Progress on a sumset conjecture of Erdős

Isaac Goldbring

University of Illinois at Chicago

UIC Logic Seminar
 August 27, 2013

1 History

2 Nonstandard Analysis

3 Proofs

van der Warden

Recall that an arithmetic progression is a finite sequence $a, a+r, a+2 r, \ldots, a+k r$ for some $a, r, k \in \mathbb{N}$.

A finite coloring of \mathbb{N} is just a partition $\mathbb{N}=C_{1} \sqcup \cdots \sqcup C_{k}$ into finitely many sets. We refer to the C_{i} 's as colors.

Theorem (van der Warden, 1927)

Given any finite coloring of \mathbb{N}, there is a color that contains arbitrarily long arithmetic progressions.

van der Warden

Recall that an arithmetic progression is a finite sequence $a, a+r, a+2 r, \ldots, a+k r$ for some $a, r, k \in \mathbb{N}$.

A finite coloring of \mathbb{N} is just a partition $\mathbb{N}=C_{1} \sqcup \cdots \sqcup C_{k}$ into finitely many sets. We refer to the C_{i} 's as colors.

Theorem (van der Warden, 1927)

Given any finite coloring of \mathbb{N}, there is a color that contains arbitrarily long arithmetic progressions.

Szemerédi's Theorem

Definition

For $A \subseteq \mathbb{N}$, the upper density of A is the quantity

$$
\bar{d}(A):=\limsup _{n \rightarrow \infty} \frac{|A \cap[1, n]|}{n}
$$

Theorem (Szemerédi, 1975)

If $\bar{d}(\Lambda)>0$, then Λ contains arbitrarily long arithmetic progressions.
Given a finite coloring of \mathbb{N}, some color must have positive density, so Szemerédi is a drastic generalization of van der Warden.

Szemerédi's Theorem

Definition

For $A \subseteq \mathbb{N}$, the upper density of A is the quantity

$$
\bar{d}(A):=\limsup _{n \rightarrow \infty} \frac{|A \cap[1, n]|}{n}
$$

Theorem (Szemerédi, 1975)

If $\bar{d}(A)>0$, then A contains arbitrarily long arithmetic progressions.
Given a finite coloring of \mathbb{N}, some color must have positive density, so Szemerédi is a drastic generalization of van der Warden.

Another coloring theorem-Hindman's Theorem

Given $A \subseteq \mathbb{N}$, set
$\mathrm{FS}(A):=\left\{x_{1}+\cdots+x_{n}: x_{1}, \ldots, x_{n}\right.$ distinct elements of $\left.A, n \in \mathbb{N}\right\}$.
Theorem (Hindman, 1974)
Given any finite coloring of \mathbb{N}, there is an infinite monochromatic set A such that $\mathrm{FS}(A)$ is also monochromatic.

Question

Is the "density version" of Hindman's Theorem true? Namely, if
$\bar{d}(A)>0$, is there infinite $B \subseteq \mathbb{N}$ such that $\mathrm{FS}(B) \subseteq A$?

Answer

No! Just let A be the odd numbers!

Another coloring theorem-Hindman's Theorem

Given $A \subseteq \mathbb{N}$, set
$\mathrm{FS}(A):=\left\{x_{1}+\cdots+x_{n}: x_{1}, \ldots, x_{n}\right.$ distinct elements of $\left.A, n \in \mathbb{N}\right\}$.

Theorem (Hindman, 1974)

Given any finite coloring of \mathbb{N}, there is an infinite monochromatic set A such that $\mathrm{FS}(A)$ is also monochromatic.

Question

Is the "density version" of Hindman's Theorem true? Namely, if $\bar{d}(A)>0$, is there infinite $B \subseteq \mathbb{N}$ such that $F S(B) \subseteq A$?

Answer

No! Just let A be the odd numbers!

Another coloring theorem-Hindman's Theorem

Given $A \subseteq \mathbb{N}$, set
$\mathrm{FS}(A):=\left\{x_{1}+\cdots+x_{n}: x_{1}, \ldots, x_{n}\right.$ distinct elements of $\left.A, n \in \mathbb{N}\right\}$.

Theorem (Hindman, 1974)

Given any finite coloring of \mathbb{N}, there is an infinite monochromatic set A such that $\mathrm{FS}(A)$ is also monochromatic.

Question

Is the "density version" of Hindman's Theorem true? Namely, if $\bar{d}(A)>0$, is there infinite $B \subseteq \mathbb{N}$ such that $\mathrm{FS}(B) \subseteq A$?

Answer

No! Just let A be the odd numbers!

Another coloring theorem-Hindman's Theorem

Given $A \subseteq \mathbb{N}$, set
$\mathrm{FS}(A):=\left\{x_{1}+\cdots+x_{n}: x_{1}, \ldots, x_{n}\right.$ distinct elements of $\left.A, n \in \mathbb{N}\right\}$.

Theorem (Hindman, 1974)

Given any finite coloring of \mathbb{N}, there is an infinite monochromatic set A such that $\mathrm{FS}(A)$ is also monochromatic.

Question

Is the "density version" of Hindman's Theorem true? Namely, if $\bar{d}(A)>0$, is there infinite $B \subseteq \mathbb{N}$ such that $\mathrm{FS}(B) \subseteq A$?

Answer
No! Just let A be the odd numbers!

Erdős' conjectures

Seeing that arithmetic progressions are translates of (finite) FS-sets, Erdős asked the following:

Question

If $\bar{d}(A)>0$, is there $t \in \mathbb{N}$ and infinite $B \subseteq \mathbb{N}$ such that $t+\mathrm{FS}(B) \subseteq A$?
Answer-Strauss
No! In fact, there are counterexamples with $\bar{d}(A)$ as close to 1 as you like.

Erdős' conjectures

Seeing that arithmetic progressions are translates of (finite) FS-sets, Erdős asked the following:

Question

If $\bar{d}(A)>0$, is there $t \in \mathbb{N}$ and infinite $B \subseteq \mathbb{N}$ such that $t+\mathrm{FS}(B) \subseteq A$?

Answer-Strauss

No! In fact, there are counterexamples with $\bar{d}(A)$ as close to 1 as you like.

Erdős' conjectures (continued)

Given $A \subseteq \mathbb{N}$, set

$$
\operatorname{PS}(A):=\{x+y: x, y \in A, x \neq y\} .
$$

Erdős then changed his question.

Question

If $\bar{d}(A)>0$, is there $t \in \mathbb{N}$ and infinite $B \subseteq \mathbb{N}$ such that $t+\mathrm{PS}(B) \subseteq A$?
This question is still open. In fact, the following more specific conjecture is open:

Erdős' "B+C" coniecture
If $\underline{d}(A)>0$, then there are infinite $B, C \subseteq \mathbb{N}$ such that $B+C \subseteq A$.
Here,

Erdős' conjectures (continued)

Given $A \subseteq \mathbb{N}$, set

$$
\operatorname{PS}(A):=\{x+y: x, y \in A, x \neq y\} .
$$

Erdős then changed his question.

Question

If $\bar{d}(A)>0$, is there $t \in \mathbb{N}$ and infinite $B \subseteq \mathbb{N}$ such that $t+\mathrm{PS}(B) \subseteq A$?
This question is still open. In fact, the following more specific conjecture is open:

Erdos" "B+C" conjecture

If $\underline{d}(A)>0$, then there are infinite $B, C \subseteq \mathbb{N}$ such that $B+C \subseteq A$.
Here

Erdős' conjectures (continued)

Given $A \subseteq \mathbb{N}$, set

$$
\operatorname{PS}(A):=\{x+y: x, y \in A, x \neq y\} .
$$

Erdős then changed his question.

Question

If $\bar{d}(A)>0$, is there $t \in \mathbb{N}$ and infinite $B \subseteq \mathbb{N}$ such that $t+\mathrm{PS}(B) \subseteq A$?
This question is still open. In fact, the following more specific conjecture is open:

Erdős' "B+C" conjecture

If $\underline{d}(A)>0$, then there are infinite $B, C \subseteq \mathbb{N}$ such that $B+C \subseteq A$. Here,

$$
\underline{d}(A):=\liminf _{n \rightarrow \infty} \frac{|A \cap[1, n]|}{n} .
$$

Our results

For $A \subseteq \mathbb{N}$, the Banach density of A is the quantity

$$
\mathrm{BD}(A):=\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{N}} \frac{|A \cap[x, x+n-1]|}{n}
$$

It is possible to have $\mathrm{BD}(A)>0$ while $\bar{d}(A)=0$, so $\mathrm{BD}(A)>0$ is a milder assumption.

Our results

For $A \subseteq \mathbb{N}$, the Banach density of A is the quantity

$$
\mathrm{BD}(A):=\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{N}} \frac{|A \cap[x, x+n-1]|}{n} .
$$

It is possible to have $\mathrm{BD}(A)>0$ while $\bar{d}(A)=0$, so $\mathrm{BD}(A)>0$ is a milder assumption.

Theorem (DGJLLM, 2013)

Let $A \subseteq \mathbb{N}$.
1 If $\mathrm{BD}(A)>1 / 2$, then A satisfies the conclusion of the $B+C$ conjecture.
2 If $\mathrm{BD}(A)>0$, then there are infinite $B, C \subseteq \mathbb{N}$ and $k \in \mathbb{N}$ such that $B+C \subseteq A \cup(A+k)$. Moreover, enumerating $B=\left(b_{i}\right)$ and $C=\left(c_{i}\right)$ in increasing order, which translate $b_{i}+c_{j}$ lands in depends only on whether $i<j$ or $i \geq j$.

(2) implies (1)

$■$ For $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, set

$$
A_{[n]}:=\{x \in \mathbb{N}: A \cap[n x, n x+n-1] \neq \emptyset\} .
$$

- It is relatively straightforward to check that, if $\mathrm{BD}(A)>0$, then for any $\epsilon>0$, there is $n \in \mathbb{N}$ such that $\operatorname{BD}\left(A_{[n]}\right)>1-\epsilon$.
- Take $n \in \mathbb{N}$ such that $\operatorname{BD}\left(A_{[n]}\right)>1 / 2$ and take infinite B^{\prime}, C^{\prime} such that $B^{\prime}+C^{\prime} \subseteq A_{[n]}$, that is, writing $B^{\prime}=\left(b_{i}\right)$ and $C^{\prime}=\left(c_{i}\right)$, we have $\left[n b_{i}+n c_{j}, n b_{i}+n c_{j}+n-1\right] \cap A \neq \emptyset$ for each i, j.
- By Ramsey's Theorem, we may assume that there are $m_{1}, m_{2} \in[0, n-1]$ such that, for any $i<j$, we have $n b_{i}+n c_{j}+m_{1} \in A, n b_{j}+n c_{i}+m_{2} \in A$.
- Taking $B:=\left\{n b_{i}+m_{1}: i\right.$ is even $\}, C:=\left\{n c_{j}: j\right.$ is odd $\}$, and $k:=m_{1}-m_{2}$, we have $B+C \subseteq A \cup(A+k)$.

(2) implies (1)

■ For $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, set

$$
A_{[n]}:=\{x \in \mathbb{N}: A \cap[n x, n x+n-1] \neq \emptyset\} .
$$

■ It is relatively straightforward to check that, if $\mathrm{BD}(A)>0$, then for any $\epsilon>0$, there is $n \in \mathbb{N}$ such that $\operatorname{BD}\left(A_{[n]}\right)>1-\epsilon$.

- Take $n \in \mathbb{N}$ such that $B D\left(A_{[n]}\right)>1 / 2$ and take infinite B^{\prime}, C^{\prime} such that $B^{\prime}+C^{\prime} \subseteq A_{[n]}$, that is, writing $B^{\prime}=\left(b_{i}\right)$ and $C^{\prime}=\left(c_{i}\right)$, we have $\left[n b_{i}+n c_{j}, n b_{i}+n c_{j}+n-1\right] \cap A \neq \emptyset$ for each i, j.
- By Ramsey's Theorem, we may assume that there are $m_{1}, m_{2} \in[0, n-1]$ such that, for any $i<j$, we have $n b_{i}+n c_{j}+m_{1} \in A, n b_{j}+n c_{i}+m_{2} \in A$.
- Taking $B:=\left\{n b_{i}+m_{1}: i\right.$ is even $\}, C:=\left\{n c_{j}: j\right.$ is odd $\}$, and $k:=m_{1}-m_{2}$, we have $B+C \subseteq A \cup(A+k)$.

(2) implies (1)

■ For $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, set

$$
A_{[n]}:=\{x \in \mathbb{N}: A \cap[n x, n x+n-1] \neq \emptyset\} .
$$

■ It is relatively straightforward to check that, if $\mathrm{BD}(A)>0$, then for any $\epsilon>0$, there is $n \in \mathbb{N}$ such that $\operatorname{BD}\left(A_{[n]}\right)>1-\epsilon$.
■ Take $n \in \mathbb{N}$ such that $\operatorname{BD}\left(A_{[n]}\right)>1 / 2$ and take infinite B^{\prime}, C^{\prime} such that $B^{\prime}+C^{\prime} \subseteq A_{[n]}$, that is, writing $B^{\prime}=\left(b_{i}\right)$ and $C^{\prime}=\left(c_{i}\right)$, we have $\left[n b_{i}+n c_{j}, n b_{i}+n c_{j}+n-1\right] \cap A \neq \emptyset$ for each i, j.

- By Ramsey's Theorem, we may assume that there are $m_{1}, m_{2} \in[0, n-1]$ such that, for any $i<j$, we have $n b_{i}+n c_{j}+m_{1} \in A, n b_{j}+n c_{i}+m_{2} \in A$.

(2) implies (1)

■ For $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, set

$$
A_{[n]}:=\{x \in \mathbb{N}: A \cap[n x, n x+n-1] \neq \emptyset\} .
$$

■ It is relatively straightforward to check that, if $\mathrm{BD}(A)>0$, then for any $\epsilon>0$, there is $n \in \mathbb{N}$ such that $\operatorname{BD}\left(A_{[n]}\right)>1-\epsilon$.
■ Take $n \in \mathbb{N}$ such that $\operatorname{BD}\left(A_{[n]}\right)>1 / 2$ and take infinite B^{\prime}, C^{\prime} such that $B^{\prime}+C^{\prime} \subseteq A_{[n]}$, that is, writing $B^{\prime}=\left(b_{i}\right)$ and $C^{\prime}=\left(c_{i}\right)$, we have $\left[n b_{i}+n c_{j}, n b_{i}+n c_{j}+n-1\right] \cap A \neq \emptyset$ for each i, j.
\square By Ramsey's Theorem, we may assume that there are $m_{1}, m_{2} \in[0, n-1]$ such that, for any $i<j$, we have $n b_{i}+n c_{j}+m_{1} \in A, n b_{j}+n c_{i}+m_{2} \in A$.

(2) implies (1)

■ For $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, set

$$
A_{[n]}:=\{x \in \mathbb{N}: A \cap[n x, n x+n-1] \neq \emptyset\} .
$$

■ It is relatively straightforward to check that, if $\mathrm{BD}(A)>0$, then for any $\epsilon>0$, there is $n \in \mathbb{N}$ such that $\operatorname{BD}\left(A_{[n]}\right)>1-\epsilon$.

- Take $n \in \mathbb{N}$ such that $\operatorname{BD}\left(A_{[n]}\right)>1 / 2$ and take infinite B^{\prime}, C^{\prime} such that $B^{\prime}+C^{\prime} \subseteq A_{[n]}$, that is, writing $B^{\prime}=\left(b_{i}\right)$ and $C^{\prime}=\left(c_{i}\right)$, we have $\left[n b_{i}+n c_{j}, n b_{i}+n c_{j}+n-1\right] \cap A \neq \emptyset$ for each i, j.
■ By Ramsey's Theorem, we may assume that there are $m_{1}, m_{2} \in[0, n-1]$ such that, for any $i<j$, we have $n b_{i}+n c_{j}+m_{1} \in A, n b_{j}+n c_{i}+m_{2} \in A$.
■ Taking $B:=\left\{n b_{i}+m_{1}: i\right.$ is even $\}, C:=\left\{n c_{j}: j\right.$ is odd $\}$, and $k:=m_{1}-m_{2}$, we have $B+C \subseteq A \cup(A+k)$.

Nonstandard analysis

■ Our proofs use techniques from nonstandard analysis.

- But why?

■ Densities on natural numbers "feel like" measures but often lack many of the nice properties of measures.

- It is often useful to replace statements about densities by statements about measures.
- Case in point: Furstenberg's correspondence principle

■ It turns out that densities on sets of natural numbers are intimately related to certain measures on their nonstandard extensions, namely the Loeb measures.

1 History

2 Nonstandard Analysis

3 Proofs

An axiomatic approach to \mathbb{R}^{*}

We will work in a nonstandard universe \mathbb{R}^{*} that has the following properties:
$1(\mathbb{R} ;+, \cdot, 0,1,<)$ is an ordered subfield of $\left(\mathbb{R}^{*} ;+, \cdot, 0,1,<\right)$.
$2 \mathbb{R}^{*}$ has a positive infinitesimal element, that is, there is $\epsilon \in \mathbb{R}^{*}$ such that $\epsilon>0$ but $\epsilon<r$ for every $r \in \mathbb{R}^{>0}$.
3 For every $n \in \mathbb{N}$ and every function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, there is a "natural extension" $f:\left(\mathbb{R}^{*}\right)^{n} \rightarrow \mathbb{R}^{*}$. The natural extensions of the field operations $+, \cdot: \mathbb{R}^{2} \rightarrow \mathbb{R}$ coincide with the field operations in \mathbb{R}^{*}. Similarly, for every $A \subseteq \mathbb{R}^{n}$, there is a subset $A^{*} \subseteq\left(\mathbb{R}^{*}\right)^{n}$ such that $A^{*} \cap \mathbb{R}^{n}=A$.
$4 \mathbb{R}^{*}$, equipped with the above assignment of extensions of functions and subsets, "behaves logically" like \mathbb{R}.

Standard parts

$■$ Say that $x \in \mathbb{R}^{*}$ is finite if $|x| \leq n$ for some $n \in \mathbb{N}$.
$■$ For example, for any $r \in \mathbb{R}$ and any (positive or negative) infinitesimal $\epsilon, r+\epsilon$ is finite.

- Conversely:
\square
If $x \in \mathbb{R}^{*}$ is finite, then there is a unique $r \in \mathbb{R}^{>0}$ such that $x-r$ is infinitesimal. We call r the standard part of x and denote it by $\operatorname{st}(x)$.

> Proof.
> WLOG, $x>0$. Let $A:=\left\{r \in \mathbb{R}^{>0}: r<x\right\}$. Then $0 \in A$ and A is bounded above (since x is finite). By the completeness of the reals, $\sup (A)$ exists. Check that $\operatorname{st}(x)=\sup (A)$

Standard parts

■ Say that $x \in \mathbb{R}^{*}$ is finite if $|x| \leq n$ for some $n \in \mathbb{N}$.
$■$ For example, for any $r \in \mathbb{R}$ and any (positive or negative) infinitesimal $\epsilon, r+\epsilon$ is finite.
■ Conversely:

Fact

If $x \in \mathbb{R}^{*}$ is finite, then there is a unique $r \in \mathbb{R}^{>0}$ such that $x-r$ is infinitesimal. We call r the standard part of x and denote it by $\operatorname{st}(x)$.

Proof.

WLOG, $x>0$. Let $A:=\left\{r \in \mathbb{R}^{>0}: r<x\right\}$. Then $0 \in A$ and A is bounded above (since x is finite). By the completeness of the reals, $\sup (A)$ exists. Check that $\operatorname{st}(x)=\sup (A)$.

Extending sequences

$■$ Recall that every function $f: \mathbb{R} \rightarrow \mathbb{R}$ has a nonstandard extension $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$.
■ Partial functions $f: A \rightarrow \mathbb{R}$ have nonstandard extensions $f: A^{*} \rightarrow \mathbb{R}^{*}$ as well.
$■$ In particular, if $\left(a_{n}: n \in \mathbb{N}\right)$ is a sequence of reals, viewing $\left(a_{n}\right)$ as the function $a: \mathbb{N} \rightarrow \mathbb{R}$, we get a nonstandard extension $a: \mathbb{N}^{*} \rightarrow \mathbb{R}^{*}$. We also write this in sequence notation ($a_{n}: n \in \mathbb{N}^{*}$) and refer to a_{ν} for $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ as an extended term of the sequence.

Subsequential limits

Lemma

If $\left(a_{n}\right)$ is a sequence and $L \in \mathbb{R}$, then L is a subsequential limit of $\left(a_{n}\right)$ if and only if there is $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ such that a_{ν} is finite and $\operatorname{st}\left(a_{\nu}\right)=L$.

Proof of the "if" direction.

Set $L:=\operatorname{st}\left(a_{\nu}\right)$. Then for every $m \in \mathbb{N}$ and $\epsilon \in \mathbb{R}^{>0}, \mathbb{R}^{*}$ believes the statement "there is $n \in \mathbb{N}^{*}$ such that $n>m$ and $\left|a_{n}-L\right|<\epsilon$." Consequently, \mathbb{R} believes the statement "there is $n \in \mathbb{N}$ such that $n>m$ and $\left|a_{n}-L\right|<\epsilon$."

Corollary (Bolzano-Weierstrauss)

Fvery bounded sequence has a convergent subsequence.

Subsequential limits

Lemma

If $\left(a_{n}\right)$ is a sequence and $L \in \mathbb{R}$, then L is a subsequential limit of $\left(a_{n}\right)$ if and only if there is $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ such that a_{ν} is finite and $\operatorname{st}\left(a_{\nu}\right)=L$.

Proof of the "ff" direction.

Set $L:=\operatorname{st}\left(a_{\nu}\right)$. Then for every $m \in \mathbb{N}$ and $\epsilon \in \mathbb{R}^{>0}, \mathbb{R}^{*}$ believes the statement "there is $n \in \mathbb{N}^{*}$ such that $n>m$ and $\left|a_{n}-L\right|<\epsilon$."
Consequently, \mathbb{R} believes the statement "there is $n \in \mathbb{N}$ such that $n>m$ and $\left|a_{n}-L\right|<\epsilon$."

Corollary (Bolzano-Weierstrauss)

Every bounded sequence has a convergent subsequence.

Nonstandard characterization of densities

■ If $\left(a_{n}\right)$ is a bounded sequence, we see that

$$
\liminf a_{n}=\min \left\{\operatorname{st}\left(a_{\nu}\right): \nu \in \mathbb{N}^{*} \backslash \mathbb{N}\right\}
$$

and

$$
\lim \sup a_{n}=\max \left\{\operatorname{st}\left(a_{\nu}\right): \nu \in \mathbb{N}^{*} \backslash \mathbb{N}\right\} .
$$

■ Consequently, for $A \subseteq \mathbb{N}$, we have

and

Nonstandard characterization of densities

■ If $\left(a_{n}\right)$ is a bounded sequence, we see that

$$
\liminf a_{n}=\min \left\{\operatorname{st}\left(a_{\nu}\right): \nu \in \mathbb{N}^{*} \backslash \mathbb{N}\right\}
$$

and

$$
\lim \sup a_{n}=\max \left\{\operatorname{st}\left(a_{\nu}\right): \nu \in \mathbb{N}^{*} \backslash \mathbb{N}\right\}
$$

■ Consequently, for $A \subseteq \mathbb{N}$, we have

$$
\underline{d}(A)=\min \left\{s t\left(\frac{\left|A^{*} \cap[1, \nu]\right|}{\nu}\right): \nu \in \mathbb{N}^{*} \backslash \mathbb{N}\right\}
$$

and

$$
\bar{d}(A)=\max \left\{s t\left(\frac{\left|A^{*} \cap[1, \nu]\right|}{\nu}\right): \nu \in \mathbb{N}^{*} \backslash \mathbb{N}\right\} .
$$

Internal sets

- The point of passing to the nonstandard framework is that the quantities st $\left(\frac{\left|A^{*} \cap[1, \nu]\right|}{\nu}\right)$ appearing in the nonstandard characterizations of the densities are actually certain measures on A^{*}, called Loeb measures. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.

Internal sets

- The point of passing to the nonstandard framework is that the quantities st $\left(\frac{\left|A^{*} \cap[1, \nu]\right|}{\nu}\right)$ appearing in the nonstandard characterizations of the densities are actually certain measures on A^{*}, called Loeb measures. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.
■ Internal subsets of \mathbb{R}^{*} are the "definable" subsets of \mathbb{R}^{*} in some precise way that we won't define. They "logically behave" like ordinary subsets of \mathbb{R}. For example, $A^{*} \cap[1, \nu]$ is an internal set.
internal subsets of \mathbb{R}^{*} bounded above have a sup. But what wouldthe sup of the infinitesimals be?
An internal set is hyperfinite if there is an internal bijection
between it and an interval of the form $[1, \nu]$ from \mathbb{N}^{*}. Internal
subsets of hyperfinite sets are hyperfinite, so, e.g., $A^{*} \cap[1, \nu]$ is
hyperfinite.

Internal sets

- The point of passing to the nonstandard framework is that the quantities st $\left(\frac{\left|A^{*} \cap[1, \nu]\right|}{\nu}\right)$ appearing in the nonstandard characterizations of the densities are actually certain measures on A^{*}, called Loeb measures. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.
■ Internal subsets of \mathbb{R}^{*} are the "definable" subsets of \mathbb{R}^{*} in some precise way that we won't define. They "logically behave" like ordinary subsets of \mathbb{R}. For example, $A^{*} \cap[1, \nu]$ is an internal set.
■ The set of all infinitesimals is not internal. Indeed, nonempty internal subsets of \mathbb{R}^{*} bounded above have a sup. But what would the sup of the infinitesimals be?

> An internal
between it
subsets of
hyperfinite.

Internal sets

- The point of passing to the nonstandard framework is that the quantities st $\left(\frac{\left|A^{*} \cap[1, \nu]\right|}{\nu}\right)$ appearing in the nonstandard characterizations of the densities are actually certain measures on A^{*}, called Loeb measures. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.
■ Internal subsets of \mathbb{R}^{*} are the "definable" subsets of \mathbb{R}^{*} in some precise way that we won't define. They "logically behave" like ordinary subsets of \mathbb{R}. For example, $A^{*} \cap[1, \nu]$ is an internal set.
- The set of all infinitesimals is not internal. Indeed, nonempty internal subsets of \mathbb{R}^{*} bounded above have a sup. But what would the sup of the infinitesimals be?
\square An internal set is hyperfinite if there is an internal bijection between it and an interval of the form $[1, \nu]$ from \mathbb{N}^{*}. Internal subsets of hyperfinite sets are hyperfinite, so, e.g., $A^{*} \cap[1, \nu]$ is hyperfinite.

Loeb measure

$■$ Suppose that $E \subseteq \mathbb{R}^{*}$ is hyperfinite. Then there is a unique $\nu \in \mathbb{N}^{*}$ such that there is an internal bijection $E \rightarrow[1, \nu]$; we call ν the internal cardinality of E and denote it by $|E|$.

- Fix a hyperfinite set E and define a function $\mu_{E}: \mathcal{P}_{\text {int }}(E) \rightarrow[0,1]$ by $\mu(A):=\mathrm{st}\left(\frac{|A|}{|E|}\right)$. ($\mathcal{P}_{\mathrm{int}}$ is the internal powerset.)
■ Then μ_{E} is a finitely additive measure. Under a very mild assumption on the nonstandard extension, it can be shown that μ_{E} satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ-algebra containing the internal subsets of E; this measure is called the Loeb measure.
- Cool fact: Consider the function $f:[1, \nu] \rightarrow[0,1]$ given by $f(k):=s t\left(\frac{k}{\nu}\right)$. Then the measure on $[0,1]$ induced by the Loeb measure on $[1, \nu]$ is the usual Lebesgue measure.

Loeb measure

■ Suppose that $E \subseteq \mathbb{R}^{*}$ is hyperfinite. Then there is a unique $\nu \in \mathbb{N}^{*}$ such that there is an internal bijection $E \rightarrow[1, \nu]$; we call ν the internal cardinality of E and denote it by $|E|$.
$■$ Fix a hyperfinite set E and define a function $\mu_{E}: \mathcal{P}_{\text {int }}(E) \rightarrow[0,1]$ by $\mu(A):=$ st $\left(\frac{|A|}{|E|}\right) \cdot\left(\mathcal{P}_{\text {int }}\right.$ is the internal powerset.)

Then μ_{E} is a finitely additive measure. Under a very mild

 assumption on the nonstandard extension, it can be shown that μ_{E} satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ-algebra containing the internal subsets of E; this measure is called the Loeb measure.- Cool fact: Consider the function $f:[1, \nu] \rightarrow[0,1]$ given by $f(k):=\operatorname{st}\left(\frac{k}{\nu}\right)$. Then the measure on $[0,1]$ induced by the Loeb measure on $[1, \nu]$ is the usual Lebesgue measure.

Loeb measure

■ Suppose that $E \subseteq \mathbb{R}^{*}$ is hyperfinite. Then there is a unique $\nu \in \mathbb{N}^{*}$ such that there is an internal bijection $E \rightarrow[1, \nu]$; we call ν the internal cardinality of E and denote it by $|E|$.
$■$ Fix a hyperfinite set E and define a function $\mu_{E}: \mathcal{P}_{\text {int }}(E) \rightarrow[0,1]$ by $\mu(A):=$ st $\left(\frac{|A|}{|E|}\right) \cdot\left(\mathcal{P}_{\text {int }}\right.$ is the internal powerset.)
■ Then μ_{E} is a finitely additive measure. Under a very mild assumption on the nonstandard extension, it can be shown that μ_{E} satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ-algebra containing the internal subsets of E; this measure is called the Loeb measure.

Loeb measure

■ Suppose that $E \subseteq \mathbb{R}^{*}$ is hyperfinite. Then there is a unique $\nu \in \mathbb{N}^{*}$ such that there is an internal bijection $E \rightarrow[1, \nu]$; we call ν the internal cardinality of E and denote it by $|E|$.
$■$ Fix a hyperfinite set E and define a function $\mu_{E}: \mathcal{P}_{\text {int }}(E) \rightarrow[0,1]$ by $\mu(A):=$ st $\left(\frac{|A|}{|E|}\right) \cdot\left(\mathcal{P}_{\text {int }}\right.$ is the internal powerset.)
■ Then μ_{E} is a finitely additive measure. Under a very mild assumption on the nonstandard extension, it can be shown that μ_{E} satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ-algebra containing the internal subsets of E; this measure is called the Loeb measure.
\square Cool fact: Consider the function $f:[1, \nu] \rightarrow[0,1]$ given by $f(k):=\operatorname{st}\left(\frac{k}{\nu}\right)$. Then the measure on $[0,1]$ induced by the Loeb measure on $[1, \nu]$ is the usual Lebesgue measure.

Nonstandard characterization of densities again

■ For $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$, let μ_{ν} be the Loeb measure on $[1, \nu]$.
■ For $A \subseteq \mathbb{N}$, we have

$$
\underline{d}(A)=\min \left\{\mu_{\nu}\left(A^{*} \cap[1, \nu]\right): \nu \in \mathbb{N}^{*} \backslash \mathbb{N}\right\}
$$

and

$$
\bar{d}(A)=\max \left\{\mu_{\nu}\left(A^{*} \cap[1, \nu]\right): \nu \in \mathbb{N}^{*} \backslash \mathbb{N}\right\} .
$$

1 History

2 Nonstandard Analysis

3 Proofs

Reminder of the Main Theorem

Theorem

Suppose that $\mathrm{BD}(A)>\frac{1}{2}$. Then there exists infinite $B, C \subseteq \mathbb{N}$ such that $B+C \subseteq A$.

The Key Technical Lemma

Supnose that $\mathrm{BD}(\Lambda):-\alpha>0$ and that $\left(I_{n}\right)$ is a sequence of intervals with $\left|I_{n}\right| \rightarrow \infty$ such that $\lim _{n \rightarrow \infty} \frac{\left|A \cap I_{n}\right|}{I_{n}}=\alpha$. Then there is $L \subseteq \mathbb{N}$ such that:
$1 \limsup _{n \rightarrow \infty} \frac{\left|\operatorname{Ln} l_{n}\right|}{l_{n} \mid} \geq \alpha_{\text {; }}$
2 for every finite $F \subseteq L$, we have $A \cap \cap_{x \in F}(A-x)$ is infinite.

Reminder of the Main Theorem

Theorem

Suppose that $\mathrm{BD}(A)>\frac{1}{2}$. Then there exists infinite $B, C \subseteq \mathbb{N}$ such that $B+C \subseteq A$.

The Key Technical Lemma

Suppose that $\mathrm{BD}(A):=\alpha>0$ and that $\left(I_{n}\right)$ is a sequence of intervals with $\left|I_{n}\right| \rightarrow \infty$ such that $\lim _{n \rightarrow \infty} \frac{\left|A \cap I_{n}\right|}{\left|I_{n}\right|}=\alpha$. Then there is $L \subseteq \mathbb{N}$ such that:
1 limsup $\sin _{n \rightarrow \infty} \frac{\left|L \cap I_{n}\right|}{\left|l_{n}\right|} \geq \alpha$;
2 for every finite $F \subseteq L$, we have $A \cap \bigcap_{x \in F}(A-x)$ is infinite.

Bergelson's Theorem

The key measure-theoretic result that we will use is the following theorem of Bergelson:

Fact

Suppose that (X, \mathcal{B}, μ) is a probability space and $\left(A_{n}\right)$ is a sequence of measurable sets for which there is $a \in(0,1]$ such that $\mu\left(A_{n}\right) \geq a$ for all n. Then there is infinite $P \subseteq \mathbb{N}$ such that, for every finite $F \subseteq P$, we have

$$
\mu\left(\bigcap_{n \in F} A_{n}\right)>0 .
$$

Proof of main theorem

\square Fix $\left(I_{n}\right)$ witnessing that $\mathrm{BD}(A)=\alpha>1 / 2$. Fix $L=\left(\ell_{n}\right)$ satisfying the conclusion of the key technical lemma.

- Recursively define $D:=\left(d_{n}\right) \subseteq A$ such that $\ell_{i}+d_{n} \in A$ for $i \leq n$.

■ Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ such that $\mu\left(L^{*} \cap I_{\nu}\right)=\operatorname{st}\left(\frac{\left|L^{*} \cap I_{\nu}\right|}{\left|I_{\nu}\right|}\right) \geq \alpha$.
■ Then, for every $n \in \mathbb{N}$, we have

$$
\mu\left(L^{*} \cap\left(A^{*}-d_{n}\right) \cap I_{\nu}\right) \geq 2 \alpha-1>0
$$

■ By Bergelson, after passing to a subsequence, we may assume that, for all $n \in \mathbb{N}$, we have

Proof of main theorem

\square Fix $\left(I_{n}\right)$ witnessing that $\mathrm{BD}(A)=\alpha>1 / 2$. Fix $L=\left(\ell_{n}\right)$ satisfying the conclusion of the key technical lemma.
\square Recursively define $D:=\left(d_{n}\right) \subseteq A$ such that $\ell_{i}+d_{n} \in A$ for $i \leq n$.

- $\operatorname{Fix} \nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ such that $\mu\left(L^{*}\right.$
- Then, for every $n \in \mathbb{N}$, we have

■ By Bergelson, after passing to a subsequence, we may assume that, for all $n \in \mathbb{N}$, we have

Proof of main theorem

\square Fix $\left(I_{n}\right)$ witnessing that $\mathrm{BD}(A)=\alpha>1 / 2$. Fix $L=\left(\ell_{n}\right)$ satisfying the conclusion of the key technical lemma.
\square Recursively define $D:=\left(d_{n}\right) \subseteq A$ such that $\ell_{i}+d_{n} \in A$ for $i \leq n$.
■ Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ such that $\mu\left(L^{*} \cap I_{\nu}\right)=\operatorname{st}\left(\frac{\left|L^{*} \cap I_{\nu}\right|}{\left|I_{\nu}\right|}\right) \geq \alpha$.

- Then, for every $n \in \mathbb{N}$, we have

■ By Bergelson, after passing to a subsequence, we may assume that, for all $n \in \mathbb{N}$, we have

Proof of main theorem

\square Fix $\left(I_{n}\right)$ witnessing that $\mathrm{BD}(A)=\alpha>1 / 2$. Fix $L=\left(\ell_{n}\right)$ satisfying the conclusion of the key technical lemma.
■ Recursively define $D:=\left(d_{n}\right) \subseteq A$ such that $\ell_{i}+d_{n} \in A$ for $i \leq n$.
■ Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ such that $\mu\left(L^{*} \cap I_{\nu}\right)=\operatorname{st}\left(\frac{\left|L^{*} \cap I_{\nu}\right|}{\left|I_{\nu}\right|}\right) \geq \alpha$.

- Then, for every $n \in \mathbb{N}$, we have

$$
\mu\left(L^{*} \cap\left(A^{*}-d_{n}\right) \cap I_{\nu}\right) \geq 2 \alpha-1>0
$$

■ By Bergelson, after passing to a subsequence, we may assume that, for all $n \in \mathbb{N}$, we have

Proof of main theorem

\square Fix $\left(I_{n}\right)$ witnessing that $\mathrm{BD}(A)=\alpha>1 / 2$. Fix $L=\left(\ell_{n}\right)$ satisfying the conclusion of the key technical lemma.
\square Recursively define $D:=\left(d_{n}\right) \subseteq A$ such that $\ell_{i}+d_{n} \in A$ for $i \leq n$.
■ Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ such that $\mu\left(L^{*} \cap I_{\nu}\right)=\operatorname{st}\left(\frac{\left|L^{*} \cap I_{\nu}\right|}{\left|I_{\nu}\right|}\right) \geq \alpha$.

- Then, for every $n \in \mathbb{N}$, we have

$$
\mu\left(L^{*} \cap\left(A^{*}-d_{n}\right) \cap I_{\nu}\right) \geq 2 \alpha-1>0
$$

■ By Bergelson, after passing to a subsequence, we may assume that, for all $n \in \mathbb{N}$, we have

$$
\mu\left(L^{*} \cap \bigcap_{i \leq n}\left(A^{*}-d_{i}\right) \cap I_{\nu}\right)>0 .
$$

Proof of main theorem (cont'd)

- The takeaway: for every $n \in \mathbb{N}$, we have $L \cap \bigcap_{i \leq n}\left(A-d_{i}\right)$ is infinite.
- We are now home free. Pick $b_{1} \in L$ arbitrary and take $c_{1} \in D$ such that $b_{1}+c_{1} \in A$.
- Now take $b_{2} \in\left(L \cap\left(A-c_{1}\right)\right) \backslash\left\{b_{1}\right\}$ and take $c_{2} \in D$ such that $b_{1}+c_{2}, b_{2}+c_{2} \in A$.
- Now take $b_{3} \in\left(L \cap\left(A-c_{1}\right) \cap\left(A-c_{2}\right)\right) \backslash\left\{b_{1}, b_{2}\right\}$ and take $c_{3} \in D$ such that $b_{1}+c_{3}, b_{2}+c_{3}, b_{3}+c_{3} \in A$.
- Keep going.

Proof of main theorem (cont'd)

- The takeaway: for every $n \in \mathbb{N}$, we have $L \cap \bigcap_{i \leq n}\left(A-d_{i}\right)$ is infinite.
$■$ We are now home free. Pick $b_{1} \in L$ arbitrary and take $c_{1} \in D$ such that $b_{1}+c_{1} \in A$.
- Now take $b_{2} \in\left(L \cap\left(A-c_{1}\right)\right) \backslash\left\{b_{1}\right\}$ and take $c_{2} \in D$ such that $b_{1}+c_{2}, b_{2}+c_{2} \in A$.
- Now take $b_{3} \in\left(L \cap\left(A-c_{1}\right) \cap\left(A-c_{2}\right)\right) \backslash\left\{b_{1}, b_{2}\right\}$ and take $c_{3} \in D$ such that $b_{1}+c_{3}, b_{2}+c_{3}, b_{3}+c_{3} \in A$.
- Keep going.

Proof of main theorem (cont'd)

- The takeaway: for every $n \in \mathbb{N}$, we have $L \cap \bigcap_{i \leq n}\left(A-d_{i}\right)$ is infinite.
\square We are now home free. Pick $b_{1} \in L$ arbitrary and take $c_{1} \in D$ such that $b_{1}+c_{1} \in A$.
■ Now take $b_{2} \in\left(L \cap\left(A-c_{1}\right)\right) \backslash\left\{b_{1}\right\}$ and take $c_{2} \in D$ such that $b_{1}+c_{2}, b_{2}+c_{2} \in A$.

such that $b_{1}+c_{3}, b_{2}+c_{3}, b_{3}+c_{3} \in A$.
- Keep going.

Proof of main theorem (cont'd)

- The takeaway: for every $n \in \mathbb{N}$, we have $L \cap \bigcap_{i \leq n}\left(A-d_{i}\right)$ is infinite.
\square We are now home free. Pick $b_{1} \in L$ arbitrary and take $c_{1} \in D$ such that $b_{1}+c_{1} \in A$.
■ Now take $b_{2} \in\left(L \cap\left(A-c_{1}\right)\right) \backslash\left\{b_{1}\right\}$ and take $c_{2} \in D$ such that $b_{1}+c_{2}, b_{2}+c_{2} \in A$.
\square Now take $b_{3} \in\left(L \cap\left(A-c_{1}\right) \cap\left(A-c_{2}\right)\right) \backslash\left\{b_{1}, b_{2}\right\}$ and take $c_{3} \in D$ such that $b_{1}+c_{3}, b_{2}+c_{3}, b_{3}+c_{3} \in A$.

Proof of main theorem (cont'd)

- The takeaway: for every $n \in \mathbb{N}$, we have $L \cap \bigcap_{i \leq n}\left(A-d_{i}\right)$ is infinite.
\square We are now home free. Pick $b_{1} \in L$ arbitrary and take $c_{1} \in D$ such that $b_{1}+c_{1} \in A$.
■ Now take $b_{2} \in\left(L \cap\left(A-c_{1}\right)\right) \backslash\left\{b_{1}\right\}$ and take $c_{2} \in D$ such that $b_{1}+c_{2}, b_{2}+c_{2} \in A$.
\square Now take $b_{3} \in\left(L \cap\left(A-c_{1}\right) \cap\left(A-c_{2}\right)\right) \backslash\left\{b_{1}, b_{2}\right\}$ and take $c_{3} \in D$ such that $b_{1}+c_{3}, b_{2}+c_{3}, b_{3}+c_{3} \in A$.
■ Keep going...

Proof of the key technical lemma

The Key Technical Lemma

Suppose that $\mathrm{BD}(A):=\alpha>0$ and that $\left(I_{n}\right)$ is a sequence of intervals with $\left|I_{n}\right| \rightarrow \infty$ such that $\lim _{n \rightarrow \infty} \frac{\left|A \cap I_{n}\right|}{\left|I_{n}\right|}=\alpha$. Then there is $L \subseteq \mathbb{N}$ such that:
$1 \lim \sup _{n \rightarrow \infty} \frac{\left|L \cap I_{n}\right|}{\left|I_{n}\right|} \geq \alpha$;
2 for every finite $F \subseteq L$, we have $A \cap \bigcap_{x \in F}(A-x)$ is infinite.
We first observe that it is enough to find L satisfying (1) and
(2') There is $x_{0} \in A^{*} \backslash A$ such that $x_{0}+L \subseteq A^{*}$

Proof of the key technical lemma

The Key Technical Lemma

Suppose that $\mathrm{BD}(A):=\alpha>0$ and that $\left(I_{n}\right)$ is a sequence of intervals with $\left|I_{n}\right| \rightarrow \infty$ such that $\lim _{n \rightarrow \infty} \frac{\left|A \cap I_{n}\right|}{\left|I_{n}\right|}=\alpha$. Then there is $L \subseteq \mathbb{N}$ such that:
$1 \lim \sup _{n \rightarrow \infty} \frac{\left|L \cap I_{n}\right|}{\left|I_{n}\right|} \geq \alpha$;
2 for every finite $F \subseteq L$, we have $A \cap \bigcap_{x \in F}(A-x)$ is infinite.
We first observe that it is enough to find L satisfying (1) and (2') There is $x_{0} \in A^{*} \backslash A$ such that $x_{0}+L \subseteq A^{*}$.

Proof of the key technical lemma (cont'd)

■ Notation: For $m \in \mathbb{N}^{*}$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^{*}$, we set $\delta_{m}(X):=\frac{|X|}{\left|\left.\right|_{m}\right|}$.

- Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ and standard $\epsilon \in(0,1 / 2)$.

■ We seek to construct internal sets $X_{1}, X_{2}, \ldots \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots$ such that $\mu_{\nu}\left(X_{j}\right) \geq 1-\epsilon^{j}$, and, for each $x \in X_{j}$, we have $\delta_{n_{j}}\left(A^{*} \cap\left(x+I_{n_{j}}\right)\right) \geq \alpha-\frac{1}{j}$
■ Suppose we are successful and let $X:=\bigcap_{j} X_{j}$. Since $\mu(X)>0$, we can pick $y_{0} \in X \backslash \mathbb{N}$.

- We can find $x_{0} \in A^{*}$ such that $x_{0} \geq y_{0}$ and $x_{0}-y_{0} \in \mathbb{N}$.
\square Set $L:=\left(A^{*} \cap\left(x_{0}+\mathbb{N}\right)\right)-x_{0}$. Clearly L satisfies (2').
- For (1), notice

Proof of the key technical lemma (cont'd)

■ Notation: For $m \in \mathbb{N}^{*}$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^{*}$, we set $\delta_{m}(X):=\frac{|X|}{\left|\left.\right|_{m}\right|}$.
\square Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ and standard $\epsilon \in(0,1 / 2)$.

- We seek to construct internal sets $X_{1}, X_{2}, \ldots \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots$ such that $\mu_{\nu}\left(X_{j}\right) \geq 1-\epsilon^{j}$, and, for each $x \in X_{j}$, we have $\delta_{n_{j}}\left(A^{*} \cap\left(x+I_{n_{j}}\right)\right) \geq \alpha-\frac{1}{i}$
- Suppose we are successful and let $X:=\bigcap_{j} X_{j}$. Since $\mu(X)>0$, we can pick $y_{0} \in X \backslash \mathbb{N}$.
- We can find $x_{0} \in A^{*}$ such that $x_{0} \geq y_{0}$ and $x_{0}-y_{0} \in \mathbb{N}$.
- Set $L:=\left(A^{*} \cap\left(x_{0}+\mathbb{N}\right)\right)-x_{0}$. Clearly L satisfies (2')
- For (1), notice
$\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(L \cap I_{n_{i}}\right)=\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(A^{*} \cap\left(x_{0}+I_{n_{i}}\right)\right)=\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(A^{*} \cap\left(y_{0}+I_{n_{i}}\right)\right) \geq \alpha$

Proof of the key technical lemma (cont'd)

■ Notation: For $m \in \mathbb{N}^{*}$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^{*}$, we set $\delta_{m}(X):=\frac{|X|}{\left|\left.\right|_{m}\right|}$.
■ Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ and standard $\epsilon \in(0,1 / 2)$.
■ We seek to construct internal sets $X_{1}, X_{2}, \ldots \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots$ such that $\mu_{\nu}\left(X_{j}\right) \geq 1-\epsilon^{j}$, and, for each $x \in X_{j}$, we have $\delta_{n_{j}}\left(A^{*} \cap\left(x+I_{n_{j}}\right)\right) \geq \alpha-\frac{1}{j}$.

- Suppose we are successful and let $X:=\bigcap_{j} X_{j}$. Since $\mu(X)>0$, we can pick $y_{0} \in X$
- We can find $x_{0} \in A^{*}$ such that $x_{0} \geq y_{0}$ and $x_{0}-y_{0} \in \mathbb{N}$ - Set $L:=\left(A^{*} \cap\left(x_{0}+\mathbb{N}\right)\right)-x_{0}$. Clearly L satisfies $\left(2^{\prime}\right)$.
- For (1), notice

Proof of the key technical lemma (cont'd)

\square Notation: For $m \in \mathbb{N}^{*}$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^{*}$, we set $\delta_{m}(X):=\frac{|X|}{\left|\left.\right|_{m}\right|}$.
■ Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ and standard $\epsilon \in(0,1 / 2)$.
■ We seek to construct internal sets $X_{1}, X_{2}, \ldots \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots$ such that $\mu_{\nu}\left(X_{j}\right) \geq 1-\epsilon^{j}$, and, for each $x \in X_{j}$, we have $\delta_{n_{j}}\left(A^{*} \cap\left(x+I_{n_{j}}\right)\right) \geq \alpha-\frac{1}{j}$.
$■$ Suppose we are successful and let $X:=\bigcap_{j} X_{j}$. Since $\mu(X)>0$, we can pick $y_{0} \in X \backslash \mathbb{N}$.

- We can find $x_{0} \in A^{*}$ such that $x_{0} \geq y_{0}$ and $x_{0}-y_{0} \in \mathbb{N}$ ■ Set $L:=\left(A^{*} \cap\left(x_{0}+\mathbb{N}\right)\right)-x_{0}$. Clearly L satisfies (2').
- For (1), notice

Proof of the key technical lemma (cont'd)

\square Notation: For $m \in \mathbb{N}^{*}$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^{*}$, we set $\delta_{m}(X):=\frac{|X|}{\left|\left.\right|_{m}\right|}$.
■ Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ and standard $\epsilon \in(0,1 / 2)$.
■ We seek to construct internal sets $X_{1}, X_{2}, \ldots \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots$ such that $\mu_{\nu}\left(X_{j}\right) \geq 1-\epsilon^{j}$, and, for each $x \in X_{j}$, we have $\delta_{n_{j}}\left(A^{*} \cap\left(x+I_{n_{j}}\right)\right) \geq \alpha-\frac{1}{j}$.
■ Suppose we are successful and let $X:=\bigcap_{j} X_{j}$. Since $\mu(X)>0$, we can pick $y_{0} \in X \backslash \mathbb{N}$.
\square We can find $x_{0} \in A^{*}$ such that $x_{0} \geq y_{0}$ and $x_{0}-y_{0} \in \mathbb{N}$.

- Set $L:=\left(A^{*} \cap\left(x_{0}+\mathbb{N}\right)\right)-x_{0}$. Clearly L satisfies (2')
- For (1), notice
$\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(L \cap I_{n_{i}}\right)=\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(A^{*} \cap\left(x_{0}+I_{n_{i}}\right)\right)=\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(A^{*} \cap\left(y_{0}+I_{n_{i}}\right)\right) \geq \alpha$

Proof of the key technical lemma (cont'd)

■ Notation: For $m \in \mathbb{N}^{*}$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^{*}$, we set $\delta_{m}(X):=\frac{|X|}{\left||m|_{m}\right|}$.
■ Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ and standard $\epsilon \in(0,1 / 2)$.
$■$ We seek to construct internal sets $X_{1}, X_{2}, \ldots \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots$ such that $\mu_{\nu}\left(X_{j}\right) \geq 1-\epsilon^{j}$, and, for each $x \in X_{j}$, we have $\delta_{n_{j}}\left(A^{*} \cap\left(x+I_{n_{j}}\right)\right) \geq \alpha-\frac{1}{j}$.
$■$ Suppose we are successful and let $X:=\bigcap_{j} X_{j}$. Since $\mu(X)>0$, we can pick $y_{0} \in X \backslash \mathbb{N}$.
\square We can find $x_{0} \in A^{*}$ such that $x_{0} \geq y_{0}$ and $x_{0}-y_{0} \in \mathbb{N}$.
■ Set $L:=\left(A^{*} \cap\left(x_{0}+\mathbb{N}\right)\right)-x_{0}$. Clearly L satisfies (2').

- For (1), notice
$\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(L \cap I_{n_{i}}\right)=\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(A^{*} \cap\left(x_{0}+I_{n_{i}}\right)\right)=\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(A^{*} \cap\left(y_{0}+I_{n_{i}}\right)\right) \geq \alpha$

Proof of the key technical lemma (cont’d)

■ Notation: For $m \in \mathbb{N}^{*}$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^{*}$, we set $\delta_{m}(X):=\frac{|X|}{\left|\left.\right|_{m}\right|}$.
■ Fix $\nu \in \mathbb{N}^{*} \backslash \mathbb{N}$ and standard $\epsilon \in(0,1 / 2)$.
$■$ We seek to construct internal sets $X_{1}, X_{2}, \ldots \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots$ such that $\mu_{\nu}\left(X_{j}\right) \geq 1-\epsilon^{j}$, and, for each $x \in X_{j}$, we have $\delta_{n_{j}}\left(A^{*} \cap\left(x+I_{n_{j}}\right)\right) \geq \alpha-\frac{1}{j}$.
$■$ Suppose we are successful and let $X:=\bigcap_{j} X_{j}$. Since $\mu(X)>0$, we can pick $y_{0} \in X \backslash \mathbb{N}$.
\square We can find $x_{0} \in A^{*}$ such that $x_{0} \geq y_{0}$ and $x_{0}-y_{0} \in \mathbb{N}$.
■ Set $L:=\left(A^{*} \cap\left(x_{0}+\mathbb{N}\right)\right)-x_{0}$. Clearly L satisfies (2').

- For (1), notice
$\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(L \cap I_{n_{i}}\right)=\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(A^{*} \cap\left(x_{0}+I_{n_{i}}\right)\right)=\lim _{i \rightarrow \infty} \delta_{n_{i}}\left(A^{*} \cap\left(y_{0}+I_{n_{i}}\right)\right) \geq \alpha$.

Proof of the key technical lemma (cont'd)

■ Suppose we have constructed internal sets $X_{1}, X_{2}, \ldots, X_{i-1} \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots<n_{i-1}$ with the desired properties.

- Fix $K \in \mathbb{N}^{*} \backslash \mathbb{N}$ and set Z to be the set of all $M \in \mathbb{N}^{*}$ such that:
- Then Z is internal. An appropriate choice of K and a calculation (to be done on the next slide) shows that Z contains all elements of $\mathbb{N}^{*} \backslash \mathbb{N}$ below K.
- By underflow, we must have $Z \cap \mathbb{N} \neq \emptyset$. Take $n_{i} \in Z \cap \mathbb{N}$ and define X_{i} as it should be.

Proof of the key technical lemma (cont'd)

■ Suppose we have constructed internal sets $X_{1}, X_{2}, \ldots, X_{i-1} \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots<n_{i-1}$ with the desired properties.
■ Fix $K \in \mathbb{N}^{*} \backslash \mathbb{N}$ and set Z to be the set of all $M \in \mathbb{N}^{*}$ such that:

- $n_{i-1}<M \leq K$;
- $\delta_{\nu}\left(\left\{x \in I_{\nu}: \delta_{M}\left(A^{*} \cap\left(x+I_{M}\right)\right) \geq \alpha-\frac{1}{i}\right\}\right)>1-\epsilon^{i}$.
- Then Z is internal. An appropriate choice of K and a calculation (to be done on the next slide) shows that Z contains all elements of $\mathbb{N}^{*} \backslash \mathbb{N}$ below K.
- By underflow, we must have $Z \cap \mathbb{N} \neq \emptyset$. Take $n_{i} \in Z \cap \mathbb{N}$ and define X_{i} as it should be.

Proof of the key technical lemma (cont'd)

■ Suppose we have constructed internal sets $X_{1}, X_{2}, \ldots, X_{i-1} \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots<n_{i-1}$ with the desired properties.
■ Fix $K \in \mathbb{N}^{*} \backslash \mathbb{N}$ and set Z to be the set of all $M \in \mathbb{N}^{*}$ such that:

- $n_{i-1}<M \leq K$;
- $\delta_{\nu}\left(\left\{x \in I_{\nu}: \delta_{M}\left(A^{*} \cap\left(x+I_{M}\right)\right) \geq \alpha-\frac{1}{i}\right\}\right)>1-\epsilon^{i}$.

■ Then Z is internal. An appropriate choice of K and a calculation (to be done on the next slide) shows that Z contains all elements of $\mathbb{N}^{*} \backslash \mathbb{N}$ below K.

- By underflow, we must have $Z \cap \mathbb{N} \neq \emptyset$. Take $n_{i} \in Z \cap \mathbb{N}$ and define X_{i} as it should be.

Proof of the key technical lemma (cont'd)

■ Suppose we have constructed internal sets $X_{1}, X_{2}, \ldots, X_{i-1} \subseteq I_{\nu}$ and standard natural numbers $n_{1}<n_{2}<n_{3}<\cdots<n_{i-1}$ with the desired properties.
■ Fix $K \in \mathbb{N}^{*} \backslash \mathbb{N}$ and set Z to be the set of all $M \in \mathbb{N}^{*}$ such that:

- $n_{i-1}<M \leq K$;

■ $\delta_{\nu}\left(\left\{x \in I_{\nu}: \delta_{M}\left(A^{*} \cap\left(x+I_{M}\right)\right) \geq \alpha-\frac{1}{i}\right\}\right)>1-\epsilon^{i}$.
■ Then Z is internal. An appropriate choice of K and a calculation (to be done on the next slide) shows that Z contains all elements of $\mathbb{N}^{*} \backslash \mathbb{N}$ below K.
■ By underflow, we must have $Z \cap \mathbb{N} \neq \emptyset$. Take $n_{i} \in Z \cap \mathbb{N}$ and define X_{i} as it should be.

Proof of the key technical lemma (conclusion)

Fix $\mathbb{N}<M \leq K$. If K is "small enough", we have that

$$
\begin{aligned}
\frac{1}{\left|I_{\nu}\right|} \sum_{x \in I_{\nu}} \delta_{M}\left(A^{*} \cap\left(x+I_{M}\right)\right) & =\frac{1}{\left|I_{M}\right|} \sum_{y \in I_{M}} \frac{1}{\left|I_{\nu}\right|} \sum_{x \in I_{\nu}} \chi_{A^{*}}(x+y) \\
& \approx \frac{1}{\left|I_{M}\right|} \sum_{y \in I_{M}} \delta_{\nu}\left(A^{*} \cap I_{\nu}\right) \\
& \approx \alpha .
\end{aligned}
$$

Since $\operatorname{BD}(A)=\alpha$, we have that $\operatorname{st}\left(\delta_{M}\left(A^{*} \cap\left(x+I_{M}\right)\right)\right) \leq \alpha$, so μ_{ν}-almost all $x \in I_{\nu}$ are such that $\delta_{M}\left(A^{*} \cap\left(x+I_{M}\right)\right) \approx \alpha . \quad \square$

Proof of the key technical lemma (conclusion)

Fix $\mathbb{N}<M \leq K$. If K is "small enough", we have that

$$
\begin{aligned}
\frac{1}{\left|I_{\nu}\right|} \sum_{x \in I_{\nu}} \delta_{M}\left(A^{*} \cap\left(x+I_{M}\right)\right) & =\frac{1}{\left|I_{M}\right|} \sum_{y \in I_{M}} \frac{1}{\left|I_{\nu}\right|} \sum_{x \in I_{\nu}} \chi_{A^{*}}(x+y) \\
& \approx \frac{1}{\left|I_{M}\right|} \sum_{y \in I_{M}} \delta_{\nu}\left(A^{*} \cap I_{\nu}\right) \\
& \approx \alpha .
\end{aligned}
$$

Since $\operatorname{BD}(A)=\alpha$, we have that $\operatorname{st}\left(\delta_{M}\left(A^{*} \cap\left(x+I_{M}\right)\right)\right) \leq \alpha$, so μ_{ν}-almost all $x \in I_{\nu}$ are such that $\delta_{M}\left(A^{*} \cap\left(x+I_{M}\right)\right) \approx \alpha . \quad \square$

References

■ M. DiNasso, I. Goldbring, R. Jin, S. Leth, M. Lupini, and K. Mahlburg, Progress on a sumset conjecture of Erdos, submitted. arXiv 1307.0767

