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History

van der Warden

Recall that an arithmetic progression is a finite sequence
a,a + r ,a + 2r , . . . ,a + kr for some a, r , k ∈ N.

A finite coloring of N is just a partition N = C1 t · · · t Ck into finitely
many sets. We refer to the Ci ’s as colors.

Theorem (van der Warden, 1927)

Given any finite coloring of N, there is a color that contains arbitrarily
long arithmetic progressions.
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History

Szemerédi’s Theorem

Definition

For A ⊆ N, the upper density of A is the quantity

d̄(A) := lim sup
n→∞

|A ∩ [1,n]|
n

.

Theorem (Szemerédi, 1975)

If d̄(A) > 0, then A contains arbitrarily long arithmetic progressions.

Given a finite coloring of N, some color must have positive density, so
Szemerédi is a drastic generalization of van der Warden.
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History

Another coloring theorem-Hindman’s Theorem

Given A ⊆ N, set

FS(A) := {x1 + · · ·+ xn : x1, . . . , xn distinct elements of A,n ∈ N}.

Theorem (Hindman, 1974)

Given any finite coloring of N, there is an infinite monochromatic set A
such that FS(A) is also monochromatic.

Question

Is the “density version” of Hindman’s Theorem true? Namely, if
d̄(A) > 0, is there infinite B ⊆ N such that FS(B) ⊆ A?

Answer

No! Just let A be the odd numbers!

Isaac Goldbring (UIC) Sumset conjecture UIC August 27, 2013 5 / 29



History

Another coloring theorem-Hindman’s Theorem

Given A ⊆ N, set

FS(A) := {x1 + · · ·+ xn : x1, . . . , xn distinct elements of A,n ∈ N}.

Theorem (Hindman, 1974)

Given any finite coloring of N, there is an infinite monochromatic set A
such that FS(A) is also monochromatic.

Question

Is the “density version” of Hindman’s Theorem true? Namely, if
d̄(A) > 0, is there infinite B ⊆ N such that FS(B) ⊆ A?

Answer

No! Just let A be the odd numbers!

Isaac Goldbring (UIC) Sumset conjecture UIC August 27, 2013 5 / 29



History

Another coloring theorem-Hindman’s Theorem

Given A ⊆ N, set

FS(A) := {x1 + · · ·+ xn : x1, . . . , xn distinct elements of A,n ∈ N}.

Theorem (Hindman, 1974)

Given any finite coloring of N, there is an infinite monochromatic set A
such that FS(A) is also monochromatic.

Question

Is the “density version” of Hindman’s Theorem true? Namely, if
d̄(A) > 0, is there infinite B ⊆ N such that FS(B) ⊆ A?

Answer

No! Just let A be the odd numbers!

Isaac Goldbring (UIC) Sumset conjecture UIC August 27, 2013 5 / 29



History

Another coloring theorem-Hindman’s Theorem

Given A ⊆ N, set

FS(A) := {x1 + · · ·+ xn : x1, . . . , xn distinct elements of A,n ∈ N}.

Theorem (Hindman, 1974)

Given any finite coloring of N, there is an infinite monochromatic set A
such that FS(A) is also monochromatic.

Question

Is the “density version” of Hindman’s Theorem true? Namely, if
d̄(A) > 0, is there infinite B ⊆ N such that FS(B) ⊆ A?

Answer

No! Just let A be the odd numbers!

Isaac Goldbring (UIC) Sumset conjecture UIC August 27, 2013 5 / 29



History

Erdős’ conjectures

Seeing that arithmetic progressions are translates of (finite) FS-sets,
Erdős asked the following:

Question

If d̄(A) > 0, is there t ∈ N and infinite B ⊆ N such that t + FS(B) ⊆ A?

Answer-Strauss

No! In fact, there are counterexamples with d̄(A) as close to 1 as you
like.
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History

Erdős’ conjectures (continued)

Given A ⊆ N, set

PS(A) := {x + y : x , y ∈ A, x 6= y}.

Erdős then changed his question.

Question

If d̄(A) > 0, is there t ∈ N and infinite B ⊆ N such that t + PS(B) ⊆ A?

This question is still open. In fact, the following more specific
conjecture is open:

Erdős’ “B+C” conjecture

If d(A) > 0, then there are infinite B,C ⊆ N such that B + C ⊆ A.

Here,

d(A) := lim inf
n→∞

|A ∩ [1,n]|
n

.
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History

Our results

For A ⊆ N, the Banach density of A is the quantity

BD(A) := lim
n→∞

sup
x∈N

|A ∩ [x , x + n − 1]|
n

.

It is possible to have BD(A) > 0 while d̄(A) = 0, so BD(A) > 0 is a
milder assumption.

Theorem (DGJLLM, 2013)

Let A ⊆ N.
1 If BD(A) > 1/2, then A satisfies the conclusion of the B+C

conjecture.
2 If BD(A) > 0, then there are infinite B,C ⊆ N and k ∈ N such that

B + C ⊆ A ∪ (A + k). Moreover, enumerating B = (bi) and
C = (ci) in increasing order, which translate bi + cj lands in
depends only on whether i < j or i ≥ j .
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History

(2) implies (1)

For A ⊆ N and n ∈ N, set

A[n] := {x ∈ N : A ∩ [nx ,nx + n − 1] 6= ∅}.

It is relatively straightforward to check that, if BD(A) > 0, then for
any ε > 0, there is n ∈ N such that BD(A[n]) > 1− ε.
Take n ∈ N such that BD(A[n]) > 1/2 and take infinite B′,C′ such
that B′ + C′ ⊆ A[n], that is, writing B′ = (bi) and C′ = (ci), we have
[nbi + ncj ,nbi + ncj + n − 1] ∩ A 6= ∅ for each i , j .
By Ramsey’s Theorem, we may assume that there are
m1,m2 ∈ [0,n − 1] such that, for any i < j , we have
nbi + ncj + m1 ∈ A,nbj + nci + m2 ∈ A.
Taking B := {nbi + m1 : i is even}, C := {ncj : j is odd}, and
k := m1 −m2, we have B + C ⊆ A ∪ (A + k).
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History

Nonstandard analysis

Our proofs use techniques from nonstandard analysis.
But why?
Densities on natural numbers “feel like” measures but often lack
many of the nice properties of measures.
It is often useful to replace statements about densities by
statements about measures.
Case in point: Furstenberg’s correspondence principle
It turns out that densities on sets of natural numbers are intimately
related to certain measures on their nonstandard extensions,
namely the Loeb measures.
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Nonstandard Analysis

1 History

2 Nonstandard Analysis

3 Proofs
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Nonstandard Analysis

An axiomatic approach to R∗

We will work in a nonstandard universe R∗ that has the following
properties:

1 (R; +, ·,0,1, <) is an ordered subfield of (R∗; +, ·,0,1, <).
2 R∗ has a positive infinitesimal element, that is, there is ε ∈ R∗ such

that ε > 0 but ε < r for every r ∈ R>0.
3 For every n ∈ N and every function f : Rn → R, there is a “natural

extension” f : (R∗)n → R∗. The natural extensions of the field
operations +, · : R2 → R coincide with the field operations in R∗.
Similarly, for every A ⊆ Rn, there is a subset A∗ ⊆ (R∗)n such that
A∗ ∩ Rn = A.

4 R∗, equipped with the above assignment of extensions of
functions and subsets, “behaves logically” like R.
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Nonstandard Analysis

Standard parts

Say that x ∈ R∗ is finite if |x | ≤ n for some n ∈ N.
For example, for any r ∈ R and any (positive or negative)
infinitesimal ε, r + ε is finite.
Conversely:

Fact

If x ∈ R∗ is finite, then there is a unique r ∈ R>0 such that x − r is
infinitesimal. We call r the standard part of x and denote it by st(x).

Proof.

WLOG, x > 0. Let A := {r ∈ R>0 : r < x}. Then 0 ∈ A and A is
bounded above (since x is finite). By the completeness of the reals,
sup(A) exists. Check that st(x) = sup(A).
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Nonstandard Analysis

Extending sequences

Recall that every function f : R→ R has a nonstandard extension
f : R∗ → R∗.
Partial functions f : A→ R have nonstandard extensions
f : A∗ → R∗ as well.
In particular, if (an : n ∈ N) is a sequence of reals, viewing (an)
as the function a : N→ R, we get a nonstandard extension
a : N∗ → R∗. We also write this in sequence notation
(an : n ∈ N∗) and refer to aν for ν ∈ N∗ \ N as an extended term
of the sequence.
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Nonstandard Analysis

Subsequential limits

Lemma

If (an) is a sequence and L ∈ R, then L is a subsequential limit of (an)
if and only if there is ν ∈ N∗ \ N such that aν is finite and st(aν) = L.

Proof of the “if” direction.

Set L := st(aν). Then for every m ∈ N and ε ∈ R>0, R∗ believes the
statement “there is n ∈ N∗ such that n > m and |an − L| < ε.”
Consequently, R believes the statement “there is n ∈ N such that
n > m and |an − L| < ε.”

Corollary (Bolzano-Weierstrauss)

Every bounded sequence has a convergent subsequence.
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Nonstandard Analysis

Nonstandard characterization of densities

If (an) is a bounded sequence, we see that

lim inf an = min{st(aν) : ν ∈ N∗ \ N}

and
lim sup an = max{st(aν) : ν ∈ N∗ \ N}.

Consequently, for A ⊆ N, we have

d(A) = min
{

st
(
|A∗ ∩ [1, ν]|

ν

)
: ν ∈ N∗ \ N

}
and

d̄(A) = max
{

st
(
|A∗ ∩ [1, ν]|

ν

)
: ν ∈ N∗ \ N

}
.
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Nonstandard Analysis

Internal sets

The point of passing to the nonstandard framework is that the
quantities st

(
|A∗∩[1,ν]|

ν

)
appearing in the nonstandard

characterizations of the densities are actually certain measures on
A∗, called Loeb measures. To define Loeb measure, we first need
the concept of internal sets and hyperfinite sets.
Internal subsets of R∗ are the “definable” subsets of R∗ in some
precise way that we won’t define. They “logically behave” like
ordinary subsets of R. For example, A∗ ∩ [1, ν] is an internal set.
The set of all infinitesimals is not internal. Indeed, nonempty
internal subsets of R∗ bounded above have a sup. But what would
the sup of the infinitesimals be?
An internal set is hyperfinite if there is an internal bijection
between it and an interval of the form [1, ν] from N∗. Internal
subsets of hyperfinite sets are hyperfinite, so, e.g., A∗ ∩ [1, ν] is
hyperfinite.
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Nonstandard Analysis

Loeb measure

Suppose that E ⊆ R∗ is hyperfinite. Then there is a unique ν ∈ N∗
such that there is an internal bijection E → [1, ν]; we call ν the
internal cardinality of E and denote it by |E |.
Fix a hyperfinite set E and define a function µE : Pint(E)→ [0,1]

by µ(A) := st
(
|A|
|E |

)
. (Pint is the internal powerset.)

Then µE is a finitely additive measure. Under a very mild
assumption on the nonstandard extension, it can be shown that
µE satisfies the conditions of the Caratheodory extension
theorem, so extends to a countably additive measure on a certain
σ-algebra containing the internal subsets of E ; this measure is
called the Loeb measure.
Cool fact: Consider the function f : [1, ν]→ [0,1] given by
f (k) := st(k

ν ). Then the measure on [0,1] induced by the Loeb
measure on [1, ν] is the usual Lebesgue measure.

Isaac Goldbring (UIC) Sumset conjecture UIC August 27, 2013 18 / 29



Nonstandard Analysis

Loeb measure

Suppose that E ⊆ R∗ is hyperfinite. Then there is a unique ν ∈ N∗
such that there is an internal bijection E → [1, ν]; we call ν the
internal cardinality of E and denote it by |E |.
Fix a hyperfinite set E and define a function µE : Pint(E)→ [0,1]

by µ(A) := st
(
|A|
|E |

)
. (Pint is the internal powerset.)

Then µE is a finitely additive measure. Under a very mild
assumption on the nonstandard extension, it can be shown that
µE satisfies the conditions of the Caratheodory extension
theorem, so extends to a countably additive measure on a certain
σ-algebra containing the internal subsets of E ; this measure is
called the Loeb measure.
Cool fact: Consider the function f : [1, ν]→ [0,1] given by
f (k) := st(k

ν ). Then the measure on [0,1] induced by the Loeb
measure on [1, ν] is the usual Lebesgue measure.

Isaac Goldbring (UIC) Sumset conjecture UIC August 27, 2013 18 / 29



Nonstandard Analysis

Loeb measure

Suppose that E ⊆ R∗ is hyperfinite. Then there is a unique ν ∈ N∗
such that there is an internal bijection E → [1, ν]; we call ν the
internal cardinality of E and denote it by |E |.
Fix a hyperfinite set E and define a function µE : Pint(E)→ [0,1]

by µ(A) := st
(
|A|
|E |

)
. (Pint is the internal powerset.)

Then µE is a finitely additive measure. Under a very mild
assumption on the nonstandard extension, it can be shown that
µE satisfies the conditions of the Caratheodory extension
theorem, so extends to a countably additive measure on a certain
σ-algebra containing the internal subsets of E ; this measure is
called the Loeb measure.
Cool fact: Consider the function f : [1, ν]→ [0,1] given by
f (k) := st(k

ν ). Then the measure on [0,1] induced by the Loeb
measure on [1, ν] is the usual Lebesgue measure.

Isaac Goldbring (UIC) Sumset conjecture UIC August 27, 2013 18 / 29



Nonstandard Analysis

Loeb measure

Suppose that E ⊆ R∗ is hyperfinite. Then there is a unique ν ∈ N∗
such that there is an internal bijection E → [1, ν]; we call ν the
internal cardinality of E and denote it by |E |.
Fix a hyperfinite set E and define a function µE : Pint(E)→ [0,1]

by µ(A) := st
(
|A|
|E |

)
. (Pint is the internal powerset.)

Then µE is a finitely additive measure. Under a very mild
assumption on the nonstandard extension, it can be shown that
µE satisfies the conditions of the Caratheodory extension
theorem, so extends to a countably additive measure on a certain
σ-algebra containing the internal subsets of E ; this measure is
called the Loeb measure.
Cool fact: Consider the function f : [1, ν]→ [0,1] given by
f (k) := st(k

ν ). Then the measure on [0,1] induced by the Loeb
measure on [1, ν] is the usual Lebesgue measure.

Isaac Goldbring (UIC) Sumset conjecture UIC August 27, 2013 18 / 29



Nonstandard Analysis

Nonstandard characterization of densities again

For ν ∈ N∗ \ N, let µν be the Loeb measure on [1, ν].
For A ⊆ N, we have

d(A) = min {µν(A∗ ∩ [1, ν]) : ν ∈ N∗ \ N}

and
d̄(A) = max {µν(A∗ ∩ [1, ν]) : ν ∈ N∗ \ N} .
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Proofs

Reminder of the Main Theorem

Theorem

Suppose that BD(A) > 1
2 . Then there exists infinite B,C ⊆ N such that

B + C ⊆ A.

The Key Technical Lemma

Suppose that BD(A) := α > 0 and that (In) is a sequence of intervals
with |In| → ∞ such that limn→∞

|A∩In|
|In| = α. Then there is L ⊆ N such

that:
1 lim supn→∞

|L∩In|
|In| ≥ α;

2 for every finite F ⊆ L, we have A ∩
⋂

x∈F (A− x) is infinite.
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Proofs

Bergelson’s Theorem

The key measure-theoretic result that we will use is the following
theorem of Bergelson:

Fact

Suppose that (X ,B, µ) is a probability space and (An) is a sequence of
measurable sets for which there is a ∈ (0,1] such that µ(An) ≥ a for all
n. Then there is infinite P ⊆ N such that, for every finite F ⊆ P, we
have

µ(
⋂
n∈F

An) > 0.
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Proofs

Proof of main theorem

Fix (In) witnessing that BD(A) = α > 1/2. Fix L = (`n) satisfying
the conclusion of the key technical lemma.
Recursively define D := (dn) ⊆ A such that `i + dn ∈ A for i ≤ n.

Fix ν ∈ N∗ \ N such that µ(L∗ ∩ Iν) = st
(
|L∗∩Iν |
|Iν |

)
≥ α.

Then, for every n ∈ N, we have

µ(L∗ ∩ (A∗ − dn) ∩ Iν) ≥ 2α− 1 > 0.

By Bergelson, after passing to a subsequence, we may assume
that, for all n ∈ N, we have

µ(L∗ ∩
⋂
i≤n

(A∗ − di) ∩ Iν) > 0.
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Proofs

Proof of main theorem (cont’d)

The takeaway: for every n ∈ N, we have L∩
⋂

i≤n(A− di) is infinite.
We are now home free. Pick b1 ∈ L arbitrary and take c1 ∈ D such
that b1 + c1 ∈ A.
Now take b2 ∈ (L ∩ (A− c1)) \ {b1} and take c2 ∈ D such that
b1 + c2,b2 + c2 ∈ A.
Now take b3 ∈ (L ∩ (A− c1) ∩ (A− c2)) \ {b1,b2} and take c3 ∈ D
such that b1 + c3,b2 + c3,b3 + c3 ∈ A.
Keep going...
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Proofs

Proof of the key technical lemma

The Key Technical Lemma

Suppose that BD(A) := α > 0 and that (In) is a sequence of intervals
with |In| → ∞ such that limn→∞

|A∩In|
|In| = α. Then there is L ⊆ N such

that:
1 lim supn→∞

|L∩In|
|In| ≥ α;

2 for every finite F ⊆ L, we have A ∩
⋂

x∈F (A− x) is infinite.

We first observe that it is enough to find L satisfying (1) and

(2’) There is x0 ∈ A∗ \ A such that x0 + L ⊆ A∗.
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Proofs

Proof of the key technical lemma (cont’d)

Notation: For m ∈ N∗ (standard or nonstandard) and hyperfinite
X ⊆ N∗, we set δm(X ) := |X |

|Im| .

Fix ν ∈ N∗ \ N and standard ε ∈ (0,1/2).
We seek to construct internal sets X1,X2, ... ⊆ Iν and standard
natural numbers n1 < n2 < n3 < · · · such that µν(Xj) ≥ 1− εj ,
and, for each x ∈ Xj , we have δnj (A

∗ ∩ (x + Inj )) ≥ α− 1
j .

Suppose we are successful and let X :=
⋂

j Xj . Since µ(X ) > 0,
we can pick y0 ∈ X \ N.
We can find x0 ∈ A∗ such that x0 ≥ y0 and x0 − y0 ∈ N.
Set L := (A∗ ∩ (x0 + N))− x0. Clearly L satisfies (2’).
For (1), notice

lim
i→∞

δni (L∩Ini ) = lim
i→∞

δni (A
∗∩(x0+Ini )) = lim

i→∞
δni (A

∗∩(y0+Ini )) ≥ α.
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Proofs

Proof of the key technical lemma (cont’d)

Suppose we have constructed internal sets X1,X2, ...,Xi−1 ⊆ Iν
and standard natural numbers n1 < n2 < n3 < · · · < ni−1 with the
desired properties.
Fix K ∈ N∗ \ N and set Z to be the set of all M ∈ N∗ such that:

ni−1 < M ≤ K ;
δν({x ∈ Iν : δM(A∗ ∩ (x + IM)) ≥ α− 1

i }) > 1− εi .
Then Z is internal. An appropriate choice of K and a calculation
(to be done on the next slide) shows that Z contains all elements
of N∗ \ N below K .
By underflow, we must have Z ∩ N 6= ∅. Take ni ∈ Z ∩ N and
define Xi as it should be.
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Proofs

Proof of the key technical lemma (conclusion)

Fix N < M ≤ K . If K is “small enough”, we have that

1
|Iν |

∑
x∈Iν

δM(A∗ ∩ (x + IM)) =
1
|IM |

∑
y∈IM

1
|Iν |

∑
x∈Iν

χA∗(x + y)

≈ 1
|IM |

∑
y∈IM

δν(A∗ ∩ Iν)

≈ α.

Since BD(A) = α, we have that st(δM(A∗ ∩ (x + IM))) ≤ α, so
µν-almost all x ∈ Iν are such that δM(A∗ ∩ (x + IM)) ≈ α.
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