HW7, Math 506, Fall 2016, Due 11/4

October 24, 2016

Throughout the assignment, assume T is a complete theory in a countable language which has infinite models.

1. (5 points) Recall the Keisler-Shelah theorem, which says that if

$$f_T(\kappa) := \sup\{|S_1(\mathcal{M})| : \mathcal{M} \models T, |\mathcal{M}| = \kappa\},\$$

then $f_T(\kappa)$ is one of the following:

$$\kappa, \kappa + 2^{\aleph_0}, ded(\kappa), ded(\kappa)^{\aleph_0}, 2^{\kappa},$$

where

 $ded(\kappa) := sup\{|I| : I \text{ is a linear order with a dense set of size } \kappa\}.$

Give specific examples which show each of these possibilities can occur.

- 2. (1 point) Show that $ded(\kappa) \leq 2^{\kappa}$.
- 3. (5 points) Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N} . Let $(\mathcal{M}_i)_{i\in\mathbb{N}}$ be \mathcal{L} -structures and let $\mathcal{M}^* = \prod \mathcal{M}_i/\mathcal{U}$. Let $A \subseteq \mathcal{M}^*$ be a countable set. For any $a \in A$, pick some $f_a \in \prod \mathcal{M}_i$ for which $a = f_a/\sim_{\mathfrak{U}}$. Let $\Gamma(v) = \{\varphi_i(v) : i \in \mathbb{N}\}$. be any set of \mathcal{L}_A -formulas so that $\Gamma(v) \cup Th_A(\mathcal{M}^*)$ is satisfiable. Let $D_i = \{n \in \mathbb{N} \mid \mathcal{M}_n \models \exists v \varphi_{i,n}(v)\}$ where we form $\varphi_{i,n}$ from φ_i using the map $a \mapsto f_a$. Specifically, replace each instance of a with $f_a(n)$ for each $a \in A$ to form $\varphi_{i,n}$ from φ .
 - Show that $D_i \in \mathcal{U}$.
 - Show that there is $g \in \prod \mathcal{M}_i$ so that when $i \leq n$, and $n \in D_i$,

$$\mathfrak{M}_n \models \varphi_{i,n}(g(n)).$$

- Show that g realizes the partial type $\Gamma(v)$.
- Explain why \mathcal{M}^* is \aleph_1 -saturated.
- 4. (3 points) Show that if \mathcal{M} is an infinite \mathcal{L} -structure, there is a descending chain of elementary extensions \mathcal{N}_n of \mathcal{M} so that $\cap \mathcal{N}_n = \mathcal{M}$.

5. (3 points) (requires some set theory) Let κ be an uncountable regular cardinal. Let \mathfrak{M} be an \mathcal{L} -structure with $|\mathfrak{M}| = \kappa$. Suppose that $\mathfrak{M} = \bigcup_{\alpha < \kappa} \mathfrak{M}_{\alpha}$ with $|\mathfrak{M}_{\alpha}| < \kappa$. Show that

$$\{\alpha < \kappa \,|\, \mathcal{M}_{\alpha} \prec \mathcal{M}\}$$

is closed and unbounded.

- 6. (6 points) A module M over a commutative ring R is faithfully flat if M is flat over R and for any R-module N, if $M \otimes_R N = 0$ then it must be the case that N = 0.
 - 1. Show that a ring $S \supset R$ is faithfully flat iff $\mathfrak{m}S \neq S$ for any $\mathfrak{m} \subset R$ a maximal ideal iff S is flat and any system

$$\sum_{i=1}^{l} f_{ji} y_i = g_j$$

for j = 1, ..., k with $f_{ji}, g_j \in R$ with a solution in S^l has a solution in R^l .

2. Show that $k^*[\bar{x}]_{int}$ is a faithfully flat extension of $k^*[\bar{x}]$.