HW5, Math 506, Fall 2016, Due 10/7

September 29, 2016

- 1. (2 points) Recall that if \mathcal{M} is a structure in a language including the binary relation < interpreted as a linear order on \mathcal{M} , we say that \mathcal{M} is o-minimal if every definable subset of \mathcal{M} is a boolean combination of points and intervals (whose endpoints are in \mathcal{M}). Consider the topology generated by open boxes on \mathcal{M}^n for $n \in \mathbb{N}$. Let $X \subset \mathcal{M}^n$ be definable. Show that the closure of X and the interior of X are definable.
- 2. (2 points) Assume \mathcal{M} is o-minimal. Let $X \subseteq \mathcal{M}^{n+m}$. For $\bar{a} \in \mathcal{M}^m$, let $X_{\bar{a}} = \{\bar{b} \in \mathcal{M}^n \mid (\bar{b}, \bar{a}) \in X\}$. Show that $\{\bar{a} \mid X_{\bar{a}} \text{ is open}\}$ is a definable set.
- 3. (3 points) Let \mathcal{G} be an o-minimal ordered group.
 - 1. Show that the only definable subgroups of \mathcal{G} are $1_{\mathcal{G}}$ and \mathcal{G} .
 - 2. Show that \mathcal{G} is abelian (use part 1).
 - 3. Show that \mathcal{G} is divisible (use part 1).
- 4. (2 points) Fix a nonprinciple ultrafilter \mathcal{U} on \mathbb{N} . Let k be a field. Recall from the previous homework, the ring of internal polynomials, denoted $k^*[\bar{x}]_{int}$. Let S be an internal set. Let $(S)_{int}$ denote the internal ideal whose r^{th} component is given by the ideal generated by the r^{th} component of S. That is, the r^{th} component is given by (S_r) . Show that $(S)_{int}$ is contained in any ideal of $k^*[\bar{x}]_{int}$ which contains S.
- 5. (2 points) Let $(\sqrt{S})_{int}$ denote the internal ideal whose r^{th} component is given by the radical ideal generated by the r^{th} component of S. That is, the r^{th} component is given by $\sqrt{S_r}$. Show that $(\sqrt{S})_{int}$ is contained in any internal radical ideal of $k^*[\bar{x}]_{int}$ which contains S.
- 6. (1 point) Show that if tp(a/A) = tp(b/A) then tp(a/dcl(A)) = tp(b/dcl(A)).