HW2, Math 506, Fall 2016, Due 9/7

August 31, 2016

1. (1 point) Let $\mathcal{L}=\{s\}$ be a single unary function. Let T be a theory which stipulates that s is a bijection and s with no cycles. For which cardinals is T categorical?
2. (1 point) Let $\mathcal{L}=\{R\}$ where R is a binary relation symbol. Conside the theory containing the graph (with at least two vertices) axioms,

$$
\forall x \neg R(x, x) \text { and } \forall x \forall y R(x, y) \rightarrow R(y, x) \text { and } \exists x \exists y(x \neq y)
$$

along with the following sentence,

$$
\psi_{n}:=\forall x_{1} \ldots \forall x_{n} \forall y_{1} \ldots \forall y_{n}\left(\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{n} x_{i} \neq y_{j} \rightarrow \exists z \bigwedge_{i=1}^{n}\left(R\left(x_{i}, z\right) \wedge \neg R\left(y_{i}, z\right)\right)\right)
$$

Now let T be the theory consisting of the above axioms as n ranges over \mathbb{N}. Prove that T is satisfiable.
3. (1 point) Let T be the theory of abelian groups with every element having order two. Show that T is κ-categorical for all infinite cardinals. Is T complete? If not, find $T^{\prime} \supseteq T$ such that T and T^{\prime} have the same infinite models.
4. (1 point) (Ultrafilters) Let I be a set and let $P(I)$ be the power set of I. Then a filter on I is a collection D so that $I \in D, \emptyset \notin D, A, B \in D$ implies $A \cap B \in D$, and $A \subseteq B$ and $A \in D$ implies $B \in D$.

1. Show that the set of subsets X of \mathbb{R} such that $\mathbb{R} \backslash X$ has Lebesgue measure zero is a filter.
2. Let κ be an infinite cardinal. Show that the set of cofinite subsets of κ is a filter. This is called the Frechet filter.
3. Show that if $x \in I$ and $D=\{Y \subseteq I \mid x \in Y\}$ is a filter. This is called a principal filter.
4. A filter D on I is called an ultrafilter on I if for all $X \subseteq I$ either $X \in D$ or $X \notin D$. Show that every filter is contained in an ultrafilter (you will have to use the axiom of choice or Zorn's lemma).
5. Apply the previous result to the Frechet filter. Conclude that the resulting ultrafilter is nonprincipal.
6. (2 points) Let \mathcal{U} be an ultrafilter on I. For each $i \in I$, let \mathcal{M}_{i} be an \mathcal{L}-structure. Let $\mathcal{M}=\prod_{i \in I} \mathcal{M}_{i} / \sim$ where if $f, g \in \prod_{i \in I} \mathcal{M}_{i}, f \sim g$ if $\{i \in I \mid f(i)=g(i)\} \in \mathcal{U}$. For $a \in \prod_{i \in I} \mathcal{M}_{i}$, we sometimes write a^{*} for its \sim class. Show that \mathcal{M} is an \mathcal{L}-structure under the following interpretations:
7. For each $c \in \mathcal{C}, c^{\mathcal{M}}=\left(c^{\mathcal{M}_{i}}\right)_{i \in I} / \sim$
8. For $r \in \mathcal{R}$, and $g_{1}, \ldots g_{n} \in \prod_{i \in I} \mathcal{N}_{i}$, let $\mathcal{M} \models r\left(g_{1}^{*}, \ldots, g_{n}^{*}\right)$ if $\left\{i \in I \mid \mathcal{M}_{i} \models\right.$ $\left.r\left(g_{1}(i), \ldots, g_{n}(i)\right)\right\} \in \mathcal{U}$.
9. For $f \in \mathcal{F}$, and $g, g_{1}, \ldots g_{n} \in \prod_{i \in I} \mathcal{M}_{i}$, let $f^{\mathcal{M}}\left(g_{1}^{*}, \ldots, g_{n}^{*}\right)=g^{*}$ if $\left\{i \in I \mid f^{\mathcal{M}_{i}}\left(g_{1}(i), \ldots, g_{n}(i)\right)=\right.$ $g(i)\} \in \mathcal{U}$.

You need to make sure these definitions give a well-defined \mathcal{L}-structure. Notation: sometimes people write $\prod_{i \in I} \mathcal{M}_{i} / \mathcal{U}$ or $\prod_{\mathcal{U}} \mathcal{M}_{i}$ for the ultraproduct we just built. If all the structures \mathcal{M}_{i} are the same, then we call the construction an ultrapower, and in that case if $\mathcal{M}_{i}=\mathcal{N}$ for each $i \in I$, one often writes $\mathcal{N}^{\boldsymbol{u}}$.
Let $\phi(v)$ be an \mathcal{L}-formula. Show that

$$
\mathcal{M} \equiv \phi\left(g_{1}^{*}, \ldots, g_{n}^{*}\right) \text { if and only if }\left\{i \in I \mid \mathcal{M}_{i} \models \phi\left(g_{1}(i), \ldots, g_{n}(i)\right)\right\} \in \mathcal{U}
$$

6. (2 points) Let \mathbb{F}_{p} denote the field with p elements. Let $\mathcal{L}=\mathcal{L}_{\text {rings }}$ and let D be a nonprincipal ultrafilter on the set of prime numbers. Let $K=\prod_{D} \mathbb{F}_{p}$.
7. Is K a field?
8. What is the characteristic of K ?
9. Is $K \equiv \mathbb{R}$?
10. Does K contain any irrational algebraic number?
11. Is $K \equiv \mathbb{C}$
12. Show K has a unique algebraic extension of each degree.
13. Is there a solution to $x^{2}+1=0$ in K ?
14. (Need to know something about number theory for this part) Show that there are infinitely many solutions to the equation $y^{3}=x^{8}-x^{3}+1$.
15. (1 point) Let S, T be \mathcal{L}-structures, and let \mathcal{D} be an ultrafilter on some set. Suppose that $S \subset T$. Is $S^{\mathcal{D}} \subseteq T^{\mathcal{D}}$? If not, explain why this is almost true.
