Math 215: Problem set 1

Due $1 / 26$

1. Prove that for three distinct real numbers $a, b, c \in \mathbb{R}$,

$$
\frac{a^{4}}{(a-b)(a-c)}+\frac{b^{4}}{(b-a)(b-c)}+\frac{c^{4}}{(c-a)(c-b)}=a^{2}+b^{2}+c^{2}+a b+b c+a c
$$

2. * Show that if a, b and c are positive real numbers, then

$$
\left(a^{2}+b^{2}\right) c+\left(b^{2}+c^{2}\right) a+\left(a^{2}+c^{2}\right) b \geq 6 a b c .
$$

3. Let a, b and c be positive real numbers.
(a) Show that

$$
\frac{a b}{a+b} \leq \frac{a+b}{4}
$$

(b) * Show that

$$
\frac{a b}{a+b}+\frac{b c}{b+c}+\frac{a c}{a+c} \leq \frac{a+b+c}{2} .
$$

4. Let α and β be positive real numbers. Show that $\alpha \leq \beta$ if and only if $\sqrt{\alpha} \leq \sqrt{\beta}$.
5. *1 Show that $\max \{a, b\}=\frac{a+b+|a-b|}{2}$.
6. Prove that $x^{2}-3 x+5 \geq 0$ for all real numbers x.
[^0]
[^0]: ${ }^{1}$ Each week, there will be one or more problems marked with a *. These are the problems you must write up carefully and turn in during the class period on the due date. The other problems should also be done - they are the prime candidates for quiz problems.

