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anatomy of an A-polynomial
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anatomy of an A-polynomial

Start with a (framed) knot complementM, for example 63.

(Thanks, KnotPlot.)
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anatomy of an A-polynomial

Its A-polynomial is a 2-variable polynomial. (M̃ = M2.)

A63(M,L) = L
3M̃14 − 5L3M̃13 + L2M̃13 + L4M̃13 − 4L4M̃12

+ 3L3M̃12 − 4L2M̃12 + 4L2M̃11 + 4L4M̃11 + 9L3M̃11

− 2L3M̃10 + 2L2M̃10 + 2L5M̃10 + 2L4M̃10 + 2LM̃10

− 5L5M̃9 − 21L3M̃9 − 6L4M̃9 − 5LM̃9 − 6L2M̃9 + L5M̃8

+ 2L4M̃8 + 8L3M̃8 + 2L2M̃8 + LM̃8 + 34L3M̃7 + M̃7

+ L6M̃7 + 17L2M̃7 + 10LM̃7 + 17L4M̃7 + 10L5M̃7 + L5M̃6

+ 8L3M̃6 + 2L2M̃6 + LM̃6 + 2L4M̃6 − 21L3M̃5 − 5LM̃5

− 6L2M̃5 − 6L4M̃5 − 5L5M̃5 + 2L4M̃4 + 2L2M̃4 + 2L5M̃4

+ 2LM̃4 − 2L3M̃4 + 4L4M̃3 + 4L2M̃3 + 9L3M̃3 − 4L4M̃2

− 4L2M̃2 + 3L3M̃2 + L4M̃ − 5L3M̃ + L2M̃ + L3The A-polynomial and the FFT – p. 2/13



anatomy of an A-polynomial

It helps to plot the coefficient matrix on Z× 2Z:

1

1 -5 1

-4 3 -4

4 9 4

2 2 -2 2 2

-5 -6 -21 -6 -5

1 2 8 2 1

1 10 17 34 17 10 1

1 2 8 2 1

-5 -6 -21 -6 -5

2 2 -2 2 2

4 9 4

-4 3 -4

1 -5 1

1

The A-polynomial and the FFT – p. 2/13



anatomy of an A-polynomial

It helps to plot the coefficient matrix on Z× 2Z:

1

1 -5 1

-4 3 -4

4 9 4

2 2 -2 2 2

-5 -6 -21 -6 -5

1 2 8 2 1

1 10 17 34 17 10 1

1 2 8 2 1

-5 -6 -21 -6 -5

2 2 -2 2 2

4 9 4

-4 3 -4

1 -5 1

1

• The Newton polygon is the convex
hull of the non-zero coefficients.
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anatomy of an A-polynomial

It helps to plot the coefficient matrix on Z× 2Z:

1

1 -5 1

-4 3 -4

4 9 4

2 2 -2 2 2

-5 -6 -21 -6 -5

1 2 8 2 1

1 10 17 34 17 10 1

1 2 8 2 1

-5 -6 -21 -6 -5

2 2 -2 2 2

4 9 4

-4 3 -4

1 -5 1

1

• The Newton polygon is the convex
hull of the non-zero coefficients.

• The slopes of the sides are boundary
slopes of essential surfaces. (Here
±6/1 and ±2/1.)
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anatomy of an A-polynomial

It helps to plot the coefficient matrix on Z× 2Z:

1

1 -5 1

-4 3 -4

4 9 4

2 2 -2 2 2

-5 -6 -21 -6 -5

1 2 8 2 1

1 10 17 34 17 10 1

1 2 8 2 1

-5 -6 -21 -6 -5

2 2 -2 2 2

4 9 4

-4 3 -4

1 -5 1

1

• The Newton polygon is the convex
hull of the non-zero coefficients.

• The slopes of the sides are boundary
slopes of essential surfaces. (Here
±6/1 and ±2/1.)

• The “edge polynomials” are monic
(Cooper-Long) with cyclotomic
irreducible factors, and the orders of
the roots are related to the number
of boundary components of the
surface.
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about boundary slopes

A framing (µ, λ) of a knot manifold M is a basis for
H1(∂M;Z). Every simple closed curve on ∂M is
homologous to pµ+ qλ. Its slope p/q ∈ Q ∪ {1/0} does
not depend on an orientation.
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about boundary slopes

A framing (µ, λ) of a knot manifold M is a basis for
H1(∂M;Z). Every simple closed curve on ∂M is
homologous to pµ+ qλ. Its slope p/q ∈ Q ∪ {1/0} does
not depend on an orientation.

A properly embedded bounded surface S in M is essential
if π1(S) injects in π1(M) and S is not boundary-parallel.
All of the boundary curves of an essential surface have the
same slope.
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about boundary slopes

A framing (µ, λ) of a knot manifold M is a basis for
H1(∂M;Z). Every simple closed curve on ∂M is
homologous to pµ+ qλ. Its slope p/q ∈ Q ∪ {1/0} does
not depend on an orientation.

A properly embedded bounded surface S in M is essential
if π1(S) injects in π1(M) and S is not boundary-parallel.
All of the boundary curves of an essential surface have the
same slope.

Only finitely many slopes arise as boundary slopes of
essential surfaces (Hatcher). The A-polynomial detects
many, but not all. (E.g. the boundary of the spanning
surface of a fibered knot is never detected.)
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definition of the A-polynomial

ForM compact, R(M) = Hom(π1(M), SL2(C)) is an
affine algebraic subset of SL2(C)

n.
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definition of the A-polynomial

ForM compact, R(M) = Hom(π1(M), SL2(C)) is an
affine algebraic subset of SL2(C)

n.

The character variety X(M) = R(M)/ ∼ is the
algebro-geometric quotient under the conjugation action
of SL2(C).
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definition of the A-polynomial

ForM compact, R(M) = Hom(π1(M), SL2(C)) is an
affine algebraic subset of SL2(C)

n.

The character variety X(M) = R(M)/ ∼ is the
algebro-geometric quotient under the conjugation action
of SL2(C).

For a knot manifoldM, let ∆ ⊂ R(∂M) be the variety of

diagonal representations of π1(∂M) = Z
2. We have

C∗ × C∗ ∼= ∆
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definition of the A-polynomial

ForM compact, R(M) = Hom(π1(M), SL2(C)) is an
affine algebraic subset of SL2(C)

n.

The character variety X(M) = R(M)/ ∼ is the
algebro-geometric quotient under the conjugation action
of SL2(C).

For a knot manifoldM, let ∆ ⊂ R(∂M) be the variety of

diagonal representations of π1(∂M) = Z
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The closure of the union of 1-dimensional components of

t−1(i∗(X(M)) is a plane algebraic curve C(M).
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definition of the A-polynomial

Note: For an oriented hyperbolic knot manifoldM, the
irreducible component X0(M) of X(M) passing through the
(smooth) point that corresponds to the discrete faithful
representation is 1-dimensional.
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definition of the A-polynomial

Note: For an oriented hyperbolic knot manifoldM, the
irreducible component X0(M) of X(M) passing through the
(smooth) point that corresponds to the discrete faithful
representation is 1-dimensional.

The A-polynomial is a suitably chosen defining equation of the
plane curve C(M). It is well-defined up to scalar multiplication
and multiplicities of irreducible factors. Suitably normalized, it
has integer coefficients. For a knot in a homology sphere (with

the standard framing) it is a polynomial in M2 and L, where M
and L represent eigenvalues of the images of the meridian and
longitude under an SL2(C) representation.
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definition of the A-polynomial

Note: For an oriented hyperbolic knot manifoldM, the
irreducible component X0(M) of X(M) passing through the
(smooth) point that corresponds to the discrete faithful
representation is 1-dimensional.

The A-polynomial is a suitably chosen defining equation of the
plane curve C(M). It is well-defined up to scalar multiplication
and multiplicities of irreducible factors. Suitably normalized, it
has integer coefficients. For a knot in a homology sphere (with

the standard framing) it is a polynomial in M2 and L, where M
and L represent eigenvalues of the images of the meridian and
longitude under an SL2(C) representation.

For computational reasons we replace X(M) with a closely
related “gluing variety” G associated to an ideal triangulation.
The defining equations of G are computed by SnapPea. The
curve G parametrizes PSL(2,C) representations. By taking
square roots carefully, G can be lifted to give a curve in X(M).
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a problem in computational algebraic geometry
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a problem in computational algebraic geometry

Given:

• defining equations over Z for an affine algebraic curve C in
Cn; and

• two rational functions L and M, defined over Z.

Compute:

• A defining equation A(M,L) ∈ Z[M,L] for the closure of

the image of the projection π : C → C2 given by
π(x) = (L(x),M(x)).
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a problem in computational algebraic geometry

Given:

• defining equations over Z for an affine algebraic curve C in
Cn; and

• two rational functions L and M, defined over Z.

Compute:

• A defining equation A(M,L) ∈ Z[M,L] for the closure of

the image of the projection π : C → C2 given by
π(x) = (L(x),M(x)).

The classical solution comes from elimination theory. Augment
the system of defining equations for C by adding the equations
that define L and M. Eliminate all variables except for L amd
M. This can be done with resultants or Gröbner bases.
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a problem in computational algebraic geometry

Given:

• defining equations over Z for an affine algebraic curve C in
Cn; and

• two rational functions L and M, defined over Z.

Compute:

• A defining equation A(M,L) ∈ Z[M,L] for the closure of

the image of the projection π : C → C2 given by
π(x) = (L(x),M(x)).

The classical solution comes from elimination theory. Augment
the system of defining equations for C by adding the equations
that define L and M. Eliminate all variables except for L amd
M. This can be done with resultants or Gröbner bases.

We use interpolation instead.
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special features

Two special features of our situation can be used to advantage
by the interpolation method.
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special features

Two special features of our situation can be used to advantage
by the interpolation method.

1. It is easy to use Newton’s method to find lots of solutions to
polynomial systems. By solving and projecting we can easily
sample our plane curve at many points. We get SnapPea to do
this job for us.
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special features

Two special features of our situation can be used to advantage
by the interpolation method.

1. It is easy to use Newton’s method to find lots of solutions to
polynomial systems. By solving and projecting we can easily
sample our plane curve at many points. We get SnapPea to do
this job for us.

2. Because the coefficients of the A-polynomial are integers,
and because we know that the coefficients at the vertices of the
Newton polygon are ±1, the normalization is relatively easy.
Also, it is relatively easy to verify that a polynomial relation
holds by symbolic computation.
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special features

Two special features of our situation can be used to advantage
by the interpolation method.

1. It is easy to use Newton’s method to find lots of solutions to
polynomial systems. By solving and projecting we can easily
sample our plane curve at many points. We get SnapPea to do
this job for us.

2. Because the coefficients of the A-polynomial are integers,
and because we know that the coefficients at the vertices of the
Newton polygon are ±1, the normalization is relatively easy.
Also, it is relatively easy to verify that a polynomial relation
holds by symbolic computation.

Nonetheless, the integers involved can be quite large, and care
is needed to make the interpolation computationally stable and
fast. This is where the FFT comes in.
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about the FFT

Fix a dimension N and set ζN = e
2πi/N . The FFT is the algebra

isomorphism between LN = C[x ]/(x
N − 1) and the direct

product CN (component-wise multiplication), given by

FFT ([f ]) = (f (1), f (ζ−1N ), f (ζ
−2
N ), . . . , f (ζ

1−N
N )).
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about the FFT

Fix a dimension N and set ζN = e
2πi/N . The FFT is the algebra

isomorphism between LN = C[x ]/(x
N − 1) and the direct

product CN (component-wise multiplication), given by

FFT ([f ]) = (f (1), f (ζ−1N ), f (ζ
−2
N ), . . . , f (ζ

1−N
N )).

Think of the algebra LN as a computer model for the ring of
Laurent polynomials, or series. So take the standard basis for
LN to be

(1, x, x2, . . . , x [
N

2
], x−1, x−2, . . . , x−[

N−1
2
]).
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about the FFT

Fix a dimension N and set ζN = e
2πi/N . The FFT is the algebra

isomorphism between LN = C[x ]/(x
N − 1) and the direct

product CN (component-wise multiplication), given by

FFT ([f ]) = (f (1), f (ζ−1N ), f (ζ
−2
N ), . . . , f (ζ

1−N
N )).

Think of the algebra LN as a computer model for the ring of
Laurent polynomials, or series. So take the standard basis for
LN to be

(1, x, x2, . . . , x [
N

2
], x−1, x−2, . . . , x−[

N−1
2
]).

Computing the FFT in the standard bases means multiplying by
a unitary matrix with all entries of modulus 1. The
Cooley-Tukey algorithm does this in essentially linear time in N,
and it is numerically stable.

The A-polynomial and the FFT – p. 7/13



about the FFT

The key point for us is:

If f (x) is a polynomial of degree less than N/2, sampled at the

Nth roots of 1, then the coefficients of f can be computed as

FFT−1((f (1), f (ζ−1N ), f (ζ
−2
N ), . . . , f (ζ

1−N
N )).
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strategy

Write A(M,L) =

D∑

n=0

an(M)L
n.
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strategy

Write A(M,L) =

D∑

n=0

an(M)L
n.

Make it monic in L: Â(M,L) = LD +

D−1∑

n=0

ân(M)L
n where

ân(M) = an(M)/aD(M). NOTE: often aD = M
k , e.g.

whenever ∞ is not a detected boundary slope. In these cases
the ân are Laurent polynomials.
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strategy

Write A(M,L) =

D∑

n=0

an(M)L
n.

Make it monic in L: Â(M,L) = LD +

D−1∑

n=0

ân(M)L
n where

ân(M) = an(M)/aD(M). NOTE: often aD = M
k , e.g.

whenever ∞ is not a detected boundary slope. In these cases
the ân are Laurent polynomials.

Treat M as a parameter, so Â(z, L) =

D∏

i=1

(L− λi(z)), where

{λ1(z), . . . , λD(z)} are the roots of Â(z, L).
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strategy

Write A(M,L) =

D∑

n=0

an(M)L
n.

Make it monic in L: Â(M,L) = LD +

D−1∑

n=0

ân(M)L
n where

ân(M) = an(M)/aD(M). NOTE: often aD = M
k , e.g.

whenever ∞ is not a detected boundary slope. In these cases
the ân are Laurent polynomials.

Treat M as a parameter, so Â(z, L) =

D∏

i=1

(L− λi(z)), where

{λ1(z), . . . , λD(z)} are the roots of Â(z, L).

First sample ân(z) by computing elementary symmetric
functions of {λ1(z), . . . , λD(z)}. Then use the FFT to find the
coefficients of ân(z). The A-polynomial and the FFT – p. 8/13



strategy
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computing λi(z)
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computing λi(z)

Most of the work is done by Newton’s method, so we must
avoid singularities. It is guaranteed that there will be
singularities above the unit circle in the M-plane, so we take z
to run around a circle of randomly chosen radius r ≈ 1. We
renormalize at the end when we compute the coefficients.
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computing λi(z)

Most of the work is done by Newton’s method, so we must
avoid singularities. It is guaranteed that there will be
singularities above the unit circle in the M-plane, so we take z
to run around a circle of randomly chosen radius r ≈ 1. We
renormalize at the end when we compute the coefficients.

Since we avoid singularities, the map M : X(M)→ C looks like

a covering map. The curves λi(re
iθ) are projections of lifts of

the circle |z | = r . There are two steps in computing them.
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computing λi(z)

Most of the work is done by Newton’s method, so we must
avoid singularities. It is guaranteed that there will be
singularities above the unit circle in the M-plane, so we take z
to run around a circle of randomly chosen radius r ≈ 1. We
renormalize at the end when we compute the coefficients.

Since we avoid singularities, the map M : X(M)→ C looks like

a covering map. The curves λi(re
iθ) are projections of lifts of

the circle |z | = r . There are two steps in computing them.

1. Find the fiber over the point z = r . This means finding
all solutions of a certain system of polynomial equations.
We use Jan Verschelde’s program PHC for this step.
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computing λi(z)

Most of the work is done by Newton’s method, so we must
avoid singularities. It is guaranteed that there will be
singularities above the unit circle in the M-plane, so we take z
to run around a circle of randomly chosen radius r ≈ 1. We
renormalize at the end when we compute the coefficients.

Since we avoid singularities, the map M : X(M)→ C looks like

a covering map. The curves λi(re
iθ) are projections of lifts of

the circle |z | = r . There are two steps in computing them.

1. Find the fiber over the point z = r . This means finding
all solutions of a certain system of polynomial equations.
We use Jan Verschelde’s program PHC for this step.

2. Do covering space path-lifting to lift the circle |z | = r
to each point of the starting fiber. In the computational
world path-lifting means Newton’s method. We use
SnapPea for this step.
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time for a demo
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property P
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property P

Kronheimer’s and Mrowka’s proof of the property P conjecture
implies:

if K is a non-trivial knot in S3 then For every rational number pq
with |pq | ≤ 2 there is a point (L,M) ∈ C

∗ × C∗ such that

AK(L,M) = 0 and M
pLq = 1

(These points correspond to irreducible SU(2) representations.)
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property P

Kronheimer’s and Mrowka’s proof of the property P conjecture
implies:

if K is a non-trivial knot in S3 then For every rational number pq
with |pq | ≤ 2 there is a point (L,M) ∈ C

∗ × C∗ such that

AK(L,M) = 0 and M
pLq = 1

(These points correspond to irreducible SU(2) representations.)

The proof depends on Gabai’s “strong” Property R result, work
of Thurston and Eliashberg linking contact structures and taut
foliations, Eliashberg’s embedding of 3-manifolds into
symplectic 4-manifolds, Seiberg-Whitten theory (Taubes),
results of Feehan and Leness relating Donaldson invariants to
Seiberg-Whitten invariants, . . ..
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property P

Kronheimer’s and Mrowka’s proof of the property P conjecture
implies:

if K is a non-trivial knot in S3 then For every rational number pq
with |pq | ≤ 2 there is a point (L,M) ∈ C

∗ × C∗ such that

AK(L,M) = 0 and M
pLq = 1

(These points correspond to irreducible SU(2) representations.)

Dunfield and Garoufalidis observe that this implies:

If K is a non-trivial knot in S3 then the algebraic curve defined
by AK has 1-dimensional intersection with the unit torus in
C∗ × C∗.

That is, some of the lifts λi(θ) meet the unit circle in arcs.
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property P

Kronheimer’s and Mrowka’s proof of the property P conjecture
implies:

if K is a non-trivial knot in S3 then For every rational number pq
with |pq | ≤ 2 there is a point (L,M) ∈ C

∗ × C∗ such that

AK(L,M) = 0 and M
pLq = 1

(These points correspond to irreducible SU(2) representations.)

Dunfield and Garoufalidis observe that this implies:

If K is a non-trivial knot in S3 then the algebraic curve defined
by AK has 1-dimensional intersection with the unit torus in
C∗ × C∗.

That is, some of the lifts λi(θ) meet the unit circle in arcs.

Q: Is there a direct proof of this, based on the theory of
SL2(C) character varieties of 3-manifolds.
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Mahler measure
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Mahler measure

The Mahler measure of a monic polynomial f (x) ∈ Z[x ] is

m(f ) =
∏

f (α)=0

max(1, |α|) = exp

∫ 2π

0
log |f (e iθ)|dθ.
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Mahler measure

The Mahler measure of a monic polynomial f (x) ∈ Z[x ] is

m(f ) =
∏

f (α)=0

max(1, |α|) = exp

∫ 2π

0
log |f (e iθ)|dθ.

Lehmer’s Question (1933) Does there exist δ > 0 such that
m(f ) > 1 + δ for every monic, irreducible and non-cyclotomic
f (x) ∈ Z[x ]? It is conjectured that m(f ) ≥ 1.17628 . . . and
that the extremal example is Lehmer’s polynomial

L(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.
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Mahler measure

The Mahler measure of a monic polynomial f (x) ∈ Z[x ] is

m(f ) =
∏

f (α)=0

max(1, |α|) = exp

∫ 2π

0
log |f (e iθ)|dθ.

It turns out that L(−x) is the Alexander polynomial of the
(−2, 3, 7) pretzel knot, which is extremal with respect to the
properties of its character variety. (E.g. it has the maximal
number (3) of cyclic Dehn surgeries.)

In general, every irreducible factor of the polynomial AK(M, 1)
divides the Alexander polynomial of K.

Lehmer’s polynomial is a Salem polynomial, i.e. it has exactly
one root outside the unit circle. All Salem polynomials are
palindromic, as are Alexander polynomials. It is known that any
counterexample to Lehmer’s question would have to be
palindromic.
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Mahler measure

The Mahler measure of a monic polynomial f (x) ∈ Z[x ] is

m(f ) =
∏

f (α)=0

max(1, |α|) = exp

∫ 2π

0
log |f (e iθ)|dθ.

To define the Mahler measure of f (x, y) ∈ Z[x ] replace the
integral over the circle with the corresponding integral over the
unit torus.
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Mahler measure

The Mahler measure of a monic polynomial f (x) ∈ Z[x ] is

m(f ) =
∏

f (α)=0

max(1, |α|) = exp

∫ 2π

0
log |f (e iθ)|dθ.

To define the Mahler measure of f (x, y) ∈ Z[x ] replace the
integral over the circle with the corresponding integral over the
unit torus.

There is a well defined “volume function” V on the curve
defined by A(L,M), and dV = log |L|d argM − log |M|d argL.

Boyd and Rodriguez Villegas observe that m(A(L,M)) is the
integral of dV over the subpaths of the lifts λi(θ) which lie
outside of the unit circle. Thus m(A(L,M)) is a sum of
volumes of certain SL2(C) representations of π1(M).
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questions
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questions

1. Does the (palindromic) polynomial A(L,−1) factor in Z[x ]
as a product of cyclotomic polynomials, Salem polynomials, and
irreducible polynomials with exactly one pair of conjugate roots
outside the unit circle?
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questions

1. Does the (palindromic) polynomial A(L,−1) factor in Z[x ]
as a product of cyclotomic polynomials, Salem polynomials, and
irreducible polynomials with exactly one pair of conjugate roots
outside the unit circle?

2. (Agol) Is m(A(L,M) equal to a sum of volumes of
representations corresponding to characters χ ∈ X(M) such
that χ(µ) = 2?

The A-polynomial and the FFT – p. 13/13


	anatomy of an $A$-polynomial
	anatomy of an $A$-polynomial
	anatomy of an $A$-polynomial
	anatomy of an $A$-polynomial
	anatomy of an $A$-polynomial
	anatomy of an $A$-polynomial
	anatomy of an $A$-polynomial

	about boundary slopes
	about boundary slopes
	about boundary slopes

	definition of the $A$-polynomial
	definition of the $A$-polynomial
	definition of the $A$-polynomial
	definition of the $A$-polynomial
	definition of the $A$-polynomial
	definition of the $A$-polynomial
	definition of the $A$-polynomial

	a problem in computational algebraic geometry
	a problem in computational algebraic geometry
	a problem in computational algebraic geometry
	a problem in computational algebraic geometry

	special features
	special features
	special features
	special features

	about the FFT
	about the FFT
	about the FFT
	about the FFT

	strategy
	strategy
	strategy
	strategy
	strategy

	computing $lambda _i$(z)
	computing $lambda _i$(z)
	computing $lambda _i$(z)
	computing $lambda _i$(z)
	computing $lambda _i$(z)

	time for a demo
	property P
	property P
	property P
	property P
	property P

	Mahler measure
	Mahler measure
	Mahler measure
	Mahler measure
	Mahler measure
	Mahler measure

	questions
	questions
	questions


