HW8, Math 506, Fall 2016, Due 11/18

November 14, 2016

Throughout the assignment, assume T is a complete theory in a countable language which has infinite models. Let \mathcal{M} be a saturated enough model of T.

- 1. (5 points) Consider the structure whose elements are points on a circle centered at the origin in the plane \mathbb{R}^2 . Let the relation R(x, y, z) hold in the structure if y is between x and z considered clockwise.
 - 1. Prove that the theory of this structure eliminates quantifiers.
 - 2. Show that there is a unique 2-type over the empty set which includes the formula $x \neq y$.
 - 3. Show that R(a, y, c) divides over the emptyset for any a, c.
 - 4. Show the formula $x \neq x'$ forks over the empty set.
 - 5. Explain why no formula can divide over its own parameter set.
- 2. (1 point) Let $p(x) \in S_x(\mathcal{M})$ be some complete type. Assume that p(x) does not divide over some small set A. Show that p(x) does not fork over A.
- 3. (3 points) Let $A \subset B$. If a type $q \in S(B)$ is definable over A or finitely satisfiable in A, then show that q does not split over A (we say that q does not split over A if for all $a \equiv_A a'$ from B and $\varphi(x, y) \in \mathcal{L}(A)$ we have that $\varphi(x, a) \in q$ if and only if $\varphi(x, a') \in q$).
- 4. (3 points) Let $A \subset B$. Suppose that $A \models T$, and $q \in S(B)$ is definable over A, then q is an heir over A.
- 5. (3 points) Let $A \subset B$. Suppose that $B = \mathcal{M}$ and $q \in S(B)$ is A-invariant. Then q does not fork over A.
- 6. (3 points) Let \mathcal{N} be a small model of T. Show that $tp(a/\mathcal{N}b)$ is an heir of $tp(a/\mathcal{N})$ implies that $tp(b/\mathcal{N}a)$ is a coheir of $tp(b/\mathcal{N})$.