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SORTING AND RECOGNITION PROBLEMS FOR ORDERED SETS*

U. FAIGLE’ AND GY. TUR/N:

Abstract. How many questions are needed to decide whether an unknown ordered set is isomorphic
to a fixed ordered set Po? This recognition problem is considered, together with some related computational
problems concerning ordered sets.
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Introduction. The standard sorting problem is to identify an unknown order
knowing that it is a linear order. This formulation suggests the following generalization
to ordered sets, called the Po-sorting problem: determine an unknown order, knowing
that it is isomorphic to a fixed "pattern" order Po (thus Po is a chain in the classical case).

A related question is the Po-recognition problem: decide whether the unknown
order is isomorphic to Po. The identification problem asks for determining the unknown
order without any a priori information.

In this paper we discuss the complexity of these problems. The model of computa-
tion is the usual decision tree model with the only modification that now every node
has three sons since two elements can turn out to be incomparable as well. For the
sorting and recognition problems we use the worst-case measure of complexity. This
measure is of no use for the identification problem as clearly every identification
algorithm has to ask every pair in order to identify an antichain. Instead, we introduce
a refined measure of complexity which assigns a function Ca(P) to every algorithm
A giving the worst-case behavior of A on orders isomorphic to P for every order P.

In 2 we observe some connections between the complexities of the above
problems. We need the notion of an essential set (consisting of covering and critical
pairs), essentially defined in Rabinovitch and Rival [8] and Kelly [4], to describe these
connections.

An example is given of an adversary argument to bound the sorting complexity
in 3. In 4 the recognition complexity of Boolean algebras is determined to be
O(n log2 n). It is shown that the minimal recognition complexity of orders with height
1 on n elements is asymptotically n log2 n. (Also, an fl(n loga n) lower bound holds
for ordered sets with width less than n 1- for any e > 0, in particular for orders with
bounded width.)

Section 5 contains identification algorithms. The first uses Dilworth decomposition,
the second is based on a recent result of Linial and Saks [6] on the existence of central
elements; both generalize sorting by insertion. These algorithms are optimal for orders
of bounded width but they can perform badly in general. The third algorithm is optimal
for orders of height 1, the "other extreme." The merging of these algorithms is still
not optimal as is shown by their behavior on Boolean algebras.
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Some remarks and open problems are given in 6. In particular, it is pointed out
that the problems discussed are special cases of more general problems which are
ordered set versions of graph property recognition problems in the sense discussed in
Bollobis 1 ].

1. Definitions. Ordered sets P on n elements are assumed to have a fixed ground
set {al," , a,}; the order relation is <; incomparability is denoted by II, An element
x is isolated if x Ily for every y. The pair (ai, aj) is a covering pair if ai < aj and there
is no ak with a < ak < a (these pairs form the Hasse diagram of P). The width w(P)
(resp. the height h(P)) of P is the size of a maximum antichain in P (resp. the length
of a maximum chain in P).

An ideal I (resp. a filter F) is a subset of elements subject to x /, y < x, which
implies y I (resp. x F, y > x implies y F). Ip(X) {y: y < x} is the ideal generated
by x, Fp(X)= {y: y > x} denotes the filter generated by x. Np is the total number of
ideals in P and Np(x) is the number of ideals containing x.

The theorem of Dilworth [2] relates the width of P to a chain cover of the ground
set" a chain cover of P with k chains exists if and only if k >= w(P).

Let Po be an ordered set on n elements.
The Po-sorting problem is to determine an unknown order P knowing only that P

is isomorphic to Po.
An algorithm A to solve the Po-sorting problem is a ternary decision tree with

nonleaves labeled "a: a" for some 1 =< <j _-< n and outgoing edges labeled "a < a,"
"a, lla, ai > a." A leaf is either labeled by an order P Po or by a sign xx. If it is
labeled by P, then P is the only order isomorphic to Po consistent with the answers
obtained along the path leading to that leaf. If it is labeled by xx, then there is no
order isomorphic to Po satisfying the answer on the corresponding path. For P Po,
A(P) is the number of questions used to find P (the length of the unique path leading
to the leaf labeled P).

The complexity of A is

and

C := max {A(P): P Po}

CS(Po) := min {C: A is a Po-sorting algorithm}

is the sorting complexity of Po.
The Po-recognition problem is to decide if an unknown order P is isomorphic to Po.
An algorithm A to solve the recognition problem is again a ternary tree with

nonleaves and edges labeled as above. Leaves are labeled with "yes" or "no." If a
leaf is labeled "yes," then all orders satisfying the answers given along the path leading
to the leaf must be isomorphic to Po. If it is labeled "no," then there can be no order
isomorphic to Po consistent with these answers.

The complexity CA of A is the depth of the tree and

Cr(Po) := min {C: A is a Po-recognition algorithm}

is the recognition complexity of Po.
The identification problem is to determine an unknown order without any a priori

information.
An algorithm A to solve the identification problem is a sequence A (A1, A2, "),

where A, is an algorithm to solve the identification problem on n elements. Thus A,
is a ternary tree as above, with leaves labeled by orders on {al,. ., an} subject to a
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leaf labeled P if P is the only ordered set consistent with the answers on the correspond-
ing path.

A(P) is the number of questions used by A, to identify P and

CA(P) := max {A(P’): P’- P}

is the complexity of A to identify orders isomorphic to P. Note that here the complexity
of A is a function.

An identification algorithm is defined to be optimal if for every identification
algorithm B

CA(P)=O(CB(P)).

(Notation: f(P)= O(g(P)) means If( P)/ g( P)l <= a for some constant a >0, f(P)=
(g(P)) if g(P)=O(f(P)) and f(P)=O(g(P)) if f(P)=O(g(P)) and f(P)=
(g(P)),f(n)=o(g(n)) if f(n)/g(n)->O as n->c.)

If P is an ordered set on {a1,’’’, a,}, then E= E1 U E2___ {a1,... an} X
{a,..., a,} is an essential set for P if

(a) (ai, aj) E implies ai < aj and (ai, a) E2 implies a[la,
(b) P is the only order satisfying (a).
(Thus E is a set of comparabilities and incomparabilities which uniquely deter-

mines P.) The size of a minimum essential set is denoted by e(P).

2. Some observations. In this section we collect some useful facts about the
problems defined above.

LEMMA 1. For every order Po,

max C(Po), e(Po)) <-- cr(po) CS(po) d" e(Po).

Proof Consider a Po-recognition algorithm and apply it to an order P--- Po. Then
arriving at the leaf, P must be identified. Indeed, if the relation between a and a
were not determined then it is easy to see that alla and, say, ai > a would both be
consistent. It is impossible, however, that both relations yield orders isomorphic to Po
(i.e., the number of incomparable pairs is not the same). Thus every recognition
algorithm can be used for sorting and hence CS(po)<-Cr(Po). Furthermore, e(Po) <-

cr(po) because in the above case enough questions must be asked to determine P
uniquely.

A recognition algorithm for Po can be obtained as follows: assume that the
unknown order is isomorphic to Po and apply a sorting algorithm. Then check the
elements of a minimal size essential set to justify the assumption. Thus Cr(Po) <
C(Po) + e(Po). [3

LEMMA 2. If A is an identification algorithm then for every order Po,

CA(Po) > cr(po).

Proof Every identification algorithm can be used as a Po-recognition algorithm:
run A for CA(PO) steps. Then every P Po is already identified. If the order is not
identified yet it cannot be isomorphic to Po. [3

LEMMA 3. An identification algorithm A is optimal iff
CA(Po)= O(C(Po)).

Proof () Follows from Lemma 2 above.
() If CA(Po)/C(Po) is not bounded, choose, for every k, an order Pk on nk

elements with CA(Pk)> k" cr(pk) such that n < n2 <’". Let B be an identification
algorithm obtained from A by merging An with an optimal recognition algorithm for
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Pk (merging means asking questions of the two algorithms alternatingly). It follows
from the proof of Lemma 1 that B in fact is an identification algorithm and CB(Pk)<=
2cr(pk). Thus CA(Pk)>(k/2)CB(Pk) and A is not optimal. (Also note that B is a
"better" algorithm as Cn(P)<=2CA(P) holds for every P.) [3

The next lemma is a reformulation of observations made by Rabinovitch and
Rival [8] and Kelly [4].

A pair (ai, a) is critical if a a, x > a implies x > a, and y < a implies y < ai.

LEMMA 4. For every Po, the covering and critical pairs form the unique minimal
essential set.

Proof. These pairs are necessary as their status is not implied by the other relations.
Covering pairs imply all comparabilities. Incomparability of critical pairs implies all
incomparabilities. (See [8], [4].) [3

In the sequel this unique minimal essential set will be denoted by E(Po).

3. Sorting. There are simple examples with small sorting complexity. For example,
if P0 has a unique maximal element and all other elements are incomparable, then
C’*(Po)= [(n-1)/2].

If #(Po) denotes the number of orders isomorphic to Po on the ground set
{al, , a, } then clearly

C Po) >- loga # Po).

Partitioning the elements into antichains according to their height (i.e., the length of
the longest chain ending with them) and considering the sizes sl,’", s, of these
antichains we get

#(eo)->
n

Sl!

and with si <- w(Po) this implies

CS (Po) > n log3 n n log3 w(Po) 5 n.

Later we shall see (Corollary 18 in 5) that

C (Po) --< w(Po)" 2n log2 n + 3 nw(Po).

Thus, when w is fixed, the sorting complexity is determined within a constant factor.
Another obvious example where the information-theoretic bound is not sharp,

besides the example above, is given by the n-element order containing only one
comparable pair. Here #(Po) n(n-1) and C(Po) ().

A special case which may be of some interest is the order consisting of independent
comparable pairs (a "matching"), where the information-theoretic bound is
)(n log2 n).

The following theorem determines the sorting complexity of a matching. The
upper bound was observed by M. Aigner.

THEOREM 5. Let n be even and Po be the parallel composition of n/2 2-element
chains. Then for the sorting complexity of Po

n 2

C(Po) =--.
4

Proof For the lower bound we use the "greedy" adversary strategy: assume that
at every stage of the algorithm the answer to a question "ai:aj" is always "a, lla"
unless adding this incomparability to the information provided already leaves no order
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isomorphic to Po consistent with these data. In the latter case the answer is "ai > aj."
(It is easy to see that the direction of the inequality in the answer is arbitrary; it is
only fixed for being definite.)

Assume that the algorithm stops by determining the order P Po with comparable
pairs al > a2, a3 > a4, , a,-1 > a,. Then it is clear that each of these pairs must have
been asked by the algorithm as otherwise reversing one inequality would also be
consistent with every other answer. Letting E(>) denote the set of these comparable
pairs, we assume that they have been asked by the algorithm in the above order.
Further, let E(II) be the set of pairs (ai, aj) asked by the algorithm with answer "ai[[ a"
obtained and E be the set of unasked pairs.

Just before (al, a2) was asked, the set of pairs not asked yet contained E(>)U E
and as the adversary uses the greedy strategy, it must have been the case that every
perfect matching (corresponding to the comparable pairs) in this set of pairs contains
(al, a2). Hence every perfect matching in E(>)J E contains (al, a2).

The same argument shows that every perfect matching in E(>)U E contains
(an, a4), , (a,_, a,) as well, thus E(>)U E contains exactly one perfect matching.

Now we use the following result of Hetyei [3] (see also [7, Problem 7.24])"
LEMMA 6 [3]. If a graph on n vertices has exactly one perfect matching then it has

at most n2/4 edges.
This implies [E([I)]_-> n(n-2)/4. As all pairs in  (ll) and E(>) have been asked

by the algorithm, the lower bound follows.
A sorting algorithm can be given as follows: starting with an arbitrary element

a, the only element a comparable to it can be found with n- 1 questions. Elements
al and a2 can then be discarded. To find the next comparable pair, n- 3 questions are
needed, etc. Altogether (n 1) + (n 3) +. / 1 n2/4 questions are required.

4. Recognition. In this section we first determine the recognition complexity of
Boolean algebras (this example will be used in the next section). Then we show that
the minimal recognition complexity of orders with height 1 on n elements is asymptoti-
cally n log2 n. Finally we construct orders of height 4 with linear size essential set
(implying that the proof for height 1 does not extend to arbitrary bounded height).

In the next section it is shown (Corollary 18) that

Cr(Po) <- w(Po) 2n log2 n + 3nw(Po)

and, if h(Po)= 1, then

Cr Po) <= 2e(Po).

This means that the recognition complexity is determined for orders of bounded width
or of height 1 up to a constant factor. (Note that we do not have an analogous statement
for the sorting complexity of orders of height 1.)

THEOREM 7. Let n- 2 and B, be the Boolean algebra on m atoms. Then for the
recognition complexity of B,

C"(B,,)-O(n log2 n).

LEMMA 8. e(B,)= (n/2 + 1) log2 n (if m > 2).
Proof We use Lemma 4. Every element has degree rn in the Hasse diagram.

Critical pairs form a matching of atoms and co-atoms.
LEMMA 9. IfP is an arbitrary ordered set on n elements, then a maximal nonexten-

dible) chain can be found in n. [log2 (h (P) + 2) steps.
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Proof Assume we found a chain xl <"" < Xk. Take an unused element y and
start inserting y into the chain by binary search. If the search is successful, y is inserted
in at most [log2 (k+ 1)] steps. If y llx, for some 1-<i <- k then the chain cannot be
extended by y and hence y can be excluded from later comparisons.

LEMMA 10. CS(B,)<--_n(log2 n+2[log (log n+2)]+2).
Proof We describe a B,-sorting algorithm.
Find a maximal chain Xo <" < x,, in n [log (log n + 2) steps. Then xl is an atom.

Compare every element to xl" those incomparable to Xl form a Boolean algebra with
rn 1 atoms. Repeat the same process altogether m times. Finally the atoms Yl, ",Y,
are identified and we used at most 2n(1 + [log (log n + 2)]) steps.

Now compare every element with Yl, ",y,,. This determines the Boolean algebra
since

u >_- v iff v -> y implies u _>- y for every atom Yi.

The last phase needs at most n log2 n steps.
Proofof Theorem 7. The upper bound follows directly from Lemmas 1, 8 and 10.

By fixing atoms bl,. ., b,, all the other elements are already determined. Thus

f(n log2 n).

We now turn to orders of height 1.
LEMMA 11. For every e > 0 there exists an no such that if Po is an ordered set on n

elements with n >= no and h(Po)= 1 then

Cr(Po)>--(1-e)n log2 n.

For the proof of Lemma 11, we use the following lemma.
LEMMA 12. For every e > 0 there exists an no such that if Po is an ordered set on n

elements with n >= no and h(Po)= 1 then

e(Po) >- 1 e) n log2 n.

Proof. Let Po- A LJ B where the elements in A are maximal and the elements in
B are minimal (isolated elements are distributed arbitrarily). Assume [A] l, IB[ k,
k -< [n/2J. Then every pair (x,y) with xB, yA belongs to E(Po) (every such pair
is either critical or covering). Consider now x, y A. Then x[ly and (x, y) or (y, x) is
a critical pair iff IPo(X) and Ipo(y are comparable. If Ipo(X) IPo(y) then (x, y) is critical.

Let HI,’", H (t 2k) be the subsets of B and s (I_-<i -< t) be the number of
elements x in A with Ipo(X)- H. Then there are

pairs (x, y) with Ipo(X)= Ipo(y) (x, y eA, x y). As

___
s= l, the convexity of the

function f(x) x2 implies that the above sum is minimized if all the s are

[1/2k] or [ll2k].
Thus
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Hence

e( Po) >- k l+
2

>- k + ( [n/2k+’j
2k

(n 2k+’)(n --2k+2)
>=k’l+

8.2k

If

n _-> 4 2k+l

then

e( Po) >= k l-
1 n2

32 2k"

We distinguish two cases. If

then

k _>- log2 n log log2 n 5

e(Po)-> (log2 n-log2 log n-5)(n-log2 n)>=(1-e)n log n

when n is sufficiently large. If

k < log2 n log2 log2 n 5

then (,) holds and

2k--
32 log2 n"

Thus

2

e(Po) >=-"-> n log2 n.

ProofofLemma 11. Using Lemma 1, the lemma follows immediately from Lemma
12 above. I-]

LEMMA 13. For every e > O, there exists an no, such that if n >-no then there exists
an order Po on n elements with h(Po)= 1 and recognition complexity

Cr(Po)<(l+e)n log n.

The proof is given in the next section after Corollary 22.
THEOREM 14. Letf(n):=min {cr(po): IPol n, h(P0) 1}. Then

f(n)
n log2 n
1 asno.

Proof Follows directly from Lemmas 11 and 13.
Lemma 12 might suggest that e(Po)=f(n log2 n) for orders with h(P)<-k for

every fixed k. The next theorem shows that this is not true.
THEOREM 15. There exist orders of height 4 with e(P)=(4+o(1))lP[.
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Proof. Take two disjoint sets A, B with IAI- IBI- 2m and define

tt := {{X}: X e A U B};

Y(2 := {H: IHI m and H
_
A or H B};

Y(3 := {H: H H, U H2 with [H11-- H21-- m, H, A, H2 Bl;

4 := {H: [H 3m, (A U B)- H Y(2};

o := {A U B-{x}: x A U B};

Yt’:= U N;i=1

Pe := ordered by inclusion.

Then clearly Pe is of height 4 and has

8m + 4 (22) + (22)2 (22)
2

(1+o(1))

elements. Furthermore, the Hasse-diagram of Pe contains

(2tn-1 22)2 2

8m
k, m_l)+4 ( :4(7) (1+o(1))

edges. The first term counts edges incident to maximal and minimal elements. The
second term counts edges incident to 3: each H e Y(3 contains exactly two sets in f2
and is contained in exactly two sets from 4.

The critical pairs in Pe are the pairs (A U B-{x}, {x}) as in the case of the full
Boolean algebra.

Thus

e(P) =4 (1 + o(1)),

proving the theorem. [3

(Note that if we delete some elements of 3 so that each set in 2 and Y(4 has
still neighbors in 3, the necessary properties of Pe are preserved. Thus for every n
there exist height 4 orders with linear size essential set.)

To close this section we note that from the bound given at the beginning of 3
it follows that

cr(po) (n log2 n)

if w(Po)=< rt
1- for any e > 0, suggesting problem 2 in the last section.

5. Identification. We describe some identification algorithms and give bounds for
their performance.

The first two algorithms generalize sorting by insertion. Inserting an element x
into an ordered set P’ means to determine which elements are smaller, larger or
incomparable to x.
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Both algorithms A and B proceed in n stages on orders on {a1,... a,}. After
stage the suborder Pi on {al,’", ai} of P is determined. Stage i+ 1 consists of
inserting a+l into P. We only give the insertion methods.

Insertion in algorithm A. Choose a minimum chain cover CI,..., Ct, of Pi and
insert a+l into each chain. Insertion into a chain is done by a straightforward
modification of binary search.

To describe algorithm B we note that the elements of {a, , ai} that are smaller
than a+l in P form an ideal Ii in Pi (resp. the elements which are larger form a filter
F, of P,).

Insertion in algorithm B. Determine/ and F by algorithm C below.
Obviously, the two tasks are equivalent so we only formulate the algorithm to

determine I.
An element z of P’ is called a central element if for every z’ in P’

1 Np,(Z’) 1

Np, 2

Algorithm C below determines the ideal P’(x)= {y’y P’, y < x} for an already iden-
tified order P’ and a new element x recursively.

ALGORITHM C.
Given P’ and x choose a central element z of P’ and compare it with x.
If x> z then put P’(x) := Ip,(Z) [..J {z} [..J P"(x), where P"= P’-(Ip,(Z) l,.J{z}).
If x z then put P’(x):= P"(x), where P"= P’-(Fp,(Z) t.J {z}).

We need the following result of Linial and Saks [6].
LEMMA 16 [6]. If Z is a central element then

60 =< =< 1 6o,
N,

where

6o 1/4(3-1og2 5)-----0.17.

THEOREM 17. A and B are correct identification algorithms. For every ordered set
P it holds that

CA(P)<=2nw(P)(1/2+log2 (n+ w(P))-log2 w(P))

and

CB(P) =< 7.46n log2 Np.

Proof The correctness ofA is obvious. The correctness of B follows from observing
that if x > z then x > z’ for every z’ < z in P’ and if x ; z then x ; z’ for every z’> z
in P’.

The bound for A holds since insertion into a chain of length m is easily seen to
require at most 21og2(m+l)+l steps and at each stage l=<w(P) by Dilworth’s
theorem. (The computation uses the concavity of log2 (x).)

The bound for B is obtained as in [6] noting that the choice of a central element
always reduces the number of ideals by a factor of (1- 60) at least, using Lemma 16
above.
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COROLLARY 18. For every order Po

C (Po) --< Cr(Po) --< w(Po)2n log2 n + 3nw(Po).

Proof. Immediate from Lemmas 1 and 2. [q

Comparing A and B we note that A is simpler to compute. The bound of B is not
worse than that ofA but we do not know ofany examples where it performs much better.

Now we describe another identification algorithm, efficient for orders of height
1. We use the following variables"
P’ denotes the actual order obtained up to a certain stage of the algorithm

(including the comparabilities and incomparabilities deduced);
MAX (resp. MIN) is the set of elements that are maximal (resp. minimal) in P’;

(where now x is maximal (resp. minimal) if x z for every z and x > y for
some y (resp. x z and x < y for some y));

ISO is the set of elements that are known to be isolated in P (thus x ISO if[

it is already known to be incomparable to every element);
U is the set of "unprocessed" elements U P- (MAXt.J MINU ISO)).

A pair (x, y) is called undetermined in P’ if neither xlly, x> y nor x < y is in P’;
otherwise it is determined.

ALGORITHM D.
1. P’:= , MAX:= , MIN:= , ISO:= , U:={al, a,}.
2. If U compare every undetermined pair x, y MAX subject to Ie, (x)

_
Ip, (y) and every undetermined pair x, y MIN subject to Fp, (x) Fp, (y),
go to 6.

3. Choose a z U and compare it to every x subject to (z, x) is undetermined
in P’. Update P’, MAX, MIN, ISO, U. If h(P’)> 1, go to 5.

4. If ]MAXI--< IMINI compare every x MAX with every y s.t. (x, y) is undeter-
mined in P’. Update P’, MAX, MIN, ISO, U. If h(P’)> 1 go to 5.
If IMINI_-<IMAXI compare every x MIN with every y s.t. (x, y)is un-
determined in P’. Update P’, MAX, MIN, ISO, U. If h(P’)> 1 go to 5,
else go to 2.

5. Compare every undetermined pair.
6. Stop.

Informally, the algorithm proceeds as follows. Sets MAX, MIN and ISO contain
elements already known to be maximal, minimal or isolated. If there is an element z
not contained in any of them, it is compared to every element. To update necessary
information, elements in the smaller of the two new sets MIN and MAX (or elements
in both sets, if they are of equal size) are compared to every other element. If
MAX U MINU ISO contains every element, all remaining undetermined pairs are
compared. If at any point the order turns out to have height > 1, all pairs are compared.

PROPOSITION 19. Algorithm D is a correct identification algorithm.
Proof If h(P’)> 1 during an execution of steps 3 or 4 then every undetermined

pair is compared in step 5. So the order is obviously identified. Otherwise the algorithm
reaches the execution of step 2: after an execution of step 3 z belongs to MAX, MIN
or ISO. So IU decreases.

If step 2 is reached then the elements in ISO are already compared with every
other element. Furthermore, every pair (x, y) with x MAX, y MIN is determined
as can be seen from the previous execution of step 4. Thus the only undetermined
pairs (x, y) must satisfy either x, y MAX or x, y MIN (we have P MAX t_J MIN
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ISO at that point). If x, y MAX (resp. x, y MIN) and Ip,(X) and Ip,(y) are incompa-
rable sets then (x, y) is determined as it must be true that xlly. Therefore all undeter-
mined pairs are compared in step 2 and the order is identified indeed.

THEOREM 20. If h(P) 1 then Co(P) <- 2e(P).
Proof Let P be an order of height 1. Since every pair is compared at most once,

it is sufficient to show that the number of nonessential pairs ever compared by the
algorithm is at most e(P).

The definition of critical pairs implies that every pair compared in step 2 is
essential. (In fact, only pairs from the larger of the two sets MAX, MIN are compared
at that step.) If in step 3 the element z turns out to be isolated, then every pair containing
z is critical and in this case MAX and MIN are not modified.

Therefore, the algorithm can compare nonessential pairs (x, y) only during those
executions of steps 3 and 4 where the element z turns out to be maximal or minimal.
(Furthermore, for every such pair either both x, y are maximal or both are minimal.)
An execution of steps 3 and 4, where z turns out to be maximal or minimal, is called
a phase.

Let MAX,, MIN,, ISO, and U, denote the values of the sets MAX, MIN, ISO
and U after phase i. Let zi be the element selected in phase and V be the set of
elements comparable to z,.

LEMMA 21. For every i:

(a) if IMAXi[ _<-IMIN,I, then after phase every pair containing an element from
MAX/is determined;

(b) if IMIN,[ =< IMAX,], then after phase every pair containing an element from
MIN, is determined.

Furthermore, there are sets MAX,*, MIN/* with the following properties"
(c) MAX,* (3 MIN* covers all pairs (u, v) compared by the algorithm in phases

1, , subject to {u, v} (’11SOi ;
(d) [MAX/* U MIN/* _<- 2 min (]MAX,[,
(e) MAX,*

_
MAX/, MIN*_ MIN,;

(f) /f [MAXi <= [MIN,[ then MAX,* MAX/;
g) if IM N I-< IMAX,] then MIN/* MIN,.
Proof By induction on i. For 0 all sets are empty. We distinguish several cases.
Case 1. [MAX, < IMINil.
Case 1.1. z,+ is a maximal element.
Then in step 3 of phase i+ 1, z+ is added to MAX and V+ is added to MIN.

(It may be the case that V+
_
MIN,.)

Case 1.1.1. [MAX U {z,+,}[ < IMIN, U V+].
Then using (a) by induction, no further comparisons are performed in step 4 of

phase i+1. Putting MAX*+:=MAX*U{z,+}, MIN/*+:=MIN*, all conditions
remain satisfied.

Case 1.1.2. ]MAX, U {z,+}[ ]MINi I,.J V/+I[.
(This may occur only if V/+ MINi.) In this case, no further comparisons are

performed in the first "if" of step 4 of phase i+ 1, but there may be comparisons
involving elements from MIN in the second "if" of step 4 of phase + 1. However,
MINi+, MINi, MAX,+,_ MAX, U {z,+,} and thus IMINi+,I<-IMAXi+,], so

MAX*+ := MAX,* U {z,+}, MIN*+I := MIN, satisfies the requirements.
Case 1.2. z,+ is a minimal element.
By (a), V+I CI MAX Q}, otherwise z,+ would be contained in MIN,. So in step

3 of phase + 1, new maximal element(s) will be added to MAX.
Case 1.2.1. ]MAX, U V+,] < IMIN.i LI
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Then in step 4 of phase + 1, all undetermined pairs containing an element from
V+I are compared and no other pairs. We can choose MAX,*+1: MAX*U
MIN*+I := MIN* U

Case 1.2.2. IMAXi tJ V+ll IMINi U
In the first "if" of step 4 of phase + 1, all undetermined pairs involving an element

from V/+I are compared. Possibly all undetermined pairs involving an element from
MINi are compared in the second "if" of step 4. We can choose MAX,*+1:=
MAX,* U g/+l, MIN*+I := MINi U

Case 1.2.3. IMAXi U V+I[ > IMINi t_J
Then in step 4 of phase i+ 1, undetermined pairs containing an element from

MINi are compared and we can choose MAX,*+1 := MAX,*, MIN*+I := MINi U
Case 2. [MAXi[ IMINi[.
Case 2.1. zg+ is a maximal element.
By (b) of the induction hypothesis, V+I ["1MIN and we get two cases.
Case 2.1.1. ]V/+I[--1.
Let V+I {z+l}, then all undetermined pairs involving z i+1 are compared in the

second "if" of step 4 of phase i+ 1. We can choose MAX,*+1:= MAX,* U
MIN*+I := MIN* U {z’i+l}-

Case 2.1.2. IVy+l[ > 1.
In this case no further comparisons are performed in step 4 of phase + 1 and we

can put MAX,*+1 :- MAX,* U {zi+l}, MIN*+l := MIN*.
The remaining cases require analogous arguments, so we give the definitions of

the sets MAX,*+1, MIN*+I only.
Case 2.2. Zi+l is a minimal element.
Case 2.2.1. [V+ll 1.

MAX,*+1 := MAX,* U {Z+l}, MIN*+I := MIN* U {Zi+l}.

Case 2.2.2. V+I[ > 1.

MAX,*+1 := MAX,*, MIN*+, := MIN* U
Case 3. ]MAXi[>IMINi[.
(Note that step 4 is not symmetric in MAX and MIN.)
Case 3.1. zi+l is a maximal element.
Case 3.1.1. ]MAXi U {z+l}] > IMIN U

MAX,*+1 := MAX,* U {zi+l}, MIN*+I := SIN/* U V+I.
Case 3.1.2. IMAXi CI {Zi+I} IMINi U V/+ll,

MAX51 := MAXi U {zi+l}, MIN*+l := MIN* U V+l.

Case 3.1.3. IMAXi U {Zi+l}l < IMINi U

MAX51 := MAXi U {zi+,}, MINS1 := MIN*.
Case 3.2. zi+l is a minimal element.
Case 3.2.1. IMAX t3 V+ll> ]MIN U

MAX/*+1 := MAX/*, MIN*+I := MIN* U {Zi+l}.

Case 3.2.2. IMAXi U V+I[ IMINi U {z,+l}].

MAX,*+1 := MAXi, MIN/*+I := MIN* U {z+l}.
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Returning to the proof of Theorem 20, let be the last phase, MAX* := MAX,*
and MIN* := MIN*. The rest of the argument is symmetric in MAX and MIN, so
assume IMAXI-<IMINI. Then Lemma 21 implies MAX*= MAX and as IMAX*I+
IMIN*I-< 2IMAXI, also IMIN*I-< IMAX*I holds. All nonessential pairs compared by
the algorithm are either pairs ofmaximal elements or pairs of minimal elements covered
by MIN*. So their number is at most

(MX) + ((M2IN) (MINMIN*))
N +

2

< MAX. MIN -< e(P). [3

(We remark that the example of a matching shows that the factor 2 in the bound
is sharp for the algorithm.)

COROLLARY 22. Ifh(P)= 1 then CD(P)<=2 cr(p) and Cr(P)_-<2 e(P).
Proof. Immediate from Lemmas 1 and 2.
Now we prove Lemma 13 of previous section.
ProofofLemma 13. We construct the order Po as follows: Po has I(1 + e) log2 n]

maximal elements and n- [(1 / )log: n minimal elements. Each minimal element
has [(1 /)/2. log: n] upper covers so that the set of upper covers is different for
each minimal element. This condition is easy to satisfy as there are

(1 + e) log2 n ] 1+

choices. Furthermore, it can also be required that the set of lower covers be different
for each maximal element and each be of size between, e.g., n/4 and 3 n/4. Then

e(Po) [(1 + e)log hi(n- [(1 + e)log2 n]).

Thus a 2(1 + e)n log n recognition algorithm for Po is given by running D for C(Po)
steps. (If the order is not identified up to this point, it cannot be isomorphic to P0.)

A slight modification gives the smaller upper bound. A pair x > y can be found
in n- 1 steps; y can be compared to everything in at most (n- 2) steps. Then y must
have [(1 + e)/2 log n] upper covers (otherwise P Po). Comparing the upper covers
of y to everything we get every minimal element except at most one. Comparing the
remaining at most [(1 + e)/2 log n + 1 elements to everything, P is identified whenever
P Po.

Finally we point out that algorithms B and D are not sucient to produce an
optimal algorithm. Let algorithm be obtained by merging B and D (in the sense of
the proof of Lemma 3).

Then for the Boolean algebras B we have

C(B,,)=O(nlogn)

from Theorem 7 and

(.2)C,(B,,) 1"
log2 n
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Indeed, if the antichain of size

m m

is examined first then every pair is compared in order to perform the insertion in B,
and D is of no help in this case.

6. Some olden lrOlflems. (1) It would be interesting to find good bounds for the
sorting complexity in general.

(2) The special cases discussed in 4 suggest that perhaps the recognition com-
plexity is l(n log n) for every order Po.

(3) Is it true that there is no optimal identification algorithm in the strong sense
of optimality defined here (cf. Lemma 3)? Are there other measures of complexity for
identification algorithms ?

(4) The definition of sorting and recognition problems introduced here is actually
a special case of a more general one. One can consider sorting and recognition problems
for arbitrary classes of orders (in this paper we considered classes that consist of
isomorphic copies of a fixed order Po). It seems reasonable to assume that these classes
are closed under isomorphism, i.e., they are ordered see properties. In this framework
the identification problem is just the sorting problem with respect to the class of all
orders. The recognition problems arising this way are natural ordered set versions of
analogous problems concerning graphs (see Bollobis [1, Chap. 8] for an excellent
survey). The ordered set properties are substantially different as there are many "easy"
properties with complexity o(n2) like having a unique maximal element, being a linear
order, having bounded width or setup number. Nevertheless it is not difficult to give
(n2) lower bounds, e.g., for connectivity, bounded height, being a lattice, an interval
order, etc. What properties can be proved to be "elusive," i.e., to have complexity ()?

Acknowledgment. We are grateful to M. Aigner for his remarks (in particular for
pointing out the upper bound in Theorem 5) and to a referee for suggesting a
simplification of the proof of Theorem 20.

Noce added in proof. There are some further results concerning problems 2 and
3. It was shown that interval orders have recognition complexity ll(n log n) and there
is an optimal identification algorithm for semiorders (U. Faigle and Gy. Turin, The
complexity of interval orders and semiorders, Discrete Math., to appear). It was also
shown that almost all orders have recognition complexity l(n log n) (H. J. Pr6mel,
Counting unlabeled structures, J. Combin. Theory Ser. A, 44 (1987), pp. 83-93). Recently
M. Saks solved problem 2. In general, he showed that every n element order has
recognition complexity at least -n log3 n + o(n log n) (M. Saks, Recognition problems
for transitive relations, to be published).
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