HW6, Math 506, Fall 2016, Due 10/21

October 20, 2016

- 1. (3 points) Let T be the theory of \mathbb{Z} in the signature $\{s\}$ where s is interpreted as the successor function. What are the principle types in $S_n(\emptyset)$?
- 2. (3 points) Let T be the theory of \mathbb{Z} in the signature $\{s, <\}$ where s is interpreted as the successor function and < is the linear order. What are the principle types in $S_n(\emptyset)$?
- 3. (3 points) Let $\bar{a}, \bar{b} \in \mathcal{M} \models T$. Show that $tp(\bar{a}, \bar{b}/\emptyset)$ is principle if and only if $tp(\bar{a}/\emptyset)$ is principle and $tp(\bar{b}/\bar{a})$ is principle.
- 4. (3 points) Give an example for which $tp(b/\emptyset)$ is principle and $tp(\bar{a}/\emptyset)$ is principle, but $tp(\bar{a}, \bar{b}/\emptyset)$ is not principle.
- 5. (3 points) We say that M ⊨ T is minimal if M has no proper elementary submodels. Give an example of a theory with a minimal model which is infinite.
 Give an example of a theory with a prime model which is not minimal.
- 6. (10 points) Suppose T has a prime model which is not minimal, \mathcal{M} . Assume T is countable.
 - 1. Show that there is some elementary embedding $f : \mathcal{M} \to \mathcal{M}$ so that $f(\mathcal{M}) \subsetneq \mathcal{M}$.
 - 2. Show that there is \mathbb{N} with \mathbb{M} an elementary submodel and \mathbb{M} isomorphic to \mathbb{N} and $\mathbb{M} \neq \mathbb{N}$.
 - 3. Build a chain of elementary submodels \mathcal{M}_i for $i \in \mathbb{N}$ with \mathcal{M}_i isomorphic to \mathcal{M} . Conclude that the union is isomorphic to \mathcal{M} .
 - 4. Now build an elementary chain of size ω_1 so that \mathcal{M}_{α} is isomorphic to \mathcal{M} for all $\alpha \in \omega_1$ and $\mathcal{M}_{\alpha} \subsetneq \mathcal{M}_{\alpha+1}$. Show that \mathcal{M}' is atomic and size \aleph_1 .
 - 5. Now, if T is not \aleph_0 -categorical, then T has a non-atomic model of size \aleph_1 .
 - 6. Prove that if T is \aleph_1 -categorical and not \aleph_0 -categorical, then prime models are minimal.
- 7. (6 points) 1. Let $R \subset S$ be commutative rings. The following are equivalent:
 - For any equation, $\sum_{i=1}^{l} f_i y_i = 0$, $f_i \in R$, the solutions in S^l are S-linear combinations of the solutions in R^l .

- For any system of equations: $\sum_{i=1}^{l} f_{ji}y_i = 0$, for $j = 1, \ldots, k$, $f_{ji} \in R$, the solutions in S^l are S-linear combinations of the solutions in R^l .
- S is flat over R.

Show that $k^*[\bar{x}]_{int}$ is a flat extension of $k^*[\bar{x}]$. Note that we are using the notation of the previous homework.

2. Given $n, d, k \in \mathbb{N}$, show there is $\alpha \in \mathbb{N}$ such that for any field k and any system $\sum_{i=1}^{l} f_{ji}y_i = 0$, for $j = 1, \ldots, k$ where $f_{ji} \in k[\bar{x}], deg(f_{ji}) \leq d$, the submodule of $k[\bar{x}]^l$ -solutions is generated by solutions (g_1, \ldots, g_l) where the g_i have degree at most α .