HW9, Math 506, Fall 2016, Due 12/10

November 30, 2016

Throughout the assignment, assume T is a complete theory in a countable language which has infinite models. Let \mathcal{M} be a saturated enough model of T.

- 1. (2 points) Let $\mathcal{N} \models T$. Show that \mathcal{N} is an extension base.
- 2. (2 points) Let T be an arbitrary theory with Skolem functions. Let $A \subset \mathbb{N} \models T$. Show that A is an extension base.
- 3. (2 points) Find a theory T and a type over \emptyset such that p is definable, but there is no definition of p which defines a global type. (It would be wise to think about the requirements on the theory given what we proved in class.)
- 4. (2 points) The Morley rank of T is defined to be the Morley rank of the formula x = x where x is a singleton. Find a theories of Morley rank n for each $n \in \mathbb{N}$.
- 5. (2 points) Consider the definable set in a model of ACF_0 given by an algebraic surface. Show that the Morley rank of the surface is two.
- 6. (4 points) The Cantor-Bendixson derivative of a compact Hausdorff space, X, is denoted $\Gamma(X)$, and is defined:

 $\Gamma(X) = \{ x \in X \mid x \text{ is not an isolated point} \}.$

We define the iterated derivative on X as follows. Define $\Gamma^{\alpha}(X)$ via $\Gamma^{0}(X) = X$, $\Gamma^{\alpha+1}(X) = \Gamma(\Gamma^{\alpha}(X))$, and if α is a limit, then $\Gamma^{\alpha} = \bigcap_{\beta < \alpha} \Gamma^{\beta}(X)$.

- Show that $\Gamma^{\alpha}(X)$ is closed.
- Show that there is an ordinal δ such that $\Gamma^{\delta}(X) = \Gamma^{\alpha}(X)$ for any $\alpha > \delta$.
- If X is separable, show that $\delta < \omega_1$.
- If X is separable, show that if $\Gamma^{\delta}(X)$ is not empty, then $|\Gamma^{\delta}(X)| = 2^{\aleph_0}$.
- Let X be $S_n(\mathcal{M})$ and suppose that T is ω -stable. Define the Cantor-Bendixson rank of a type p to be the ordinal α such that $p \in \Gamma^{\alpha}(S_n(\mathcal{M})) \setminus \Gamma^{\alpha+1}(S_n(\mathcal{M}))$. Show that the Cantor-Bendixson rank of a type is equal to the Morley rank of the type.