components H3 and H ′

3,
of respective dimensions 8 and 11. The general point of H3 parameterizes a pair of skew lines while the
general point of H ′

3 parameterizes a plane conic union an isolated point. In Theorem 1.1 below, we prove
that both H3 and H ′

3 are smooth, as suggested in [H, 1.b] and [L, Conjecture 3.5.10]. Moreover, in spite
of the rapid growth in the number of irreducible components of HilbPn(m)(Pn) for n > 3 (Remark 2.7),
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we provide a good understanding of the component Hn for all n, showing it to be smooth, isomorphic to
the blow-up of Sym2G(n− 2, n) along the diagonal, and completely working out its Mori theory.

Theorem 1.1. Let n ≥ 3 be an integer.

(1) A subscheme parameterized by Hn is projectively equivalent to one of the following four types:

(I) A pair of codimension two linear subspaces intersecting along a codimension four linear subspace.

(II) A pure double structure supported on a codimension two linear subspace.

(III) A pair of codimension two linear subspaces intersecting along a codimension three linear subspace
with an embedded component determined by the square of the ideal of the intersection.

(IV) A double structure contained in a hyperplane and supported on a codimension two linear subspace
with an embedded component determined by the square of the ideal of a codimension three linear subspace.

The loci (I), (II), (III) and (IV) have dimensions 4n− 4, 4n− 5, 3n− 2 and 3n− 3, respectively. The
closure of (I) is Hn. The closures of (II) and (III) intersect along (IV).

(2) In the full Hilbert scheme HilbPn(Pn), Hn intersects only one other component H ′
n of dimension

7n − 10 whose general point parameterizes a quadric (n − 2)-fold Q union a codimension three linear
subspace Λn−3, where Q ∩ Λn−3 is a codimension four linear subspace. Moreover, Hn and H ′

n intersect
transversely along the loci (III) ∪ (IV).

(3) The component Hn is smooth and isomorphic to the blow-up of Sym2G(n−2, n) along the diagonal.

For n = 3, the other component H ′
3 is smooth and isomorphic to the blow-up of P3 ×Hilb2m+1(P3) along

the incidence correspondence {p ∈ C}, where p denotes a point in P3 and C denotes a conic parameterized
by Hilb2m+1(P3).

To study the Mori theory of Hn, we introduce the following divisor classes on Hn.

Definition 1.2. Let n ≥ 3 be an integer.

Let M be the divisor class of the locus of subschemes that intersect a fixed line.

Let N be the divisor class of the locus of generically non-reduced subschemes.

Consider the locus of subschemes whose intersection with a fixed plane consists of two points, which
are collinear with a fixed point on that plane. Let F be the divisor class parameterizing the closure of
this locus in Hn.

Let E be the divisor class of the locus of subschemes such that the intersection of the two subspaces
in the pair intersects a fixed P3. For n = 3, E parameterizes the locus of two incident lines with a spatial
embedded point at their intersection.

Since Hn is smooth, the Weil divisors defined above are Cartier. For a divisor D, let B(D) be its
stable base locus. Denote by [D1, D2], (D1, D2) and [D1, D2) the convex cones consisting of divisors of
type aD1 + bD2, where a, b ≥ 0, a, b > 0 and a > 0, b ≥ 0, respectively. Our next result describes the
stable base locus decomposition for the effective cone of Hn.

Theorem 1.3. Let n ≥ 3 be an integer.

(1) The Picard group of Hn is generated by M and F . The divisor class N is linearly equivalent to
2M−2F . The divisor class E is linearly equivalent to 2F−M . Moreover, two divisors on Hn are linearly
equivalent iff they are numerically equivalent.

(2) The ample cone of Hn is (F,M). The effective cone of H is [N,E]. For a divisor D in the chamber
[F,M ], D is base-point-free. For D in the chamber (M,N ], B(D) consists of the loci (II) and (IV). For
D in the chamber [E,F ), B(D) consists of the loci (III) and (IV).

Definition 1.4. For an effective divisor D on a variety X , let P (D) denote its Proj model

Proj
( ⊕

m≥0

H0(X,mD)
)
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assuming the section ring of D is finitely generated. Let ψD: X 99K P (D) (morphism or rational map)
denote the map induced by D.

In order to describe all possible models of Hn, we define two spaces Ψn and Θn as follows.

Definition 1.5. Let Ψn denote the G(3, 5) bundle over G(3, n) whose fiber over a base point [Λ3]
parameterizes codimension two linear sections of the Plücker embedding of the Grassmannian of lines in
Λ3. In particular, Ψ3 is isomorphic to G(3, 5).

Consider the Plücker embedding G(n − 2, n) ∼= G(1, n) →֒ PN . There is a subset of G(N − 2, N)
parameterizing codimension two linear sections of G(n− 2, n) ∼= G(1, n) that are the intersections of two
Schubert varieties Σ1∩Σ′

1. Let Θn denote (the normalization of) the closure of this subset in G(N−2, N).

The reader can refer to Remark 3.10 for another geometric interpretation of Ψn and Θn.

Our third result describes the model P (D) for any effective divisor D on Hn. Since the locus (III) is
divisorial iff n = 3, the results for n = 3 and n ≥ 4 are slightly different.

Theorem 1.6. Let n ≥ 3 be an integer. Let D denote an effective divisor on Hn.

(1) For D in the chamber (F,M), the model P (D) is isomorphic to Hn.

(2) For D in the chamber [M,N), the morphism ψD contracts the loci (II) and (IV). The resulting
model P (D) is isomorphic to Sym2G(n− 2, n).

(3) The morphism ψF contracts the loci (III) and (IV). The model P (F ) is isomorphic to Θn.

(4) For n = 3 and D in the chamber (E,F ), the morphism ψD contracts the divisor E and P (D) is
isomorphic to Ψ3

∼= G(3, 5).

(5) For n ≥ 4 and D in the chamber (E,F ), the birational map ψD is a flip over Θn and the flipping
space P (D) is isomorphic to Ψn. Further the birational transform of E on Ψn induces a morphism that
contracts the G(3, 5) bundle structure to the base G(3, n).

A variety X is called a Mori dream space if Mori’s program can be carried out for every effective
divisor on X [HK]. By Theorems 1.3 and 1.6, this holds for Hn.

Corollary 1.7. The Hilbert component Hn is a Mori dream space.

This corollary also follows from [BCHM, Corollary 1.3.1] in view of Propositions 3.3 and 3.11.

Question 1.8. More generally, one may consider the component H(a, b, n) of the Hilbert scheme whose
general member is a union of two linear subspaces in Pn of codimensions a and b, intersecting in the
expected codimension. For which triples (a, b, n) is this component smooth or a Mori dream space?
In the case a = b, it would be interesting to determine the birational relation between H(a, a, n) and
Sym2G(n− a, n).

This paper is organized as follows. In section 2, we describe the stratification of Hn and prove
Theorem 1.1. In section 3, we study the divisor theory of Hn and prove Theorems 1.3, 1.6. Throughout
the paper, we work over an algebraically closed field k of characteristic zero. We often denote an m-
dimensional linear subspace of Pn by Λm. The ideal of a subscheme of Pn is always saturated. All divisors
considered here are Cartier.

Acknowledgements. We would like to thank Lawrence Ein, Tommaso de Fernex, Joe Harris, Anatoly
Libgober, Mihnea Popa and Christian Schnell for useful conversations related to this paper. Part of this
work was done when the first two authors were visiting MSRI for the Spring 2009 Algebraic Geometry
Program. They would like to thank MSRI for providing support and a wonderful, stimulating work
environment.
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2. Description of Hn

In this section, let n ≥ 3 denote an integer. Let S = k[x0, . . . , xn] denote the coordinate ring of Pn.
We begin by determining the double structures of pure dimension supported on a codimension two linear
subspace of Pn. The following lemma generalizes the classification of double lines given in P3 [M, N].

Lemma 2.1. Let X be a pure codimension two subscheme of Pn which is a double structure supported
on a codimension two linear subspace Λn−2: x0 = x1 = 0. Then the ideal of X can be written as
(x2

0, x0x1, x
2
1, x0G − x1F ), where F and G are degree k homogeneous polynomials in x2, . . . , xn without

common factors. Moreover, the Hilbert polynomial of X equals Pn iff F and G are linear.

Proof. The ideal IX of X satisfies I2
Λn−2

⊂ IX ⊂ IΛn−2
. Therefore, IX contains the ideal (x2

0, x0x1, x
2
1)

and a polynomial of type x0G0−x1F0, where F0 and G0 are homogenous polynomials of the same degree
in x2, . . . , xn. Suppose G0 = GH and F0 = FH , where F,G are relatively prime of degree k. Then
the ideal ((x0, x1)

2, x0G − x1F ) is the total ideal for a double structure Y on Λn−2 without embedded
components. Away from the proper closed subset H = 0, we have the containment X ⊂ Y , and therefore
X = Y since X has no embedded components. Moreover, IX = IY = ((x0, x1)

2, x0G− x1F ).

Let us compute the Hilbert polynomial of IX . For m ≫ 0, an element H ∈ (S/IX)m can be written
as A+ x0B0 − x1B1, where A and Bi are homogeneous polynomials of degree m and m− 1, respectively,
in x2, . . . , xn. Moreover, x0B0 − x1B1 is divisible by x0G − x1F iff B0 = CG and B1 = CF for a
degree m− 1− k homogeneous polynomial C in x2, . . . , xn. Hence, we know dim (S/IX)m =

(
n−2+m

m

)
+

2
(
n−2+m−1

m−1

)
−

(
n−2+m−1−k

m−1−k

)
, which equals Pn iff k = 1. �

Now we classify all subschemes parameterized by Hn up to projective equivalence.

Proof of Theorem 1.1 (1). We want to show any subscheme X parameterized by Hn belongs to one of
the four loci. Let IX denote the ideal of X and Xred denote the purely (n− 2)-dimensional reduced part
of X . Note that Xred has degree two or one. In the former case, Xred consists of a pair of codimension
two linear subspaces. If their intersection has dimension n − 4, then the Hilbert polynomial of Xred

equals Pn, hence X = Xred. Without loss of generality, assume IX is (x0x2, x0x3, x1x2, x1x3), namely,
X consists of two linear subspaces x0 = x1 = 0 and x2 = x3 = 0. This corresponds to the locus (I).

If the two components of Xred intersect along a codimension three linear subspace, without loss of
generality, assume IXred

is (x0, x1x2), namely, it consists of two linear subspaces x0 = x1 = 0 and
x0 = x2 = 0. Note that IX is contained in IXred

. Since a one dimensional flat family in (I) specializes to
X , there is a spatial embedded component ofX whose support is contained in the linear intersection of the
two components of Xred. Then IX is contained in (x0, x1x2)∩(x0, x1, x2)

2 = (x2
0, x0x1, x0x2, x1x2), whose

Hilbert polynomial equals Pn. Hence, IX equals (x2
0, x0x1, x0x2, x1x2) andX has an embedded component

supported on the codimension three linear intersection of the two components. This corresponds to the
locus (III). The embedded structure is uniquely determined by the square of the ideal of the codimension
three linear intersection. One can take a family with general member (x0, x1) ∩ (x0 + tx3, x2) whose flat
limit is X . Hence, the locus of (III) is in the closure of the locus (I).

If Xred has degree one, it is a codimension two linear subspace. Hence, X is a generically double
structure supported on Xred. Suppose Xred is defined by x0 = x1 = 0. Let X ′ be the non-reduced
subscheme ofX of pure dimension n−2 supported onXred. By Lemma 2.1, IX′ equals (x2

0, x0x1, x
2
1, x0G−

x1F ), where F and G are degree k homogeneous polynomials in x2, . . . , xn without common factors. Since
h0(IX(2)) has dimension ≥ 4 by semi-continuity and IX is contained in IX′ , we know F,G must be linear
and IX equals (x2

0, x0x1, x
2
1, x0G−x1F ), whose Hilbert polynomial is Pn by Lemma 2.1. This corresponds

to the locus (II). One can take a flat family with general member (x0, x1)∩(x0+tF, x1+tG) that specializes
to X , where F and G are defined as above. Hence, the locus of (II) is in the closure of the locus (I).

If F and G are linearly dependent, one can assume F = G = x2. Since IX contains (x2
0, x0x1, x

2
1, x0x2−

x1x2), whose Hilbert polynomial equals Pn, IX must equal (x2
0, x0x1, x

2
1, x0x2 − x1x2) = (x0 − x1, x

2
0) ∩
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(x0, x1, x2)
2. From this expression, we see that X consists of a double structure contained in the hy-

perplane x0 − x1 = 0 along with an embedded component supported on the codimension three linear
subspace x0 = x1 = x2 = 0. This corresponds to the locus (IV).

The dimension counts for the above loci are standard. The locus (I) is open and dense in Hn. We
have seen that subschemes of type (II) can degenerate to (IV). For an ideal (x2

0, x0x1, x0x2, x1x2) of type
(III), one can replace x2 by x1 + tx2. The flat limit lies in (IV). So subschemes of type (III) can also
degenerate to (IV). �

Let ∆ denote the diagonal of Sym2G(n− 2, n). One can regard Sym2G(n− 2, n) as the Chow variety
parameterizing a pair of codimension two and degree one cycles in P

n. Let Bl∆Sym2
G(n− 2, n) denote

the blow-up of Sym2G(n− 2, n) along the diagonal.

Lemma 2.2. Bl∆Sym2G(n− 2, n) is a smooth variety.

Proof. Let X be a nonsingular variety. Denote by Y the blow-up of X ×X along the diagonal. There
is a natural involution acting on Y and the quotient space is Bl∆Sym2X . Since the smooth exceptional
divisor is the fixed locus, we conclude that Bl∆Sym2X is smooth. In particular, Bl∆Sym2

G(n− 2, n) is
smooth. �

Proposition 2.3. There is a bijective morphism δ: Bl∆Sym2
G(n− 2, n) → Hn.

Proof. A generically reduced subscheme parameterized by Hn is uniquely determined by a pair of
codimension two linear subspaces, cf. Theorem 1.1 (1). Hence, there is a natural bijection between
Sym2G(n−2, n)\∆ and Hn\(II)∪(IV). Fix a codimension two linear subspace Λn−2 given by x0 = x1 = 0
and consider another linear subspace x0 + tF = x1 + tG = 0 approaching Λn−2 as t → 0, where F
and G are linear functions in x2, . . . , xn. Note that (F,G) can be regarded as an element φ ∈ Hom
(An−1,An+1/An−1) of the tangent space of G(n− 2, n) at [Λ]. We have seen in the proof of Theorem 1.1
(1) that if F and G are linearly independent, the limit scheme is uniquely determined in (II). If F and G
are dependent, then the limit scheme is determined in (IV). Using the universal property of the Hilbert
scheme, we thus obtain the desired bijective morphism. �

Next, we will prove Theorem 1.1 (2) regarding the smoothness of Hn and how it intersects other
components in the full Hilbert scheme. Note that if a point parameterizing a subscheme X is in the
singular locus of Hn, then all the points parameterizing subschemes projectively equivalent to X lie in
the singular locus of Hn. Since the locus (IV) is contained in the closure of the locus (I), (II) or (III)
and each locus is homogeneous, if Hn is smooth along (IV), then it must be smooth everywhere. So it
suffices to analyze the deformation space of a subscheme of type (IV). We invoke the following result,
which transforms the study of the deformation of a subscheme to that of its ideal.

Theorem 2.4 (Comparison Theorem, [PS]). If the ideal I defining a subscheme X ⊂ Pn is generated by
homogeneous polynomials f1, . . . , fr of degrees d1, . . . , dr, for which

(k[x0, . . . , xn]/I)d
∼= H0(OX(d))

for d = d1, . . . , dr, then there is an isomorphism between the universal deformation space of I and that
of X.

From now on, fix a subscheme X of type (IV) with ideal I = (x2
0, x0x1, x

2
1, x0x2).

Lemma 2.5. The hypothesis of the Comparison Theorem holds for X.

Proof. Let J = (x0, x
2
1) be the double structure contained in x0 = 0 and supported on x0 = x1 = 0. Let

K = J/I, which is isomorphic to S/(x0, x1, x2) twisted by −1 as an S-module. Using the exact sequence

0 → H0
m

(M) →M →
⊕

d

H0(M̃(d)) → H1
m

(M) → 0
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where M is a graded S-module and M̃ is the corresponding quasicoherent sheaf on Pn, we get the positive
graded pieces of the local cohomology Hi

m
(K) and Hi

m
(S/J) are vanishing for i = 0, 1. Then the local

cohomology sequence associated to the exact sequence

0 → K → S/I → S/J → 0

shows that (S/I)d → H0(OX(d)) is an isomorphism for all d > 0. Therefore, the completion of HilbPn(Pn)
at [X ] can be identified as the universal deformation space of the ideal I of X . �

We follow the method in [PS] to write down a universal deformation space of the ideal I.

Proposition 2.6. The tangent space of HilbPn(Pn) at [X ] has dimension 8n− 12. The ideal I of X has
a universal deformation space of type A4n−4 ∪ A7n−10, where the two components intersect transversely
along A3n−2.

Proof. By Lemma 2.5, the tangent space of HilbPn(Pn) at [X ] can be identified as HomS(I/I2, S/I)0.
Consider the following presentation of S/I over S = k[x0, . . . , xn]:

0 −−−−→ S(−4)
ν

−−−−→ S(−3)4
µ

−−−−→ S(−2)4
λ

−−−−→ S −−−−→ S/I −−−−→ 0,

where the maps are given by

λ = (x0x1, x0x2, x
2
0, x

2
1), µ =




x1 x2 x0 0
0 −x1 0 x0

0 0 −x1 −x2

−x0 0 0 0


 , ν =




0
x0

−x2

x1




An element φ ∈ HomS(I/I2, S/I)0 satisfies

x1φ(x0x1) = x0φ(x2
1), x2φ(x0x1) = x1φ(x0x2),

x0φ(x0x1) = x1φ(x2
0), x0φ(x0x2) = x2φ(x2

0)

modulo I. Then one can check that HomS(I/I2, S/I)0 is generated by the following elements:

φ(x0x1) = x0

∑

i≥3

aixi + x1

∑

i≥2

bixi,

φ(x0x2) = x0

∑

i≥3

cixi + x1

∑

i≥2

dixi + x2

∑

i≥2

bixi,

φ(x2
0) = x0

∑

i≥3

eixi,

φ(x2
1) = x0

∑

i≥3

fixi + x1

∑

i≥2

gixi + x2

∑

i≥2

hixi,

where ai, bi, . . . , hi are independent parameters. Hence, HomS(I/I2, S/I)0 has dimension 8n− 12.

Let us write down a group of generators for HomS(I/I2, S/I)0. For 3 ≤ i ≤ n, let

∂

∂t0i
= xi

∂

∂x0
=




x1xi

x2xi

2x0xi

0


 ,

∂

∂t1i
= xi

∂

∂x1
=




x0xi

0
0

2x1xi


 ,

∂

∂t2i
= xi

∂

∂x2
=




0
x0xi

0
0




Also let

∂

∂t01
= x1

∂

∂x0
=




0
x1x2

0
0


 ,

∂

∂t02
= x2

∂

∂x0
=




x1x2

x2
2

0
0


 ,

∂

∂t12
= x2

∂

∂x1
=




0
0
0

2x1x2



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Note that X uniquely determines a (Λn−3 ⊂ Λn−2 ⊂ Λn−1) flag and vice versa, where Λk is a k-
dimensional linear subspace of P

n. The above 3n − 3 elements ∂
∂tij

, 0 ≤ i ≤ 2, i < j ≤ n provide the

trivial deformations for the ideal I of X , which correspond to moving the flag determined by X .

Moreover, for i ≥ 3, let

∂

∂u1i
=




0
x1xi

0
0


 ,

∂

∂u2i
=




0
0

x0xi

0


 ,

∂

∂u3i
=




0
0
0

x1xi


 ,

∂

∂u4i
=




0
0
0

x2xi


 ,

∂

∂u5i
=




0
0
0

x0xi


 ,

∂

∂u6
=




0
0
0
x2

2




These ∂
∂uij

, 1 ≤ i ≤ 5, 3 ≤ j ≤ n and ∂
∂u6

provide a versal deformation space for I. Along with those ∂
∂tij

,

they form a basis for HomS(I/I2, S/I)0. For 1 ≤ i ≤ 5, define

vi =
∑

j≥3

uijxj .

Consider the following homogeneous perturbations of λ, µ and ν:

λ′ = (x0x1 − u6x2v1, x0x2 + x1v1, x
2
0 + x0v2 + u6v

2
1 ,

x2
1 + x1v3 + x2v4 + x0v5 + u6x

2
2 + v2v5),

µ′ =




x1 + v3 x2 x0 + v2 −v1
v4 + u6x2 −x1 u6v1 x0 + v2

v5 0 −x1 −x2

−x0 v1 0 0


 ,

ν′ =




v1
x0 + v2
−x2

x1




Differentiating the above in terms of uij , we get the deformation corresponding to ∂
∂uij

. Note that

λ′ ·µ′ ≡ µ′ ·ν′ ≡ 0 mod (v1v2, v1v3, v1v4, v1v5) i.e. mod (u1iu2j , . . . , u1iu5j) for 3 ≤ i, j ≤ n and no higher
order terms arise in these relations. Hence, the versal deformation space of I is isomorphic to

Spec
(
k[u1i, . . . , u5i, u6]/(u1iu2j, . . . , u1iu5j)

)
.

To add the trivial deformations corresponding to ∂
∂tij

, we can take

x0 = x0 +
∑

i≥1

t0ixi, x1 = x1 +
∑

i≥2

t1ixi, x2 = x2 +
∑

i≥3

t2ixi.

Hence, the universal deformation of I is given by

Spec
(
k[u1i, . . . , u5i, u6, tij ]/(u1iu2j , . . . , u1iu5j)

)
.

It is isomorphic to A4n−4∪A7n−10, where A4n−4 has coordinates u1i, 3 ≤ i ≤ n, u6, tij , 0 ≤ i ≤ 2, i < j ≤ n
and A7n−10 has coordinates uij , 2 ≤ i ≤ 5, 3 ≤ j ≤ n, u6, tij , 0 ≤ i ≤ 2, i < j ≤ n. They intersect
transversely along A3n−2, whose coordinates are given by u6, tij , 0 ≤ i ≤ 2, i < j ≤ n. �

Now we are ready to prove Theorem 1.1 (2).
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Proof of Theorem 1.1 (2). By Proposition 2.6, the universal deformation space of the ideal I of X has
two components. The first A4n−4 corresponds to the deformation of X along the (4n − 4)-dimensional
Hilbert component Hn. The second A7n−10 implies there exists another Hilbert component of dimension
at most 7n− 10, which also contains the locus (IV). Below we will describe that component.

Consider the incidence correspondence Σ = {(Q,Λn−3,Λn−4)}, where Q is a quadric (n−2)-fold in Pn,
Λk denotes a k-dimensional linear subspace and Λn−4 = Q∩Λn−3. Using the projection Σ → G(n−4, n),
Σ is irreducible and has dimension 7n−10. For an element parameterized by Σ, let X ′ be the subscheme
Q ∪ Λn−3 in P

n. By the exact sequence

0 → OX′ → OQ ⊕OΛn−3
→ OΛn−4

→ 0,

the Hilbert polynomial ofX ′ equals Pn. Hence, there is a componentH ′
n of HilbPn(Pn) that parameterizes

X ′. We will show that X ′ can specialize to the subschemes of type (III). Without loss of generality,
assume the hyperplane spanned by Q is x0 = 0 and Λn−3 is given by x1 = x2 = x3 = 0. Then Λn−4

is specified by x0 = x1 = x2 = x3 = 0. Let Q degenerate to a pair of codimension two linear subspaces
in x0 = 0, say, it has ideal (x0, x1x2). Then let Λn−3 approach the intersection x0 = x1 = x2 = 0 of
the two subspaces by writing the ideal of Λ3 as (x1, x2, tx3 + (1 − t)x0). For general t, the union of Q
and Λn−3 has ideal (x0, x1x2) · (x1, x2, tx3 + (1 − t)x0). As t → 0, we see the limit ideal must contain
(x2

0, x0x1, x0x2, x1x2) = (x0, x1x2)∩ (x0, x1, x2)
2, which defines a subscheme with Hilbert polynomial Pn

parameterized by the locus (III). Hence, the limit ideal equals (x2
0, x0x1, x0x2, x1x2) and H ′

n contains the
locus (III). Geometrically, the approaching direction of Λn−3 provides the embedded structure supported
on the codimension three linear subspace x0 = x1 = x2 = 0. Since subschemes of type (III) can specialize
to type (IV), we know H ′

n also contains the locus (IV).

Since a subscheme of type (II) does not possess a (n−3)-dimensional component, H ′
n does not intersect

the locus (II). Hence, Hn ∩H ′
n consists of (III) and (IV). Because the two components in the universal

deformation space of a subscheme of type (IV) intersect transversely and (IV) is the specialization of
(III), we know Hn and H ′

n intersect transversely along (III) ∪ (IV). �

Remark 2.7. The number of irreducible components of HilbPn(Pn) may increase rapidly with n.

For n = 3, there are only two components H3 and H ′
3.

For n = 4, there is one more component H ′′
4 , whose general points parameterize a quadric surface

Q and a line L0 intersecting at two points along with an isolated point q. Since H4 does not intersect
H ′′

4 , by Hartshorne’s connectedness theorem [Ha], H ′
4 necessarily intersects H ′′

4 . We can see how they
intersect as follows. On the one hand, for a quadric surface Q and a line L intersecting at a point in P4

parameterized by H ′
4, let L degenerate to L0, which intersects Q at two points. Then an embedded point

will arise at an intersection point p to make the Hilbert polynomial correct. On the other hand, let the
isolated point q approach p, whose limit will also yield the embedded structure at p. This shows how H ′

4

and H ′′
4 intersect.

For n = 5, in addition to H5 and H ′
5, there are at least four other components of the full Hilbert

scheme. The general points of the first one parameterize a quadric three-fold and a plane in a four
dimensional linear subspace Λ4 ⊂ P5, along with a line intersecting the quadric at a point. The second
parameterizes a quadric three-fold and a plane in Λ4, along with a line intersecting the plane at a point.
The third parameterizes a quadric three-fold, a plane and a line in P4, along with an isolated point. The
last one parameterizes a quadric three-fold, a plane and a line in P4 such that the line intersects the
plane, along with two isolated points.

For n = 6, in the same way one can list more than twenty components.

Now we prove Theorem 1.1 (3).

Proof of Theorem 1.1 (3). By Proposition 2.6, the universal deformation space of a subscheme of type
(IV) is isomorphic to A4n−4 ∪ A7n−10, where the two components correspond to deformations along Hn
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and H ′
n, respectively. This shows the (4n− 4)-dimensional component Hn and the (7n− 10)-dimensional

component H ′
n are both smooth along the locus (IV). Since the closures of (I), (II) or (III) all contain

(IV), Hn is smooth everywhere. By Zariski’s Main Theorem, the bijective morphism δ in Proposition 2.3
is an isomorphism.

For n = 3, by [H, 1.b] and [L, 3.5, 4.2], Hilb2m+2(P3) consists of two components H3 and H ′
3. The

second component H ′
3 parameterizes a conic union an isolated point. In [L, Theorem 3.5.1], a similar

bijective morphism as Proposition 2.3 was established, σ: BlΣ(P3×Hilb2m+1(P3)) → H ′
3, where Σ denotes

the incidence correspondence {p ∈ C} for a point p and a conic C. In order to show σ is an isomorphism,
it suffices to prove the smoothness of H ′

3. A subscheme C parameterized by H ′
3 can specialize to a planar

double line with an embedded point. If the embedded point is spatial, this is of type (IV). We have seen
in the previous paragraph that H ′

3 is smooth along (IV).

Let k[x, y, z, w] denote the coordinate ring of P3. If the embedded point is also in that plane, the ideal
of C is equivalent to I = (z, xy2, y3). Let N and N ′ denote the normal sheaves of C in P

3 and in the
plane z = 0, respectively. Let S′ = k[x, y, w] and I ′ = (xy2, y3) be the ideal of C in S′. We want to show
h0(N ) = 11. By the exact sequence

0 → N ′ → N → OC(1) → 0

and h0(OC(1)) = 4, it suffices to show h0(N ′) = 7. One checks that the condition of Theorem 2.4 holds
for C regarded as a subscheme of the plane z = 0. Then we only need to verify dim HomS′(I ′, S′/I ′)0 = 7.
An element φ in HomS′(I ′, S′/I ′)0 satisfies yφ(xy2) = xφ(y3) modulo I ′. One checks that

φ(xy2) = a1x
2y + a2x

3 + a3w
2x+ a4wx

2 + a5wxy + a6wy
2,

φ(y3) = a2x
2y + a3w

2y + a4wxy + a7wy
2

with 7 parameters a1, . . . , a7 generate HomS′(I ′, S′/I ′)0. Hence, dim HomS′(I ′, S′/I ′)0 = 7 and h0(N ) =
11, which implies that the tangent space of H ′

3 at [C] has dimension 11. Combining with the previous
paragraph, we know that H ′

3 is smooth everywhere, so it is isomorphic to BlΣ(P3 × Hilb2m+1(P3)). �

Our complete analysis of Hilb2m+2(P3) extends Hilb2m+2(Pn) with n ≥ 4.

Corollary 2.8. For n ≥ 4, Hilb2m+2(Pn) consists of two components Wn and W ′
n. The component Wn

has dimension 4n − 4 and its general point parameterizes a pair of skew lines. The component W ′
n has

dimension 4n − 1 and its general point parameterizes a conic union an isolated point. Both Wn and
W ′

n are smooth. They intersect transversely along a (4n− 5)-dimensional locus En whose general points
parameterize a pair of coplanar lines with a spatial embedded point at their intersection. In particular,
Wn is an H3 bundle over G(3, n).

Proof. Using the arguments in [PS, Lemma 1] and [L, Lemma 3.5.3], a subscheme C in Pn with Hilbert
polynomial 2m+ 2 is contained in a linear subspace P3 ⊂ Pn. Hence, Hilb2m+2(Pn) has two components
Wn and W ′

n, whose general points parameterize a pair of skew lines and a conic union an isolated point,
respectively. We have dim Wn = dim G(3, n) + dim H3 = 4n− 4 and dim W ′

n = dim G(3, n) + dim H ′
3

= 4n− 1. Moreover, Wn and W ′
n intersect along the (4n− 5)-dimensional locus En whose general point

parameterizes two incident lines with a spatial embedded point at their intersection.

For C ⊂ P3 ⊂ Pn, let N and N ′ denote the normal sheaves of C in Pn and P3, respectively. By the
exact sequence

0 → N ′ → N → NP3/Pn |C → 0,

we get h0(N ) = h0(N ′) + (n− 3)h0(OC(1)) = h0(N ′) + 4(n− 3). Since h0(N ′) equals the dimension of
the tangent space of Hilb2m+2(P3) at [C], we know that h0(N ) equals the dimension of Wn or W ′

n for
[C] ∈ Wn\En or W ′

n\En, respectively. Hence, Wn\En and W ′
n\En are smooth.

For [C] ∈ En, note that C spans P3. The deformation of C ⊂ P3 in Proposition 2.6 along with the
deformation corresponding to perturbing P3 in Pn provide a 4n dimensional universal deformation space
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for C ⊂ Pn. This space is isomorphic to A4n−4 ∪A4n−1, where A4n−4 ∩A4n−1 = A4n−5. This shows that
Wn and W ′

n are smooth along En and they intersect transversely.

Finally, a subscheme C parameterized by Wn uniquely determines a P3 spanned by C. So Wn admits
a fibration over G(3, n) with fiber isomorphic to H3. In contrast, W ′

n does not admit a natural fibration
over G(3, n), since a plane conic with a point on that plane only span P2 rather than P3. �

3. Mori theory of Hn

In this section, we will prove Theorems 1.3 and 1.6. To study the geometry of the divisors defined in
Definition 1.2, we calculate their intersection numbers with the following test curves.

Definition 3.1. We introduce effective curves in Hn as follows.

Let B1 denote a pencil of codimension two linear subspaces contained in a hyperplane union a fixed
general codimension two linear subspace in P

n.

Let B2 denote a pencil of codimension two linear subspaces contained in a hyperplane union a fixed
codimension two subspace in this pencil. Put an embedded structure at the base Pn−3 of the pencil given
by the square of its ideal.

Take a pencil of lines from a ruling class of a quadric surface in P3. Each line along with a fixed line
in that ruling class and a fixed codimension four subspace can span a pair of codimension two linear
subspaces in Pn. Let B3 denote this family in Hn.

Let B4 denote a pencil of subschemes defined by the ideal (x2
0, x0x1, x

2
1, tx0x3 − sx1x2), where [s, t]

denote the coordinates of P1.

Lemma 3.2. We have the following intersection numbers:

B1.M = 1, B1. N = 0, B1. F = 1, B1. E = 1,

B2.M = 1, B2. N = 2, B2. F = 0,

B3.M = 2, B3. N = 2, B3. E = 0,

B4.M = 0, B4. F = 1, B4. E = 2.

Proof. Let us verify the intersection numbers involving B1. The others can be checked similarly.

Suppose B1 is given by a pencil of codimension two linear subspaces (x0, sx1 + tx2) union a fixed
general codimension two linear subspace Λn−2 defined by (x0 − x3, x1 + x3). The pencil has a base
codimension three linear subspace Λn−3: x0 = x1 = x2 = 0.

Take a line L that defines M whose ideal is (x2, . . . , xn). There is a unique subscheme with [s, t] = [0, 1]
in B1 intersecting with L. To check that B1 intersects M transversely, around (x0, x2)∩(x0−x3, x1 +x3),
subschemes in Hn have ideal (x0 + a1x1 +

∑n
i=3 aixi, x2 + b1x1 +

∑n
i=3 bixi)∩ (x0 − x3 +

∑n
i=2 cixi, x1 +

x3 +
∑n

i=2 dixi), where ai, bi, ci, di yield a local chart for Hn. The divisor M corresponds to the locus
b1 = 0. The pencil B1 corresponds to the locus where all ai, bi, ci, di are zero except b1. Hence, B1

intersects M transversely at their unique meeting point, so B1.M = 1.

Since Λn−2 is not in the pencil, there is no generically non-reduced subscheme parameterized by B1.
So B1 does not intersect N .

For E, take its defining Λ3 with ideal (x4, . . . , xn). There is a unique subscheme in B1 with [s, t] = [1, 0]
intersecting Λ3. To check that B1 intersects E transversely, around (x0, x1)∩(x0−x3, x1+x3), subschemes
in Hn have ideal (x0 +

∑n
i=2 aixi, x1 +

∑n
i=2 bixi) ∩ (x0 − x3 +

∑n
i=2 cixi, x1 + x3 +

∑n
i=2 dixi), where

ai, bi, ci, di yield a local chart for Hn. The pencil B1 corresponds to the locus where all ai, bi, ci, di are
zero except b2. The divisor E corresponds to the locus (a3 + 1)(b2 − d2) = (a2 − c2)(b3 − 1). Hence, B1

and E intersect transversely, so B1. E = 1.

Take a general point-plane flag (q ∈ Λ2) that defines F . Suppose Λ2 intersects Λn−2 at a point r. The
line qr intersects a unique codimension two subspace in the pencil. As above, one checks that B1 and F
intersect transversely, so B1. F = 1. �
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Proof of Theorem 1.3 (1). Since Hn is a smooth rationally connected variety, the fundamental group
π1(Hn) is trivial, hence H1(Hn,Z) is also trivial, cf. e.g. [KMM]. Using the universal coefficient theorem
for cohomology involving the Ext functor, H2(Hn,Z) is torsion free. Since H1(OHn

) is trivial, Pic(Hn)
embeds into H2(Hn,Z) as a subgroup. So Pic(Hn) is torsion free.

Recall that N is the exceptional divisor of the blow-up of Sym2G(n− 2, n) along the diagonal. Then
Hn\N is isomorphic to Sym2G(n− 2, n)\∆, whose divisor class group has rank one. Hence, Pic(Hn) is
a rank two free Z module. By the intersection numbers B2.M = 1, B2. F = 0 and B4.M = 0, B4. F = 1,
cf. Lemma 3.2, the divisor classes M and F generate Pic(Hn).

Let Null ⊂ Pic(Hn) be the null space with respect to the intersection pairing. Since Pic(Hn) is
generated by M and F , a divisor class D ∈ Null is linearly equivalent to aM + bF for a, b ∈ Z. Using the
test curves B2 and B4, we get a = b = 0. Hence, Num(Hn) = Pic(Hn)/Null is isomorphic to Pic(Hn).

Using the test curves B1 and B2, we get N = 2M − 2F . Using B1 and B3, we get E = M − N =
2F −M . �

These divisors decompose the effective cone of Hn as follows:

M

N

E

F

If a divisor D has negative intersection with an irreducible curve, then its stable base locus B(D)
necessarily contains the locus swept out by the deformations of this curve.

Proof of Theorem 1.3 (2). By the definition, M and F are base-point-free, since we can perturb their
defining lines and flags to avoid any point in Hn. So (F,M) is the ample cone.

The divisor N parameterizes the loci (II) ∪ (IV), which is the exceptional divisor of the blow-up of
Sym2G(n − 2, n) along the diagonal. Hence, N spans an extremal ray of the effective cone. Note that
B3. E = 0 and B3 is a moving curve in Hn. Since Pic(Hn) is of rank two, E spans another extremal ray
of the effective cone.

Note that B4.M = 0 and B4. N = B4. (2M − 2F ) = −2, which implies that B4 is contained in B(D)
for a divisor D in the chamber (M,N ]. Since B4 is a moving curve in N and M is base-point-free, we
know B(D) consists of N .

For a divisor class D in the chamber [E,F ), since B2. F = 0 and B2. E = B2. (M −N) = −1, we have
B2. D < 0. Since B2 sweeps out the loci (III) ∪ (IV), B(D) contains (III) ∪ (IV). Note that F is base-
point-free. For a subscheme X not parameterized in (II) ∪ (III) ∪ (IV), we can choose the defining P3

of E away from the intersection of the two subspaces of X . Since (II) is a divisorial locus parameterized
by N and any two subschemes in (II) are projectively equivalent, it implies the base locus of E does not
intersect (II). Hence, B(D) consists of (III) ∪ (IV) for D in the chamber [E,F ). �

Let us calculate the canonical class of Hn.

Proposition 3.3. Let n ≥ 3 be an integer. The canonical divisor KHn
has class −(n+ 1)M + (n− 2)N .

In particular, Hn is Fano iff n = 3 or 4.
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Proof. Let Y = G(n− 2, n)× G(n− 2, n) and Y ′ be the blow-up of Y along its diagonal. Let E0 denote
the exceptional divisor of the blow-up. Since Hn

∼= Bl∆Sym2
G(n− 2, n), we calculate the canonical class

KHn
via the following commutative diagram:

Y ′ g
−−−−→ Bl∆Sym2

G(n− 2, n)

φ

y
yρ

Y
f

−−−−→ Sym2
G(n− 2, n)

Note that g is a double cover branched along N , and E0 is the ramification divisor. By the Riemann-
Hurwitz formula, KY ′ = g∗KHn

+ E0. By the blow-up formula, KY ′ = φ∗KY + (2n − 3)E0. Hence,
g∗KHn

= φ∗KY + (2n− 4)E0. The canonical class KY is equivalent to OY (−n− 1,−n− 1). Moreover,
φ∗OY (1, 1) = g∗M and g∗N = 2E0. Suppose KHn

= aM + bN . Then ag∗M + 2bE0 = −(n+ 1)g∗M +
(2n − 4)E0, which implies a = −(n + 1) and b = n − 2. Therefore, −KHn

= (n + 1)M − (n − 2)N =
2(n− 2)F + (5 − n)M , which lies in the ample cone of Hn iff 2 < n < 5, cf. Theorem 1.3 (2). �

Now we consider the Proj model P (D) induced by a divisor D. The following result will be used
frequently, cf. e.g., [La, 2.1.B].

Lemma 3.4. Let f : X → Y be a birational morphism between two normal varieties. Let D be an ample
divisor on Y . Then f∗D is semi-ample on X and the Proj model P (f∗D) is isomorphic to Y .

As mentioned in Theorem 1.6, the case n = 3 is slightly different from n ≥ 4, since the locus (III) is
divisorial iff n = 3. Therefore, we first study H3. This may also help the reader get a feel for the models.

Proof of Theorem 1.6 for n = 3. Let Sym2
G(1, 3) be the Chow variety parameterizing cycles [L1 + L2],

where L1 and L2 are two lines in P3. LetM0 be the divisor class parameterizing cycles in the Chow variety
that intersect a fixed line. ThenM0 yields the defining ample line bundle for the Chow variety, cf. [H, 1.a].
The Hilbert-Chow morphism H3 → Sym2

G(1, 3) pulls M0 back to M . Moreover, Sym2
G(1, 3) has finite

quotient singularities, hence is normal. By Lemma 3.4, the model P (M) is isomorphic to Sym2
G(1, 3).

The locus of double lines supported on a reduced line L gets contracted to a point parameterizing the
cycle [2L] in Sym2G(1, 3).

Consider the Plücker embedding of G(1, 3). The image is a smooth quadric 4-fold Q in P
5. Recall in

Definition 1.5 that Φ3
∼= G(3, 5) parameterizes codimension two linear sections of Q. Define a morphism

f : H3 → G(3, 5) by sending a subscheme X to the locus of lines whose intersections with X have length
≥ 2. Let us check that this locus is a codimension two linear section of Q.

If X is a pair of skew lines L1 ∪L2, the space of lines in P3 that intersect both L1 and L2 is a smooth
quadric surface contained in Q, which is cut out by a general 3-dimensional linear subspace of P5. If X
is a double line without embedded point, its Zariski tangent space TqX at a point q is 2-dimensional.
Consider a line passing through q whose schematic intersection with X has length at least two. This line
has to be contained in TqX . The space of such lines forms a 2-dimensional quadric cone in X . The cone
point parameterizes the line Xred. A ruling through the cone point parameterizes lines passing through
q and contained in TqX . If X consists of two lines L1 and L2 contained in a plane Λ with an embedded
point at their intersection p, the space of lines in P3 that intersect L1 and L2 is a union of two planes
contained in Q. One plane is the Schubert variety Σ1,1 parameterizing lines contained in Λ and the
other is the Schubert variety Σ2 parameterizing lines passing through p. The two planes intersect along
a 1-dimensional linear subspace parameterizing lines contained in Λ and passing through p. Note that
these two planes are determined by the flag (p ∈ Λ) and independent of the two lines L1, L2. Such two
planes or quadric cones in Q are cut out by special 3-dimensional linear subspaces of P5. Therefore, f is
well-defined and is a surjective morphism.

The family B2 in Lemma 3.2 is a moving curve in E and has zero intersection with F . For a subscheme
X parameterized by B2, we have seen that the space of lines in P3 whose intersections with X have length
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at least two does not depend on X . It is only determined by the embedded point and the plane containing
Xred. Hence, the morphism f contracts B2 to the point in G(3, 5) corresponding to the linear section
Σ1,1 ∪ Σ2. Let σ1 be the hyperplane class of G(1, 3). Using the test curve B1 in Lemma 3.2, we have
B1. f

∗σ1 = f∗B1. σ1 = 1. Since F.B1 = 1, F.B2 = 0 and the Picard number of H3 is two, we get
F = f∗σ1, which implies that the model P (F ) is isomorphic to G(3, 5). �

Recall in Corollary 2.8, there is a smooth Hilbert component Wn whose general point parameterizes
a pair of skew lines in Pn. The geometry of H3

∼= W3 serves as a prototype for that of Wn. We can
similarly define effective divisors on Wn as follows.

Definition 3.5. Let n ≥ 4 be an integer.

Let M ′ denote the divisor class parameterizing the locus of subschemes whose supports intersect a
fixed codimension two linear subspace.

Let N ′ denote the divisor class parameterizing the locus of double lines.

Let E′ denote the divisor class parameterizing the locus of two coplanar lines with a spatial embedded
point at their intersection.

Let R′ denote the divisor class parameterizing the locus of subschemes such that the 3-dimensional
linear subspaces they span intersect a fixed codimension four linear subspace.

Fix a flag Λn−3 ⊂ Λn−1 ⊂ Pn. For a pair of general lines, let p, q denote their intersection points
with Λn−1. Consider the locus of two lines such that p, q and Λn−3 only span a codimension two linear
subspace. Denote by F ′ the divisor class parameterizing the closure of this locus.

Remark 3.6. There is a rational map Wn 99K H3 by projecting a subscheme from a codimension four
linear subspace to a linear subspace P3 ⊂ Pn. Then M ′, N ′, E′, F ′ on Wn are equivalent to the pull-backs
of M,N,E, F from H3, respectively.

Since H3 naturally embeds into Wn via the inclusion P3 ⊂ Pn, we can adapt the test curves B1, . . . , B4

in Definition 3.1 and their intersection numbers in Lemma 3.2 to Wn for n ≥ 4. Two more test curves
are needed as follows.

Definition 3.7. Let n ≥ 4 be an integer.

Take a line L away from a fixed plane in Pn. Let B5 denote a pencil of lines on that plane union L as
a one parameter family in Wn.

Fix two lines L1 and L2 meeting at a point p on a plane Λ. Take a line L away from Λ. For each point
q ∈ L, there is a unique spatial embedded structure at p such that the 3-dimensional linear subspace it
spans with Λ contains q. Varying q, we get a one parameter family B6 in Wn.

Now we study the stable base locus decomposition of the effective cone of Wn.

Proposition 3.8. Let n ≥ 4 be an integer. On Wn, we have E′ = 2F ′−M ′−R′ and N ′ = 2M ′−2F ′. The
effective cone of Wn is generated by R′, E′, N ′ and the semi-ample cone of Wn is generated by R′, F ′,M ′.
For a divisor D in the chambers 〈E′, F ′, R′〉 ∪ 〈E′, F ′,M ′〉, B(D) consists of E′. For D in the chamber
〈R′,M ′, N ′〉, B(D) consists of N ′. For D in the chamber 〈E′,M ′, N ′〉, B(D) consists of E′ and N ′.

Proof. Since Wn admits an H3 fibration over G(3, n), its Picard number equals three. Using B1, B2 and
B3, we get E′ = 2F ′ −M ′ + aR′ and N ′ = 2M ′ − 2F ′ + bR′, since Bi. R

′ = 0 for 1 ≤ i ≤ 3. Using
the curve B5, we have B5.M

′ = B5. F
′ = B5. R

′ = 1 and B5. N
′ = B5. E

′ = 0. Therefore, we get
E′ = 2F ′ −M ′ −R′ and N ′ = 2M ′ − 2F ′.

M ′, F ′ and R′ are base-point-free by their definitions, since we can vary their defining linear subspaces
or flags to make their loci avoid any point in Wn. So they span the semi-ample cone.

Since B2. E
′ = −1, B2. F

′ = B2. R
′ = 0 and B2 is a moving curve in E′, E′ spans an extremal ray

of the effective cone and it is the stable base locus of a divisor in the chamber 〈E′, F ′, R′〉. We have
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B6.M
′ = B6. F

′ = 0, B6. R
′ = 1, so B6. E

′ = −1. This implies E′ is the stable base locus for a divisor
in the chamber 〈E′, F ′,M ′〉.

Since B4. N
′ = −2, B4. R

′ = B4.M
′ = 0 and B4 is a moving curve in N ′, N ′ spans an extremal ray

of the effective cone and it is the stable base locus of a divisor in the chamber 〈M ′, N ′, R′〉.

Finally, B6. E
′ = −1 and B6.M

′ = B6. N
′ = 0 imply that a divisor D in the chamber 〈E′, N ′,M ′〉

contains E′ in its stable base locus. After removing E′, since B4.M
′ = 0 and B4. N

′ = −2, N ′ is also
contained in the base locus of D. Since M ′ is base-point-free, it implies that the stable base locus of D
consists of E′ ∪N ′. �

The picture below describes this stable base locus decomposition:

R′

E′

F ′

M ′

N ′

Now we study the morphism ψD: Wn → P (D) induced by a divisor D in the semi-ample cone
〈R′, F ′,M ′〉. Recall the spaces Ψn and Θn in Definition 1.5.

Proposition 3.9. Let a, b denote two positive integers and n ≥ 4 denote an integer.

(1) For D1 = aF ′+bM ′, the morphism ψD1
contracts E′ and P (D1) is isomorphic to Bl∆Sym2G(1, n).

(2) For D2 = aF ′ + bR′, the morphism ψD2
contracts E′ and P (D2) is isomorphic to Ψn.

(3) For D3 = aM ′ + bR′, the morphism ψD3
contracts N ′ and P (D3) admits a Sym2

G(1, 3) fibra-
tion over G(3, n), which is the relative Chow variety parameterizing two lines in a 3-dimensional linear
subspace.

(4) The morphism ψF ′ contracts E′ and P (F ′) is isomorphic to Θn. Moreover, P (D1) 99K P (D2) is
a flip over P (F ′).

(5) The morphism ψM ′ contracts E′ and N ′. The model P (M ′) is isomorphic to Sym2G(1, n).

(6) The morphism ψR′ is the H3 fibration Wn → G(3, n) and the model P (R′) is isomorphic to G(3, n).

Proof. (1) On the one hand, by B6. F
′ = B6.M

′ = 0, the curve class B6 is contracted by ψD1
. Since B6

sweeps out E′, ψD1
contracts E′.

On the other hand, suppose an effective curve C in Wn does not intersect M ′. Then C.M ′ = 0
implies the subschemes parameterized by C have the same support. Otherwise we can choose a defining
codimension two linear subspace for M ′ to intersect with finitely many points of C and C.M ′ would be
non-zero, a contradiction. Now, suppose C does not intersect F ′. If a general subscheme parameterized by
C consists of two skew lines or a non-planar double line, we can always choose a defining flag Λn−3 ⊂ Λn−1

of F ′ such that F ′ intersects finitely many members of C. If a general subscheme parameterized by C
consists of two incident lines but the plane they span varies within the family, one can also choose a
defining flag of F ′ such that F ′ only intersects finitely many members of C. Moreover, if the support
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of the spatial embedded point moves within C, one can still choose a defining flag of F ′ such that F ′

intersects finitely many members of C. In all these cases, C.F ′ would be non-zero, a contradiction. So
C.F ′ = 0 implies C is a family of two incident lines contained in a common plane and both passing
through a common point where the embedded points arise. Hence, if C.M ′ = C.F ′ = 0, the subschemes
parameterized by C have the same planar support and their embedded points also have the same support
at a point p. Only the spatial embedded structure pointing outward the plane varies at p in order to get
the family C.

Note that Bl∆Sym2
G(1, n) parameterizes a pair of skew lines in P

n, double lines of arithmetic genus
−1 and two incident lines without specifying the embedded structure at their intersection point. By
forgetting the embedded point of a subscheme parameterized by E′, the map Wn → Bl∆Sym2G(1, n)
contracts the locus E′, and B6 spans the contracted curve class. Pulling back an ample divisor from
Bl∆Sym2G(1, n), we get a semi-ample divisor on Wn whose intersection with B6 is zero. So this divisor
is of type aF ′ + bM ′. Since Bl∆Sym2G(1, n) is smooth, by Lemma 3.4, it is isomorphic to the model
P (D1).

(2) By B2. F
′ = B2. R

′ = 0, the curve class B2 is contracted by ψD2
. Since B2 sweeps out E′, ψD2

contracts E′.

Now suppose an effective curve C in Wn does not intersect R′. Those subschemes parameterized by C
must span the same P

3. Otherwise we can choose a defining codimension four linear subspace of R′ such
that R′ intersects finitely many points of C. Then C.R′ would be non-zero, a contradiction. If C.F ′ = 0,
in (1), we analyzed that the 1-dimensional parts of subschemes parameterized by C span the same plane,
and the embedded points of those subschemes have the same support. Hence, if C.F ′ = C.R′ = 0,
then C parameterizes a family of two incident lines in a common plane with the same spatial embedded
structure supported on a common point. Only the 1-dimensional part of the two lines varies in that plane
to get the family C.

For a subscheme X parameterized by Wn, it spans a unique P3. Associate to X the closure of locus
in G(1, 3) of lines in that P3 whose intersection with X is a length-2 zero dimensional subscheme. By
Theorem 1.6 (4), we get a morphism from Wn to Ψn, which is a G(3, 5) bundle over G(3, n). This
morphism restricted to each fiber H3 only contracts the curve class B2. Pulling back an ample divisor
from the target, we get a semi-ample divisor on Wn whose intersection with B2 is zero. So this divisor is
of type aF ′ + bR′ and its Proj model is isomorphic to Ψn.

(3) By B4.M
′ = B4. R

′ = 0, the curve class B4 is contracted by ψD3
. Since B4 sweeps out N ′, ψD3

contracts N ′.

For an effective curve C in Wn, by the analysis in (1) and (2), C.M ′ = C.R′ = 0 implies that the
subschemes parameterized by C have the same support and span the same P3. Hence, they are double
lines supported on a common line with the double structure varying to get the family C.

For a subscheme X parameterized by Wn, it spans a unique P3. Associate to X its support as a cycle
in that P3. By Theorem 1.6 (2) for n = 3, we get a morphism from Wn to a Sym2G(1, 3) bundle over
G(3, n), which parameterizes a pair of linear cycles in a 3-dimensional linear subspace. This morphism
restricted to each fiber H3 of Wn only contracts the curve class B4. Pulling back an ample divisor from
the target, we get a semi-ample divisor on Wn whose intersection with B4 is zero. So this divisor is of type
aM ′ + bR′ and its Proj model is the relative Chow variety parameterizing two lines in a 3-dimensional
linear subspaces.

(4) Since B2. F
′ = B6. F

′ = 0 and the two curve classes sweep out E′, the map ψF ′ contracts E′.
In (1), we have seen that C.F ′ = 0 for an effective curve C implies it is a family of two incident lines
contained in a common plane Λ and both passing through a common point p where the embedded points
arise. Namely, ψF ′ forgets the lines and embedded structures within the family but only remembers the
common flag (p ∈ Λ).
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Define a morphism f : Wn → Θn by sending a subscheme X to the locus in G(n−2, n) parameterizing
codimension two linear subspaces whose intersections with X have length ≥ 2. Let us check that this
locus corresponds to a codimension two linear section of the Plücker embedding of G(n − 2, n) of type
Σ1 ∩ Σ′

1 or its degenerations.

If X consists of two skew lines L and L′, this locus is the subvariety Σ1 ∩ Σ′
1 in G(n − 2, n), where

Σ1 and Σ′
1 are Schubert varieties corresponding to L and L′, respectively. If X is a pure double line

of genus −1, the locus in G(n − 2, n) of codimension two linear subspaces whose intersections with X
have length ≥ 2 is a subvariety of G(n − 2, n) with cycle class Σ2

1, which corresponds to the limit case
when Σ′

1 approaches Σ1. If X consists of two incident lines or a double line contained in a plane Λ with
an embedded point at p, the corresponding locus is the subvariety Σ1,1 ∪ Σ2, where Σ1,1 parameterizes
codimension two linear subspaces intersecting Λ and Σ2 parameterizes those containing p. Therefore, f
is a well-defined surjective morphism.

Note that E′ is the exceptional locus of f . A contracted fiber over a point in f(E′) parameterizes
two incident lines with the same point-plane flag. So this fiber is isomorphic to Pn−3 × P2, where Pn−3

specifies the spatial embedded point pointing outward Λ and P2 specifies the two lines passing through
p and contained in Λ. The curve classes B2 and B6 generate the cone of curves of this contracted fiber.
Since ψF ′ contracts the curve classes in the same way, it can be identified as f and the model P (F ′) is
isomorphic to Θn.

Since the curve classes contracted by ψD1
and ψD2

are also contracted by ψF ′ , the morphism ψF ′

factors through P (D1) and P (D2), respectively. Moreover, ψD1
and ψD2

both contract E′ and the image
of E′ is of codimension ≥ 2 in each target. So P (D1) and P (D2) are isomorphic in codimension one. By
the formal definition of flips, P (D1) 99K P (D2) is a flip over P (F ′) with respect to the divisor F ′.

(5) By B4.M
′ = B6.M

′ = 0, we know the morphism ψM ′ contracts N ′ and E′, since B4 sweeps out
N ′ and B6 sweeps out E′.

Consider the Hilbert-Chow morphism from Wn to Sym2
G(1, n) by sending a subscheme to its 1-

dimensional support with multiplicity. This map contracts N ′ and E′ by forgetting double structures
and embedded structures, respectively. An ample divisor on Sym2G(1, n) can be defined as the locus of
cycles intersecting a fixed codimension two linear subspace. Note that this divisor pulls back to M ′ on
Wn. Since Sym2G(1, n) is normal, by Lemma 3.4, it is isomorphic to the model P (M ′).

(6) Wn admits an H3 fibration over G(3, n). By its definition, R′ is equivalent to the pull-back of σ1

from G(3, n). Hence, the morphism ψR′ contracts each fiber H3 and the model P (R′) is isomorphic to
G(3, n). �

Remark 3.10. There is another way to interpret the model P (F ′) ∼= Θn in Proposition 3.9 (4). Consider
the Hilbert scheme of quadric surfaces with class σn−1,n−3+σn−2,n−2 in the Plücker embedding of G(1, n).
Lines parameterized by such a quadric Q span a P3 in Pn, which induces an inclusion G(1, 3) ⊂ G(1, n).
Then Q is uniquely determined by a codimension two linear section of G(1, 3). Hence, this Hilbert scheme
of quadrics is isomorphic to the model P (D2) ∼= Ψn in Proposition 3.9 (2), which is a G(3, 5) bundle over
G(3, n).

Associate to Q the maximal subvariety Σ in G(n − 2, n), where a linear subspace parameterized by
Σ contains some line parameterized by Q. Since Q is a quadric surface in the Plücker embedding of
G(1, n), Σ is a codimension two linear section of the Plücker embedding of G(n− 2, n). In other words,
this association maps P (D2) to the space Ξn of codimension two linear sections of G(n− 2, n) such that
the linear subspaces parameterized by a section Σ contain some line parameterized by the corresponding
quadric Q in G(1, n). We claim that the space Ξn is isomorphic to P (F ′) ∼= Θn.

When Q is smooth, the lines parameterized by Q all intersect two skew lines L and L′. The corre-
sponding subvariety in G(n− 2, n) parameterizes linear subspaces that intersect both L and L′. Hence,
that codimension two linear section is the intersection of two Schubert varieties Σ1 ∩ Σ′

1.
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When Q is singular but irreducible, by the proof of Theorem 1.6 for n = 3, Q parameterizes lines that
intersect a fixed double line of genus −1 with length ≥ 2. The corresponding codimension two linear
section of G(n− 2, n) parameterizes linear subspaces that intersect a fixed double line with length ≥ 2.

When Q is reducible, it is a union of two planes that are determined by a flag {p ∈ Λ2 ⊂ Λ3}, where p is
a point, Λ2 is a plane and Λ3 is a P3. The two planes of Q are determined by lines in Λ3 passing through
p or contained in Λ2, respectively. The locus of codimension two linear subspaces that contain some
line parameterized by Q is reducible. It contains the Schubert variety Σ1,1 of codimension two linear
subspaces containing a line in Λ2 and the Schubert variety Σ2 parameterizing those linear subspaces
containing p. In this case, no matter what Q is, the image point in Ξn only depends on the flag p ∈ Λ2.

Hence, we conclude that this association map P (D2) → Ξn can be identified as P (D2) → P (F ′), cf.
the proof of Proposition 3.9 (4).

Let us calculate the canonical class of Wn.

Proposition 3.11. Let n ≥ 3 be an integer. The canonical divisor KWn
has class −(n + 1)M ′ + (n −

2)N ′ + (n− 3)E′. In particular, Wn is a Fano variety.

Proof. By Proposition 3.9 (1), we know π: Wn → Bl∆Sym2
G(1, n) ∼= Hn contracts E′. The divisor

E′ admits a P
n−3 fibration over Γ, where Γ parameterizes a pair of coplanar lines with a point p at

their intersection and the fiber specifies the embedded structure at p pointing outward the plane. From
this description, Γ is a P2 fibration over the flag variety {p ∈ Λ2 ⊂ Pn}, hence a smooth variety of
dimension 3n − 2. Each fiber Pn−3 of E′ gets contracted under π to the base Γ. Therefore, we get
KWn

= π∗KHn
+ (n− 3)E′ = −(n+ 1)M ′ + (n− 2)N ′ + (n− 3)E′.

Since N ′ = 2M ′ − 2F ′ and E′ = 2F ′ −M ′ − R′ on Wn, we have −KWn
= 2M ′ + 2F ′ + (n − 3)R′,

which is ample, cf. Proposition 3.8. Hence, Wn is a Fano variety. �

Note that Hn
∼= Bl∆Sym2G(n − 2, n) ∼= Bl∆Sym2G(1, n) appears as an intermediate model of Wn.

Using the duality between G(1, n) and G(n − 2, n), the above results provide a recipe for analyzing the
models induced by divisors on Hn.

Proof of Theorem 1.6 for n ≥ 4. Part (1) is obvious because (F,M) is the ample cone of Hn.

For (2), since N is the exceptional divisor of the blow-up and it is contained in the base locus of
a divisor D in [M,N), after removing N , the model P (D) is isomorphic to P (M), which is the Chow
variety Sym2G(n− 2, n) parameterizing a pair of codimension two linear cycles in Pn.

Since G(n − 2, n) ∼= G(1, n), we can adapt the models obtained from Wn to Hn. Note that Hn is
isomorphic to the model P (D1) ∼= Bl∆Sym2

G(1, n) in Proposition 3.9 (1). A pair of general codimension
two linear subspaces corresponds to a pair of general lines. A double codimension two linear subspace
corresponds to a double line. A pair of codimension two linear subspaces that span a hyperplane with
an embedded component supported on their intersection corresponds to a pair of incident lines without
specifying the embedded point, since the morphism Wn → P (D1) ∼= Hn is induced by forgetting the
spatial embedded structure of a subscheme. Via this translation, Theorem 1.6 (3) and (5) for n ≥ 4 can
be verified as follows.

For (3), the morphism Hn → Θn sends a subscheme X to the locus of lines in G(1, n) that intersect X
with length ≥ 2. This locus is a codimension two linear section of the Plucker embedding of G(1, n) as
follows. If X is a subscheme of type (I), the corresponding locus in G(1, n) is Σ1∩Σ′

1 parameterizing lines
that intersect both components of X . For X of type (II), the locus parameterizes lines whose intersections
with X contain double points. It is a subvariety of G(1, n) with cycle class Σ2

1 corresponding to the limit
case when Σ′

1 approaches Σ1. For X of type (III) or (IV), its Cohen-Macaulay part is contained in a
hyperplane Λn−1 and its embedded component is supported on a subspace Λn−3. The corresponding
locus in G(1, n) consists of two Schubert varieties Σ1,1 ∪Σ2, where Σ1,1 parameterizes lines contained in
Λn−1 and Σ2 parameterizes lines intersecting Λn−3. Therefore, the morphism Hn → Θn is well-defined.
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Furthermore, it is a small contraction by forgetting the components of a subscheme X of type (III) or
(IV) and only remembering the flag (Λn−3 ⊂ Λn−1) determined by X . The contracted curve classes are
the same as those contracted by the map ψF , hence the model P (F ) is isomorphic to Θn.

For (5), we blow up Hn along the locus (III) and the new space is isomorphic to Wn, which is an
H3 fibration over G(n− 4, n) ∼= G(3, n). The blow-up corresponds to specifying a subspace Pn−4 in the
embedded Pn−3 of a subscheme X of type (III). By Proposition 3.9 (4), we can contract the exceptional
divisor of the blow-up in a different way using the morphism ψD induced by a divisor D in the chamber
(E,F ). The resulting model P (D) ∼= Ψn is a G(3, 5) bundle over G(n − 4, n), which is the desired
flipping space. After the flip, the birational transform E on Ψn is equivalent to the pull-back of σ1 from
the base G(n − 4, n). Hence, the map induced by E contracts the G(3, 5) bundle structure to the base
G(n− 4, n) ∼= G(3, n). �
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