HW3, Math 506, Fall 2016, Due 9/14

September 7, 2016

- 1. (1 point) Suppose that $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2$ are \mathcal{L} -structures with elementary embeddings $f_i : \mathcal{M}_0 \to \mathcal{M}_i$ for i = 1, 2. Show that there is an \mathcal{L} -structure with \mathcal{N} with elementary embeddings $g_i : \mathcal{M}_i \to \mathcal{N}$ for i = 1, 2 such that $g_1 \circ f_1 = g_2 \circ f_2$.
- (2 points) A theory T has a ∀∃-axiomatization if it can be axiomatized by sentences of the form ∀v̄∃w̄φ(v̄, w̄) where φ is quantifier free. Suppose you are given a chain of models of a ∀∃-theory T. Show that the union of the chain also satisfies T. Now we will show the converse theories which are preserved by unions of chains have ∀∃-axiomatizations. Let S = {φ | φ is ∀∃, T ⊨ φ}. Let M ⊨ S. We wish to show that M ⊨ T.
 - Show that there is a $\mathcal{N} \models T$ such that for any $\exists \forall \text{sentence } \psi \text{ if } \mathcal{M} \models \psi \text{ then } \mathcal{N} \models \psi$.
 - Show that there is \mathcal{N}' with $\mathcal{M} \subseteq \mathcal{N}'$ and $\mathcal{N} \equiv \mathcal{N}$
 - Show that there is $\mathcal{M}' \subseteq \mathcal{N}'$ with \mathcal{M} an elementary substructure of \mathcal{M}' .
 - Iterate the construction and complete the proof.
- 3. (1 point) We say that $\mathcal{M} \models T$ is existentially closed if whenever $\mathcal{N} \models T$, $\mathcal{M} \subset \mathcal{N}$ and $\mathcal{N} \models \exists \bar{v} \varphi(\bar{v}, \bar{a})$ with $\bar{a} \in \mathcal{M}$ and φ quantifier-free then $\mathcal{M} \models \exists \bar{v} \varphi(\bar{v}, \bar{a})$.

Now fix some model $\mathcal{M}_0 \models T$. Prove that if T is $\forall \exists$ -axiomatizable, then T has an existentially closed model \mathcal{N}_0 containing \mathcal{M}_0 such that $|\mathcal{N}_0| = |\mathcal{M}| + |\mathcal{L}| + \aleph_0$.

- 4. (1 point) Suppose that T has built-in Skolem functions. Show that T has a universal axiomatization.
- 5. (1 point) Give an example of an $\mathscr{L}_{\omega_1\omega}$ sentence Φ such that every finite subsentence og Φ is satisfiable, but Φ is not. (So compactness fails).
- 6. (2 points) Axiomatize the following classes of structures with some single sentence in some language using $\mathscr{L}_{\omega_1\omega}$:
 - Torsion-free abelian groups.
 - Finitely generated fields.
 - Linear orders isomorphic to $(\mathbb{Z}, <)$.
 - Connected graphs.
 - Finite valence graphs.

- Cycle-free graphs.
- 7. (1 point) Give an example of a countable language \mathscr{L} and an $\mathscr{L}_{\omega_1\omega}$ sentence Φ such that every model of Φ has cardinality at least 2^{\aleph_0} . (So Downward Löwenheim-Skolem fails).

1 A primer on infinitary logic

Given a signature τ we now define the *infinitary* language $\mathscr{L}_{\infty\omega}$ associated to τ . Roughly speaking the two subscripts describe how many conjunction/disjuntions we are allowed to use and how many quantifications we are allow. The first subscript ' ∞ ' indicates that we will allow infinitely many conjunctions and disjunctions. The second subscript ' ω ' indicates that we will allow only finitely many quantifiers in a row.

The symbols of $\mathscr{L}_{\infty\omega}$ are all symbols from the signature τ together with the usual logical symbols:

$$=,\neg,\bigwedge,\bigvee,\forall,\exists$$

The terms, atomic formulae, and literals are defined in the same way as before (i.e. for first-order logic).

Definition: $\mathscr{L}_{\infty\omega}$ is the smallest class such that

- all atomic formulae are in $\mathscr{L}_{\infty\omega}$
- if $\varphi \in \mathscr{L}_{\infty\omega}$ then $\neg \varphi \in \mathscr{L}_{\infty\omega}$
- if $\Phi \subseteq \mathscr{L}_{\infty\omega}$ then $\bigvee \Phi$ and $\bigwedge \Phi$ are in $\mathscr{L}_{\infty\omega}$
- if $\varphi \in \mathscr{L}_{\infty\omega}$ then $\forall x\varphi$ and $\exists x\varphi$ are in $\mathscr{L}_{\infty\omega}$

Remark: We are allowing $\Phi \subseteq \mathscr{L}_{\infty\omega}$ to be an *arbitrary* subset, so we are allowing arbitrary conjunctions and disjunctions, contrary to the case for the usual first-order logic.

Given an \mathscr{L} -structure \mathfrak{A} (with domain A) we can now extend the notion of satisfaction " \models " to arbitrary formulae of $\mathscr{L}_{\infty\omega}$;

- For atomic formulae the \models relation is the same as before.
- Given $\varphi(\bar{x}) \in \mathscr{L}_{\infty\omega}$ then $\mathfrak{A} \models \neg \varphi(\bar{a})$ if and only if it is not the case that $\mathfrak{A} \models \varphi(\bar{a})$.
- Given $\Phi(\bar{x}) \subseteq \mathscr{L}_{\infty\omega}$ then $\mathfrak{A} \models \bigwedge \Phi(\bar{a})$ if and only if, for all $\varphi(\bar{x}) \in \Phi(\bar{x})$ $\mathfrak{A} \models \varphi(\bar{a})$.
- Given $\Phi(\bar{x}) \subseteq \mathscr{L}_{\infty\omega}$ then $\mathfrak{A} \models \bigvee \Phi(\bar{a})$ if and only if, for at least one of $\varphi(\bar{x}) \in \Phi(\bar{x})$ we have $\mathfrak{A} \models \varphi(\bar{a})$.
- Given $\varphi(y, \bar{x}) \in \mathscr{L}_{\infty\omega}$, then $\mathfrak{A} \models \forall y \varphi(y, \bar{a})$ if and only if for all $b \in A$ we have $\mathfrak{A} \models \varphi(b, \bar{a})$.
- Given $\varphi(y, \bar{x}) \in \mathscr{L}_{\infty\omega}$, then $\mathfrak{A} \models \exists y \varphi(y, \bar{a})$ if and only if for at least one $b \in A$ we have $\mathfrak{A} \models \varphi(b, \bar{a})$.

Now we say that **first-order logic** is the language $\mathscr{L}_{\omega\omega}$ where we allow only finite subsets Φ (in other words we have only finite conjunctions and disjunctions), and only finitely many quantifiers. In general for some cardinal κ we get a language $\mathscr{L}_{\kappa\omega}$ where we allow the subsets $\Phi \subseteq \mathscr{L}_{\kappa\omega}$ to have size $< \kappa$.

In model theory we most often either work within $\mathscr{L}_{\omega\omega}$, and occasionally in $\mathscr{L}_{\omega_1\omega}$. The latter language allows *countably* many conjunctions and disjunctions. There are several properties of first-order logic that the infinitary logics fail to have (see above exercises).