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In multiple-instance learning the learner receives bags, i.e., sets of instances. A bag is
labeled positive if it contains a positive example of the target. An Ω(d log r) lower bound is
given for the VC-dimension of bags of size r for d-dimensional halfspaces and it is shown
that the same lower bound holds for halfspaces over any large point set in general position.
This lower bound improves an Ω(log r) lower bound of Sabato and Tishby, and it is sharp
in order of magnitude. We also show that the hypothesis finding problem is NP-complete
and formulate several open problems.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Multiple-instance or multi-instance learning (MIL) is a
variant of the standard PAC model of concept learning
where, instead of receiving labeled instances as examples,
the learner receives labeled bags, i.e., labeled sets of in-
stances. A bag is labeled positive if it contains at least
one positive example, and it is labeled negative otherwise.
There are different probability models for the distribution
of bags; one possible model, which we will call the in-
dependent model, assumes that instances in a bag are in-
dependent and identically distributed. The multi-instance
setting, introduced by Dietterich et al. [6], is natural for
several learning applications, for example, in drug design
and image classification. In drug design, a bag may consist
of several shapes of a molecule and it is labeled positive if
some shape binds to a specific binding site. In image clas-
sification, a bag may be a photo containing several objects
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and it is labeled positive if it contains some object of in-
terest.

Blum and Kalai [2] showed that every learning problem
that is efficiently learnable with statistical queries is also
efficiently learnable in the independent MIL model, and,
more generally, the same holds for problems efficiently
learnable with one-sided random classification noise. Ev-
ery problem known to be efficiently PAC-learnable is also
known to be efficiently learnable with one-sided ran-
dom classification noise, although no formal relationship
is proven so far (see Simon [15] for further discussion of
the one-sided random classification noise model). Thus [2]
implies the efficient independent MIL–PAC-learnability of
all known efficiently PAC-learnable classes.

A detailed study of sample sizes in the MIL model was
initiated by Sabato and Tishby [12]. They proved a gen-
eral upper bound for the VC-dimension of bags, and a
lower bound for the concept class of halfspaces. Kundak-
cioglu et al. [10] considered margin maximization for bags
of halfspaces and gave NP-completeness and experimental
results.

In this note we continue the study of multi-instance
learning of halfspaces. We improve the VC-dimension
lower bound of [12] from Ω(log r) to Ω(d log r), where d
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is the dimension and r is the bag size, which is optimal up
to order of magnitude. A similar result was given indepen-
dently by Sabato and Tishby [13]. We also show that the
same lower bound holds for bags over every sufficiently
large point set in general position. Thus the situation is
somewhat analogous to standard halfspaces, where every
simplex forms a maximum shattered set. The proofs are
based on cyclic polytopes. We also show that hypothesis
finding for bags of halfspaces is NP-complete, using a vari-
ant of the construction of [10]. These two results, in view
of the well-known relationship between PAC-learnability,
VC-dimension and hypothesis finding, indicate differences
between the PAC and the independent MIL–PAC models.

There are several open problems related to the multi-
instance learning of halfspaces. Some of these are dis-
cussed in the concluding section of the paper.

2. Preliminaries

A halfspace in Rd is given as H = {x ∈ Rd: w · x � t}, for
weight vector w ∈ Rd and threshold t ∈ R. A bag of size r,
or an r-bag, is an r-element multiset B = {x1, . . . , xr} in Rd .
An r-bag B is positive for H if B ∩ H �= ∅, and B is negative
for H otherwise. A set of bags B = {B1, . . . Bs} is shattered
by halfspaces if for every ± labeling of the bags there is a
halfspace that assigns the same labels to the bags in B. The
VC-dimension of r-bags for d-dimensional halfspaces is the
largest s such that there are s shattered bags. For r = 1 one
gets the usual notion of VC-dimension of halfspaces and it
is a basic fact that this equals d + 1.

3. The VC-dimension of r-bags for d-dimensional
halfspaces

We first formulate a general upper bound of Sabato
and Tishby [12], and then we give the matching lower
bound for halfspaces. The lower bound is based on proper-
ties of cyclic polytopes. The discussion is essentially self-
contained as we include a brief overview of the back-
ground material (details not given here can be found in
Matoušek [11]).

3.1. A general upper bound

Sabato and Tishby [12] showed that the VC-dimension
of r-bags for any concept class is essentially at most a log r
factor larger than the VC-dimension of the concept class.
We formulate their result in a slightly different form.

Theorem 1. (See [12].) For any concept class of VC-dimension d̃,
the VC-dimension of r-bags is O (d̃ log r).

Proof. Let B = {B1, . . . , Bs} be a shattered set of r-bags.
Then B contains at most rs instances, and by Sauer’s
lemma, those can be classified by concepts in the class in

at most ((ers)/d̃)d̃ many ways. The classification of the in-
stances in the bag determines the classification of the bags.
Thus

2s �
(

ers
˜

)d̃

.

d

Writing x = s/d̃ this becomes 2x/x � er. The function 2x/x
is monotone if x � 1/ ln 2. Thus it is sufficient to show that
2x/x > er for x = log r + 2 log log r, if r is sufficiently large,
which follows directly. �
3.2. Lower bound for halfspaces

Sabato and Tishby showed that the VC-dimension of
r-bags of halfspaces in the plane is at least �log r� + 1,
which implies the same bound for higher dimensions. We
now prove a lower bound by adding the ‘missing’ factor d,
which is optimal in order of magnitude by Theorem 1.

The d-dimensional moment curve is given parametri-
cally as x(t) = (t, t2, . . . , td). The convex hull of points
x(t1), . . . , x(tn) on the moment curve, for t1 < · · · < tn ,
with n � d + 1, is called a cyclic polytope. For any I ⊆ [n],
|I| � �d/2�, the polynomial

∏
i∈I

(t − ti)
2 =

d∑
j=0

w jt
j

is 0 at every ti , i ∈ I and positive at every ti , i /∈ I . Thus the
halfspace −∑d

j=1 w j x j � w0 contains every point x(ti),
i ∈ I , and none of the points x(ti), i /∈ I . Hence every set
of at most �d/2� vertices forms a face of a cyclic polytope.

Theorem 2. The VC-dimension of d-dimensional halfspaces
over bags of size r is at least �d/2�(�log r� + 1).

Proof. Let � be an integer,

s =
⌊

d

2

⌋
(� + 1), r = 2�, n =

⌊
d

2

⌋
· 2�+1.

Let t1 < · · · < tn be arbitrary and consider the set of n in-
stances X = {x(t1), . . . , x(tn)}. Divide X into �d/2� blocks
of size 2�+1 each, i.e., let

Xi = {
x(t j): (i − 1) · 2�+1 < j � i · 2�+1},

i = 1, . . . , �d/2�.
Let f i be a bijection between Xi and the subsets of integers
in the interval [(i − 1) · (� + 1) + 1, i · (� + 1)] and let

Bk = {
x(t j): k ∈ f i

(
x(t j)

)}
for every k such that (i − 1) · (� + 1) < k � i · (� + 1). We
claim that {B1, . . . , Bs} is a family of bags of size r shat-
tered by d-dimensional halfspaces. Each bag is of size r
as it contains a half of a block. For any subset S ⊆ [s] let
Si = S ∩[(i −1) · (�+1)+1, i · (�+1)] and let x(t j(i)) be the
point such that f i(x(t j(i))) = Si , for i = 1, . . . , �d/2�. Then
the set {x(t j(i)): i = 1, . . . , �d/2�} can be separated from
the rest of X by a halfspace, and that halfspace classifies
precisely those bags Bk as positive for which k ∈ S . Thus
the family of bags is indeed shattered by halfspaces. The
VC-dimension bound follows directly from the definition
of s and r. �

Now we prove a strengthening of Theorem 2. A finite
subset of Rd is in general position if all its (d + 1)-subsets
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are affinely independent, i.e., have no linear combination
equal to 0, with coefficients adding up to 0. Halfspaces in
Rd shatter every simplex, i.e., every set of (d + 1) points
in general position. In analogy to this fact, we prove a VC-
dimension lower bound similar to Theorem 2 for bags of
halfspaces when the instances are restricted to any suffi-
ciently large subset in general position.

The proof uses some further properties of cyclic poly-
topes. Given a convex polytope P , its face lattice is the
family of its faces partially ordered by set inclusion. Two
convex polytopes are combinatorially equivalent if their face
lattices are isomorphic. Combinatorial equivalence follows
from the existence of a bijection between the vertex sets
of the two polytopes which form a bijection between their
facets (i.e., (d − 1)-dimensional faces). The facets of cyclic
polytopes are described by Gale’s evenness condition: for
ti1 < · · · < tid the vertices x(ti1 ), . . . , x(tid ) form a facet if
and only if for any two other vertices x(tu) and x(tv) there
are an even number of values ti j between tu and tv . This is
proven by considering the hyperplane

∑d
j=1 w j x j = −w0,

where the coefficients are defined by

d∏
j=1

(t − ti j ) =
d∑

j=0

w jt
j.

The condition follows by counting the number of sign
changes between tu and tv .

For a ∈ Rd let a′ be the vector obtained from a by
adding 1 as a first component. Then for any ti0 < · · · <

tid , the matrix with columns x(t0)
′, . . . , x(td)

′ is a Vander-
monde matrix and thus its determinant is positive.

According to Ramsey’s theorem (see [8]), there is a
function R(u, v) such that if the u-subsets of a set of size
at least R(u, v) are two-colored then there is a subset of
size v with all its u-subsets colored the same.

The following lemma is referred to as “unpublished
‘folklore’” and proven in an oriented matroid version by
Cordovil and Duchet [4].1 It is also given as an exercise in
Matoušek [11], and it is proven here for completeness.

Lemma 3. (See [4,11].) Every set A ⊆ Rd of R(d + 1,n) points
in general position contains n points such that their convex hull
is combinatorially equivalent to d-dimensional cyclic polytopes
on n vertices.

Proof. Consider a set A of R(d +1,n) points in general po-
sition and fix an arbitrary ordering < of the elements of A.
Color each (d + 1)-subset of A with the sign of the deter-
minant of the matrix formed by the column vectors of the
points in the subset, written in increasing order according
to the fixed ordering, with an additional first row of ones
added. Then there is a subset A′ = {a1, . . . ,an} of A with
a1 < · · · < an such that determinants associated with each
(d + 1)-subset all have the same sign.

Consider an arbitrary ordered d-subset S = {ai1 < · · · <

aid } of A′ . Denote by H the hyperplane determined by S .
For any point a j ∈ A′ \ S , the sign of det(a′

j,ai1 , . . . ,aid )

1 The paper is an updated version of an unpublished, but circulated,
manuscript from 1986/87.
determines which side of H contains a j . The sequence
j, i1, . . . , id is not necessarily increasing; j can be brought
into its proper place in the sequence by a sequence of
transpositions. Each transposition corresponds to a column
exchange which changes the sign of the determinant.

The set S forms a facet if and only if the sign of
det(a j,ai1 , . . . ,aid ) is the same for every vertex a j ∈ A′ \ S .
This happens iff the parity of transpositions needed to
bring j into its proper place is the same for every j such
that a j ∈ A′ \ S . Hence S is a facet iff for every j, k such
that a j,ak ∈ A′ \ S there are an even number of points in S
between j and k. This also implies directly that every point
belongs to a facet and thus the points of A′ form a convex
polytope. Thus the points in A′ form a convex polytope
whose facets, using the ordering < on A′ , are described by
Gale’s evenness condition. Therefore the polytope is com-
binatorially equivalent to a cyclic polytope. �

If A is any subset of Rd then a halfspace over A is a set
H ∩ A for some d-dimensional halfspace H . A set of r-bags
over A (i.e., a set of r-element multisets of A) is shattered
by halfspaces over A if for every ± labeling of the bags
there is a halfspace over A that assigns those labels to the
bags. The VC-dimension of halfspaces over bags of size r
from A is the largest s such that there are s many r-bags
over A that are shattered by halfspaces over A.

Now we formulate the strengthening of Theorem 2.

Theorem 4. There is a function g(d, r) such that for every
set A of m � g(d, r) points in general position in Rd, halfs-
paces over bags of size r from A have VC-dimension at least
�d/2�(log r + 1).

Proof. The result follows by combining the construction of
Theorem 2 with Lemma 3, setting g(d, r) = R(d + 1,dr).
The set A contains a subset A′ of size dr which deter-
mines a convex polytope combinatorially equivalent to a
cyclic polytope with dr vertices. Every �d/2�-subset of this
polytope forms a face, thus we can repeat the construc-
tion of Theorem 2 to get �d/2�(log r + 1) bags of size r
over A′ , and thus over A as well, that are shattered by
halfspaces. �
4. NP-completeness of hypothesis finding

The hypothesis-finding problem for r-bags for d-dimen-
sional halfspaces is the following: given a set of labeled r-
bags in Rd , is there a halfspace that assigns these labels to
the bags? The reduction below is a variant of a reduction
in Kundakciouglu et al. [10].

Theorem 5. The hypothesis finding problem for r-bags of d-
dimensional halfspaces is NP-complete for every fixed r � 3.

Proof. We give a reduction from 3-SAT (containment in NP
is trivial). Let C1, . . . , Cm be an instance of 3-SAT over vari-
ables x1, . . . , xd . Let ei be the i’th unit vector in Rd . For
j = 1, . . . ,m let B j be a positive bag containing ei if xi is
in C j , and −ei if ¬xi is in C j . For i = 1, . . . ,d let B ′ be a
i
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positive bag containing ei and −ei . Finally, let B∗ be a neg-
ative bag containing the origin. We claim that the original
formula is satisfiable iff there is a consistent hypothesis for
the set of bags described.

Let (a1, . . . ,ad) be a satisfying truth assignment. Then
the halfspace w1u1 + · · · + wdud � 1 is consistent, where
wi = 1 if ai = 1 and wi = −1 otherwise, for i = 1, . . . ,d.

In the other direction, let w1u1 + · · · + wdud � t be
a consistent hypothesis. Then t > 0 as B∗ is negative.
Also, wi �= 0, as B ′

i is positive. It follows directly that the
truth assignment defined by ai = sign(wi) satisfies the for-
mula. �
5. Further remarks and open problems

We showed that the VC-dimension of r-bags of d-
dimensional halfspaces is Θ(d log r) over every sufficiently
large point set in general position, and that hypothe-
sis finding for r-bags of d-dimensional halfspaces is NP-
complete. The latter implies that, unlike in the case of
learning halfspaces, one does not get an efficient inde-
pendent MIL–PAC learning algorithm by drawing O (d log r)
random bags and finding a consistent hypothesis. On the
other hand, the result of Blum and Kalai [2] does provide
an efficient algorithm with sample size polynomial in r
and d, but larger than the VC-dimension.

This raises two open questions concerning learning
d-dimensional halfspaces in the independent MIL–PAC
model: What is the minimal sample size of r-bags suffi-
cient for efficient learning? What is the minimal sample
size of r-bags without taking computational complexity
into account? For the second question note that distribu-
tions over bags generated in the independent model are
only a subclass of all possible distributions over bags2;
thus the VC-dimension only provides an upper bound.
Multi-instance learning under more general settings is dis-
cussed by Auer et al. and by Sabato and Tishby [1,12].

Active learning is another variant of PAC learning. In
this model the learner can decide whether to request the
label of a random instance, and the complexity of an
algorithm is measured by the number of label requests
(see, e.g., Dasgupta [5]). It follows from results of Han-
neke [9] and Friedman [7] that for learning hyperplanes
over smooth distributions, the error of the hypotheses re-
turned by the mellow active learning algorithm of Cohn et
al. [3] decreases exponentially in the number of labels
queried, with high probability.

Settles et al. proposed multi-instance active learning
(MIAL) [14]. MIAL has been studied in several machine
learning papers but, as far as we know, has not been con-
sidered so far in learning theory. There are several possi-
bilities for formulating a model of active learning in the

2 This explains why, unlike the standard setting, the efficient PAC learn-
ing algorithm of Blum and Kalai [2] does not lead to an efficient hypoth-
esis finding algorithm for bags.
multi-instance model. Let us assume here that the learner
gets unlabeled r-bags and then is charged for querying
the label of a bag. Multi-instance learning of r-bags of d-
dimensional halfspaces corresponds to learning concepts in
(dr)-dimensional space of the form

{
(x1, . . . , xr): w · xi � t for some i, 1 � i � r

}
.

The results mentioned above imply positive results in this
setting as well. The mellow algorithm for active learning
has an efficient implementation whenever hypothesis find-
ing can be done efficiently. This, again, does not work for
bags of halfspaces. Thus it seems to be an open problem
whether there is an efficient active learning algorithm with
exponentially decreasing error rate.
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