Progress on a sumset conjecture of Erdős

Isaac Goldbring

University of Illinois at Chicago

UIC Logic Seminar August 27, 2013

3 > 4 3

< <p>A < </p>

2 Nonstandard Analysis

æ

イロト イヨト イヨト イヨト

Recall that an *arithmetic progression* is a finite sequence a, a + r, a + 2r, ..., a + kr for some $a, r, k \in \mathbb{N}$.

A *finite coloring of* \mathbb{N} is just a partition $\mathbb{N} = C_1 \sqcup \cdots \sqcup C_k$ into finitely many sets. We refer to the C_i 's as *colors*.

Theorem (van der Warden, 1927)

Given any finite coloring of \mathbb{N} , there is a color that contains arbitrarily long arithmetic progressions.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Recall that an *arithmetic progression* is a finite sequence a, a + r, a + 2r, ..., a + kr for some $a, r, k \in \mathbb{N}$.

A *finite coloring of* \mathbb{N} is just a partition $\mathbb{N} = C_1 \sqcup \cdots \sqcup C_k$ into finitely many sets. We refer to the C_i 's as *colors*.

Theorem (van der Warden, 1927)

Given any finite coloring of \mathbb{N} , there is a color that contains arbitrarily long arithmetic progressions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Szemerédi's Theorem

Definition

For $A \subseteq \mathbb{N}$, the *upper density of A* is the quantity

$$\bar{d}(A) := \limsup_{n \to \infty} \frac{|A \cap [1, n]|}{n}$$

Theorem (Szemerédi, 1975)

If $\overline{d}(A) > 0$, then A contains arbitrarily long arithmetic progressions.

Given a finite coloring of \mathbb{N} , some color must have positive density, so Szemerédi is a *drastic* generalization of van der Warden.

ヘロト 人間 ト 人 ヨ ト 人 ヨ

Szemerédi's Theorem

Definition

For $A \subseteq \mathbb{N}$, the *upper density of A* is the quantity

$$\bar{d}(A) := \limsup_{n \to \infty} \frac{|A \cap [1, n]|}{n}$$

Theorem (Szemerédi, 1975)

If $\overline{d}(A) > 0$, then A contains arbitrarily long arithmetic progressions.

Given a finite coloring of \mathbb{N} , some color must have positive density, so Szemerédi is a *drastic* generalization of van der Warden.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Another coloring theorem-Hindman's Theorem

Given $A \subseteq \mathbb{N}$, set

 $\mathsf{FS}(A) := \{x_1 + \dots + x_n \ : \ x_1, \dots, x_n \text{ distinct elements of } A, n \in \mathbb{N}\}.$

Theorem (Hindman, 1974)

Given any finite coloring of \mathbb{N} , there is an infinite monochromatic set A such that FS(A) is also monochromatic.

Question

Is the "density version" of Hindman's Theorem true? Namely, if $\overline{d}(A) > 0$, is there infinite $B \subseteq \mathbb{N}$ such that $FS(B) \subseteq A$?

Answer

No! Just let A be the odd numbers!

Another coloring theorem-Hindman's Theorem

Given $A \subseteq \mathbb{N}$, set

 $\mathsf{FS}(A) := \{x_1 + \cdots + x_n \ : \ x_1, \dots, x_n \text{ distinct elements of } A, n \in \mathbb{N}\}.$

Theorem (Hindman, 1974)

Given any finite coloring of \mathbb{N} , there is an infinite monochromatic set A such that FS(A) is also monochromatic.

Question

Is the "density version" of Hindman's Theorem true? Namely, if $\bar{d}(A) > 0$, is there infinite $B \subseteq \mathbb{N}$ such that $FS(B) \subseteq A$?

Answer

No! Just let A be the odd numbers!

Another coloring theorem-Hindman's Theorem

Given $A \subseteq \mathbb{N}$, set

 $\mathsf{FS}(A) := \{x_1 + \cdots + x_n \ : \ x_1, \dots, x_n \text{ distinct elements of } A, n \in \mathbb{N}\}.$

Theorem (Hindman, 1974)

Given any finite coloring of \mathbb{N} , there is an infinite monochromatic set A such that FS(A) is also monochromatic.

Question

Is the "density version" of Hindman's Theorem true? Namely, if $\bar{d}(A) > 0$, is there infinite $B \subseteq \mathbb{N}$ such that $FS(B) \subseteq A$?

Answer

No! Just let A be the odd numbers!

Another coloring theorem-Hindman's Theorem

Given $A \subseteq \mathbb{N}$, set

 $\mathsf{FS}(A) := \{x_1 + \cdots + x_n \ : \ x_1, \dots, x_n \text{ distinct elements of } A, n \in \mathbb{N}\}.$

Theorem (Hindman, 1974)

Given any finite coloring of \mathbb{N} , there is an infinite monochromatic set A such that FS(A) is also monochromatic.

Question

Is the "density version" of Hindman's Theorem true? Namely, if $\bar{d}(A) > 0$, is there infinite $B \subseteq \mathbb{N}$ such that $FS(B) \subseteq A$?

Answer

No! Just let A be the odd numbers!

Erdős' conjectures

Seeing that arithmetic progressions are *translates* of (finite) FS-sets, Erdős asked the following:

Question

If $\overline{d}(A) > 0$, is there $t \in \mathbb{N}$ and infinite $B \subseteq \mathbb{N}$ such that $t + FS(B) \subseteq A$?

Answer-Strauss

No! In fact, there are counterexamples with $\overline{d}(A)$ as close to 1 as you like.

Erdős' conjectures

Seeing that arithmetic progressions are *translates* of (finite) FS-sets, Erdős asked the following:

Question

If $\overline{d}(A) > 0$, is there $t \in \mathbb{N}$ and infinite $B \subseteq \mathbb{N}$ such that $t + FS(B) \subseteq A$?

Answer-Strauss

No! In fact, there are counterexamples with $\overline{d}(A)$ as close to 1 as you like.

< ロ > < 同 > < 回 > < 回 >

Erdős' conjectures (continued)

Given $A \subseteq \mathbb{N}$, set

$$\mathsf{PS}(A) := \{x + y : x, y \in A, x \neq y\}.$$

Erdős then changed his question.

Question

If $\overline{d}(A) > 0$, is there $t \in \mathbb{N}$ and infinite $B \subseteq \mathbb{N}$ such that $t + \mathsf{PS}(B) \subseteq A$?

This question is still open. In fact, the following more specific conjecture is open:

Erdős' "B+C" conjecture

If $\underline{d}(A) > 0$, then there are infinite $B, C \subseteq \mathbb{N}$ such that $B + C \subseteq A$.

Here,

$$\underline{d}(A) := \liminf_{n \to \infty} \frac{|A \cap [1, n]|}{n}.$$

Erdős' conjectures (continued)

Given $A \subseteq \mathbb{N}$, set

$$\mathsf{PS}(A) := \{x + y : x, y \in A, x \neq y\}.$$

Erdős then changed his question.

Question

If $\overline{d}(A) > 0$, is there $t \in \mathbb{N}$ and infinite $B \subseteq \mathbb{N}$ such that $t + \mathsf{PS}(B) \subseteq A$?

This question is still open. In fact, the following more specific conjecture is open:

Erdős' "B+C" conjecture

If $\underline{d}(A) > 0$, then there are infinite $B, C \subseteq \mathbb{N}$ such that $B + C \subseteq A$.

Here,

$$\underline{d}(A) := \liminf_{n \to \infty} \frac{|A \cap [1, n]|}{n}.$$

Isaac Goldbring (UIC)

Erdős' conjectures (continued)

Given $A \subseteq \mathbb{N}$, set

$$\mathsf{PS}(A) := \{x + y : x, y \in A, x \neq y\}.$$

Erdős then changed his question.

Question

If $\overline{d}(A) > 0$, is there $t \in \mathbb{N}$ and infinite $B \subseteq \mathbb{N}$ such that $t + \mathsf{PS}(B) \subseteq A$?

This question is still open. In fact, the following more specific conjecture is open:

Erdős' "B+C" conjecture

If $\underline{d}(A) > 0$, then there are infinite $B, C \subseteq \mathbb{N}$ such that $B + C \subseteq A$.

Here,

$$\underline{d}(A) := \liminf_{n \to \infty} \frac{|A \cap [1, n]|}{n}.$$

Our results

For $A \subseteq \mathbb{N}$, the *Banach density of A* is the quantity

$$\mathsf{BD}(A) := \lim_{n \to \infty} \sup_{x \in \mathbb{N}} \frac{|A \cap [x, x + n - 1]|}{n}$$

It is possible to have BD(A) > 0 while $\overline{d}(A) = 0$, so BD(A) > 0 is a milder assumption.

Theorem (DGJLLM, 2013)

Let $A \subseteq \mathbb{N}$.

- If BD(A) > 1/2, then A satisfies the conclusion of the B+C conjecture.
- If BD(A) > 0, then there are infinite B, C ⊆ N and k ∈ N such that B + C ⊆ A ∪ (A + k). Moreover, enumerating B = (b_i) and C = (c_i) in increasing order, which translate b_i + c_j lands in depends only on whether i < j or i ≥ j.</p>

(I) > (0) > (2) < 2 > (2)

Our results

For $A \subseteq \mathbb{N}$, the *Banach density of A* is the quantity

$$\mathsf{BD}(A) := \lim_{n \to \infty} \sup_{x \in \mathbb{N}} \frac{|A \cap [x, x + n - 1]|}{n}$$

It is possible to have BD(A) > 0 while $\overline{d}(A) = 0$, so BD(A) > 0 is a milder assumption.

Theorem (DGJLLM, 2013)

Let $A \subseteq \mathbb{N}$.

If BD(A) > 1/2, then A satisfies the conclusion of the B+C conjecture.

If BD(A) > 0, then there are infinite B, C ⊆ N and k ∈ N such that B + C ⊆ A ∪ (A + k). Moreover, enumerating B = (b_i) and C = (c_i) in increasing order, which translate b_i + c_j lands in depends only on whether i < j or i ≥ j.

(2) implies (1)

For $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, set

$$\boldsymbol{A}_{[n]} := \{ \boldsymbol{x} \in \mathbb{N} : \boldsymbol{A} \cap [\boldsymbol{n}\boldsymbol{x}, \boldsymbol{n}\boldsymbol{x} + \boldsymbol{n} - 1] \neq \emptyset \}.$$

- It is relatively straightforward to check that, if BD(A) > 0, then for any ε > 0, there is n ∈ N such that BD(A_[n]) > 1 − ε.
- Take $n \in \mathbb{N}$ such that BD($A_{[n]}$) > 1/2 and take infinite B', C' such that $B' + C' \subseteq A_{[n]}$, that is, writing $B' = (b_i)$ and $C' = (c_i)$, we have $[nb_i + nc_j, nb_i + nc_j + n 1] \cap A \neq \emptyset$ for each i, j.
- By Ramsey's Theorem, we may assume that there are $m_1, m_2 \in [0, n-1]$ such that, for any i < j, we have $nb_i + nc_j + m_1 \in A$, $nb_j + nc_i + m_2 \in A$.
- Taking $B := \{nb_i + m_1 : i \text{ is even}\}, C := \{nc_j : j \text{ is odd}\}, and k := m_1 m_2$, we have $B + C \subseteq A \cup (A + k)$.

.

(2) implies (1)

$$\boldsymbol{A}_{[n]} := \{ \boldsymbol{x} \in \mathbb{N} \; : \; \boldsymbol{A} \cap [\boldsymbol{n}\boldsymbol{x}, \boldsymbol{n}\boldsymbol{x} + \boldsymbol{n} - 1] \neq \emptyset \}.$$

- It is relatively straightforward to check that, if BD(A) > 0, then for any ε > 0, there is n ∈ N such that BD(A_[n]) > 1 − ε.
- Take $n \in \mathbb{N}$ such that BD($A_{[n]}$) > 1/2 and take infinite B', C' such that $B' + C' \subseteq A_{[n]}$, that is, writing $B' = (b_i)$ and $C' = (c_i)$, we have $[nb_i + nc_j, nb_i + nc_j + n 1] \cap A \neq \emptyset$ for each i, j.
- By Ramsey's Theorem, we may assume that there are $m_1, m_2 \in [0, n-1]$ such that, for any i < j, we have $nb_i + nc_j + m_1 \in A$, $nb_j + nc_i + m_2 \in A$.
- Taking $B := \{nb_i + m_1 : i \text{ is even}\}, C := \{nc_j : j \text{ is odd}\}, and k := m_1 m_2$, we have $B + C \subseteq A \cup (A + k)$.

(2) implies (1)

$$A_{[n]} := \{x \in \mathbb{N} : A \cap [nx, nx + n - 1] \neq \emptyset\}.$$

- It is relatively straightforward to check that, if BD(A) > 0, then for any *ϵ* > 0, there is *n* ∈ N such that BD(A_[n]) > 1 − *ϵ*.
- Take $n \in \mathbb{N}$ such that BD($A_{[n]}$) > 1/2 and take infinite B', C' such that $B' + C' \subseteq A_{[n]}$, that is, writing $B' = (b_i)$ and $C' = (c_i)$, we have $[nb_i + nc_j, nb_i + nc_j + n 1] \cap A \neq \emptyset$ for each i, j.
- By Ramsey's Theorem, we may assume that there are $m_1, m_2 \in [0, n 1]$ such that, for any i < j, we have $nb_i + nc_j + m_1 \in A$, $nb_j + nc_i + m_2 \in A$.
- Taking $B := \{nb_i + m_1 : i \text{ is even}\}, C := \{nc_j : j \text{ is odd}\}, \text{ and } k := m_1 m_2, \text{ we have } B + C \subseteq A \cup (A + k).$

(2) implies (1)

$$A_{[n]} := \{ x \in \mathbb{N} : A \cap [nx, nx + n - 1] \neq \emptyset \}.$$

- It is relatively straightforward to check that, if BD(A) > 0, then for any *ϵ* > 0, there is *n* ∈ N such that BD(A_[n]) > 1 − *ϵ*.
- Take $n \in \mathbb{N}$ such that BD($A_{[n]}$) > 1/2 and take infinite B', C' such that $B' + C' \subseteq A_{[n]}$, that is, writing $B' = (b_i)$ and $C' = (c_i)$, we have $[nb_i + nc_j, nb_i + nc_j + n 1] \cap A \neq \emptyset$ for each i, j.
- By Ramsey's Theorem, we may assume that there are $m_1, m_2 \in [0, n-1]$ such that, for any i < j, we have $nb_i + nc_j + m_1 \in A$, $nb_j + nc_i + m_2 \in A$.
- Taking $B := \{nb_i + m_1 : i \text{ is even}\}, C := \{nc_j : j \text{ is odd}\}, and k := m_1 m_2$, we have $B + C \subseteq A \cup (A + k)$.

(2) implies (1)

$$A_{[n]} := \{ x \in \mathbb{N} : A \cap [nx, nx + n - 1] \neq \emptyset \}.$$

- It is relatively straightforward to check that, if BD(A) > 0, then for any *ϵ* > 0, there is *n* ∈ N such that BD(A_[n]) > 1 − *ϵ*.
- Take $n \in \mathbb{N}$ such that BD($A_{[n]}$) > 1/2 and take infinite B', C' such that $B' + C' \subseteq A_{[n]}$, that is, writing $B' = (b_i)$ and $C' = (c_i)$, we have $[nb_i + nc_j, nb_i + nc_j + n 1] \cap A \neq \emptyset$ for each i, j.
- By Ramsey's Theorem, we may assume that there are $m_1, m_2 \in [0, n-1]$ such that, for any i < j, we have $nb_i + nc_j + m_1 \in A$, $nb_j + nc_i + m_2 \in A$.
- Taking $B := \{nb_i + m_1 : i \text{ is even}\}, C := \{nc_j : j \text{ is odd}\}, and k := m_1 m_2$, we have $B + C \subseteq A \cup (A + k)$.

Nonstandard analysis

- Our proofs use techniques from *nonstandard analysis*.
- But why?
- Densities on natural numbers "feel like" measures but often lack many of the nice properties of measures.
- It is often useful to replace statements about densities by statements about measures.
- Case in point: Furstenberg's correspondence principle
- It turns out that densities on sets of natural numbers are intimately related to certain measures on their nonstandard extensions, namely the *Loeb measures*.

2 Nonstandard Analysis

3 Proofs

Isaac Goldbring (UIC)

Sumset conjecture

UIC August 27, 2013 11 / 29

æ

< ≥ > < ≥

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

An axiomatic approach to \mathbb{R}^*

We will work in a *nonstandard universe* \mathbb{R}^* that has the following properties:

- 1 (\mathbb{R} ; +, ·, 0, 1, <) is an *ordered subfield* of (\mathbb{R}^* ; +, ·, 0, 1, <).
- 2 \mathbb{R}^* has a *positive infinitesimal* element, that is, there is $\epsilon \in \mathbb{R}^*$ such that $\epsilon > 0$ but $\epsilon < r$ for every $r \in \mathbb{R}^{>0}$.
- 3 For every n ∈ N and every function f : Rⁿ → R, there is a "natural extension" f : (R*)ⁿ → R*. The natural extensions of the field operations +, · : R² → R coincide with the field operations in R*. Similarly, for every A ⊆ Rⁿ, there is a subset A* ⊆ (R*)ⁿ such that A* ∩ Rⁿ = A.
- 4 ℝ*, equipped with the above assignment of extensions of functions and subsets, "behaves logically" like ℝ.

A B b 4 B b

Standard parts

- Say that $x \in \mathbb{R}^*$ is *finite* if $|x| \le n$ for some $n \in \mathbb{N}$.
- For example, for any $r \in \mathbb{R}$ and any (positive or negative) infinitesimal ϵ , $r + \epsilon$ is finite.

Conversely:

Fact

If $x \in \mathbb{R}^*$ is finite, then there is a unique $r \in \mathbb{R}^{>0}$ such that x - r is infinitesimal. We call *r* the standard part of *x* and denote it by st(*x*).

Proof.

WLOG, x > 0. Let $A := \{r \in \mathbb{R}^{>0} : r < x\}$. Then $0 \in A$ and A is bounded above (since x is finite). By the completeness of the reals, $\sup(A)$ exists. Check that $st(x) = \sup(A)$.

< ロ > < 同 > < 回 > < 回 >

Standard parts

- Say that $x \in \mathbb{R}^*$ is *finite* if $|x| \le n$ for some $n \in \mathbb{N}$.
- For example, for any $r \in \mathbb{R}$ and any (positive or negative) infinitesimal ϵ , $r + \epsilon$ is finite.
- Conversely:

Fact

If $x \in \mathbb{R}^*$ is finite, then there is a unique $r \in \mathbb{R}^{>0}$ such that x - r is infinitesimal. We call *r* the standard part of *x* and denote it by st(*x*).

Proof.

WLOG, x > 0. Let $A := \{r \in \mathbb{R}^{>0} : r < x\}$. Then $0 \in A$ and A is bounded above (since x is finite). By the completeness of the reals, $\sup(A)$ exists. Check that $\operatorname{st}(x) = \sup(A)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extending sequences

- Recall that every function $f : \mathbb{R} \to \mathbb{R}$ has a nonstandard extension $f : \mathbb{R}^* \to \mathbb{R}^*$.
- Partial functions $f : A \to \mathbb{R}$ have nonstandard extensions $f : A^* \to \mathbb{R}^*$ as well.
- In particular, if (a_n : n ∈ N) is a sequence of reals, viewing (a_n) as the function a : N → R, we get a nonstandard extension a : N* → R*. We also write this in sequence notation (a_n : n ∈ N*) and refer to a_ν for ν ∈ N* \ N as an *extended term* of the sequence.

★ ∃ > < ∃ >

Subsequential limits

Lemma

If (a_n) is a sequence and $L \in \mathbb{R}$, then *L* is a subsequential limit of (a_n) if and only if there is $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ such that a_{ν} is finite and $\operatorname{st}(a_{\nu}) = L$.

Proof of the "if" direction.

Set $L := \operatorname{st}(a_{\nu})$. Then for every $m \in \mathbb{N}$ and $\epsilon \in \mathbb{R}^{>0}$, \mathbb{R}^* believes the statement "there is $n \in \mathbb{N}^*$ such that n > m and $|a_n - L| < \epsilon$." Consequently, \mathbb{R} believes the statement "there is $n \in \mathbb{N}$ such that n > m and $|a_n - L| < \epsilon$."

Corollary (Bolzano-Weierstrauss)

Every bounded sequence has a convergent subsequence.

Subsequential limits

Lemma

If (a_n) is a sequence and $L \in \mathbb{R}$, then *L* is a subsequential limit of (a_n) if and only if there is $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ such that a_{ν} is finite and $\operatorname{st}(a_{\nu}) = L$.

Proof of the "if" direction.

Set $L := \operatorname{st}(a_{\nu})$. Then for every $m \in \mathbb{N}$ and $\epsilon \in \mathbb{R}^{>0}$, \mathbb{R}^* believes the statement "there is $n \in \mathbb{N}^*$ such that n > m and $|a_n - L| < \epsilon$." Consequently, \mathbb{R} believes the statement "there is $n \in \mathbb{N}$ such that n > m and $|a_n - L| < \epsilon$."

Corollary (Bolzano-Weierstrauss)

Every bounded sequence has a convergent subsequence.

Nonstandard Analysis

Nonstandard characterization of densities

If (a_n) is a bounded sequence, we see that

$$\mathsf{lim} \mathsf{inf} \, \pmb{a_n} = \mathsf{min} \{ \mathsf{st}(\pmb{a_
u}) \; : \;
u \in \mathbb{N}^* \setminus \mathbb{N} \}$$

and

$$\limsup a_n = \max\{\operatorname{st}(a_\nu) : \nu \in \mathbb{N}^* \setminus \mathbb{N}\}.$$

• Consequently, for $A \subseteq \mathbb{N}$, we have

$$\underline{d}(A) = \min\left\{ \operatorname{st}\left(\frac{|A^* \cap [1, \nu]|}{\nu}\right) : \nu \in \mathbb{N}^* \setminus \mathbb{N} \right\}$$

and

$$\bar{d}(A) = \max\left\{\operatorname{st}\left(\frac{|A^* \cap [1,\nu]|}{\nu}\right) : \nu \in \mathbb{N}^* \setminus \mathbb{N}
ight\}$$

Nonstandard Analysis

Nonstandard characterization of densities

If (a_n) is a bounded sequence, we see that

$$\mathsf{lim} \mathsf{inf} \, a_n = \mathsf{min} \{ \mathsf{st}(a_
u) \; : \;
u \in \mathbb{N}^* \setminus \mathbb{N} \}$$

and

$$\limsup a_n = \max\{\operatorname{st}(a_\nu) : \nu \in \mathbb{N}^* \setminus \mathbb{N}\}.$$

• Consequently, for $A \subseteq \mathbb{N}$, we have

$$\underline{d}(\mathcal{A}) = \min\left\{ \operatorname{st}\left(rac{|\mathcal{A}^* \cap [1, \nu]|}{
u}
ight) \ : \
u \in \mathbb{N}^* \setminus \mathbb{N}
ight\}$$

and

$$ar{d}(\mathcal{A}) = \max\left\{ \mathsf{st}\left(rac{|\mathcal{A}^* \cap [1, \nu]|}{
u}
ight) \ : \
u \in \mathbb{N}^* \setminus \mathbb{N}
ight\}.$$

- The point of passing to the nonstandard framework is that the quantities st (|A* ∩ [1, ν]| / ν) appearing in the nonstandard characterizations of the densities are actually certain measures on A*, called *Loeb measures*. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.
- Internal subsets of \mathbb{R}^* are the "definable" subsets of \mathbb{R}^* in some precise way that we won't define. They "logically behave" like ordinary subsets of \mathbb{R} . For example, $A^* \cap [1, \nu]$ is an internal set.
- The set of all infinitesimals is not internal. Indeed, nonempty internal subsets of ℝ* bounded above have a sup. But what would the sup of the infinitesimals be?
- An internal set is *hyperfinite* if there is an internal bijection between it and an interval of the form [1, *ν*] from N*. Internal subsets of hyperfinite sets are hyperfinite, so, e.g., A* ∩ [1, *ν*] is hyperfinite.

- The point of passing to the nonstandard framework is that the quantities st (|A* ∩ [1, ν]| / ν) appearing in the nonstandard characterizations of the densities are actually certain measures on A*, called *Loeb measures*. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.
- Internal subsets of ℝ* are the "definable" subsets of ℝ* in some precise way that we won't define. They "logically behave" like ordinary subsets of ℝ. For example, A* ∩ [1, ν] is an internal set.
- The set of all infinitesimals is not internal. Indeed, nonempty internal subsets of ℝ* bounded above have a sup. But what would the sup of the infinitesimals be?
- An internal set is *hyperfinite* if there is an internal bijection between it and an interval of the form [1, *ν*] from N*. Internal subsets of hyperfinite sets are hyperfinite, so, e.g., A* ∩ [1, *ν*] is hyperfinite.

- The point of passing to the nonstandard framework is that the quantities st (|A* ∩ [1, ν] / ν) appearing in the nonstandard characterizations of the densities are actually certain measures on A*, called *Loeb measures*. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.
- Internal subsets of ℝ* are the "definable" subsets of ℝ* in some precise way that we won't define. They "logically behave" like ordinary subsets of ℝ. For example, A* ∩ [1, ν] is an internal set.
- The set of all infinitesimals is not internal. Indeed, nonempty internal subsets of ℝ* bounded above have a sup. But what would the sup of the infinitesimals be?
- An internal set is *hyperfinite* if there is an internal bijection between it and an interval of the form [1, ν] from N*. Internal subsets of hyperfinite sets are hyperfinite, so, e.g., A* ∩ [1, ν] is hyperfinite.

- The point of passing to the nonstandard framework is that the quantities st ([A*∩[1,ν]])/ν appearing in the nonstandard characterizations of the densities are actually certain measures on A*, called *Loeb measures*. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.
- Internal subsets of ℝ* are the "definable" subsets of ℝ* in some precise way that we won't define. They "logically behave" like ordinary subsets of ℝ. For example, A* ∩ [1, ν] is an internal set.
- The set of all infinitesimals is not internal. Indeed, nonempty internal subsets of ℝ* bounded above have a sup. But what would the sup of the infinitesimals be?
- An internal set is *hyperfinite* if there is an internal bijection between it and an interval of the form [1, *ν*] from N*. Internal subsets of hyperfinite sets are hyperfinite, so, e.g., A* ∩ [1, *ν*] is hyperfinite.

17/29

- Suppose that E ⊆ ℝ* is hyperfinite. Then there is a unique ν ∈ ℕ* such that there is an internal bijection E → [1, ν]; we call ν the internal cardinality of E and denote it by |E|.
- Fix a hyperfinite set *E* and define a function $\mu_E : \mathcal{P}_{int}(E) \to [0, 1]$ by $\mu(A) := st\left(\frac{|A|}{|E|}\right)$. (\mathcal{P}_{int} is the *internal powerset*.)
- Then μ_E is a finitely additive measure. Under a very mild assumption on the nonstandard extension, it can be shown that μ_E satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ -algebra containing the internal subsets of *E*; this measure is called the *Loeb measure*.
- Cool fact: Consider the function $f : [1, \nu] \rightarrow [0, 1]$ given by $f(k) := \operatorname{st}(\frac{k}{\nu})$. Then the measure on [0, 1] induced by the Loeb measure on $[1, \nu]$ is the usual Lebesgue measure.

- Suppose that E ⊆ ℝ* is hyperfinite. Then there is a unique ν ∈ ℕ* such that there is an internal bijection E → [1, ν]; we call ν the internal cardinality of E and denote it by |E|.
- Fix a hyperfinite set *E* and define a function $\mu_E : \mathcal{P}_{int}(E) \to [0, 1]$ by $\mu(A) := st\left(\frac{|A|}{|E|}\right)$. (\mathcal{P}_{int} is the *internal powerset*.)
- Then μ_E is a finitely additive measure. Under a very mild assumption on the nonstandard extension, it can be shown that μ_E satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ -algebra containing the internal subsets of *E*; this measure is called the *Loeb measure*.
- Cool fact: Consider the function $f : [1, \nu] \rightarrow [0, 1]$ given by $f(k) := \operatorname{st}(\frac{k}{\nu})$. Then the measure on [0, 1] induced by the Loeb measure on $[1, \nu]$ is the usual Lebesgue measure.

A B > A B >

- Suppose that E ⊆ ℝ* is hyperfinite. Then there is a unique ν ∈ ℕ* such that there is an internal bijection E → [1, ν]; we call ν the internal cardinality of E and denote it by |E|.
- Fix a hyperfinite set *E* and define a function $\mu_E : \mathcal{P}_{int}(E) \to [0, 1]$ by $\mu(A) := st\left(\frac{|A|}{|E|}\right)$. (\mathcal{P}_{int} is the *internal powerset*.)
- Then μ_E is a finitely additive measure. Under a very mild assumption on the nonstandard extension, it can be shown that μ_E satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ-algebra containing the internal subsets of *E*; this measure is called the *Loeb measure*.

■ Cool fact: Consider the function $f : [1, \nu] \rightarrow [0, 1]$ given by $f(k) := \operatorname{st}(\frac{k}{\nu})$. Then the measure on [0, 1] induced by the Loeb measure on $[1, \nu]$ is the usual Lebesgue measure.

- Suppose that E ⊆ ℝ* is hyperfinite. Then there is a unique ν ∈ ℕ* such that there is an internal bijection E → [1, ν]; we call ν the internal cardinality of E and denote it by |E|.
- Fix a hyperfinite set *E* and define a function $\mu_E : \mathcal{P}_{int}(E) \to [0, 1]$ by $\mu(A) := st\left(\frac{|A|}{|E|}\right)$. (\mathcal{P}_{int} is the *internal powerset*.)
- Then μ_E is a finitely additive measure. Under a very mild assumption on the nonstandard extension, it can be shown that μ_E satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ-algebra containing the internal subsets of *E*; this measure is called the *Loeb measure*.
- Cool fact: Consider the function $f : [1, \nu] \rightarrow [0, 1]$ given by $f(k) := \operatorname{st}(\frac{k}{\nu})$. Then the measure on [0, 1] induced by the Loeb measure on $[1, \nu]$ is the usual Lebesgue measure.

(B)

Nonstandard characterization of densities again

■ For $\nu \in \mathbb{N}^* \setminus \mathbb{N}$, let μ_{ν} be the Loeb measure on $[1, \nu]$. ■ For $A \subseteq \mathbb{N}$, we have

$$\underline{d}(\boldsymbol{A}) = \min \left\{ \mu_{\nu}(\boldsymbol{A}^{*} \cap [1, \nu]) : \nu \in \mathbb{N}^{*} \setminus \mathbb{N} \right\}$$

and

$$ar{d}(\mathcal{A}) = \max \left\{ \mu_{
u}(\mathcal{A}^* \cap [1,
u]) \ : \
u \in \mathbb{N}^* \setminus \mathbb{N}
ight\}.$$

2 Nonstandard Analysis

Э.

イロト イヨト イヨト イヨト

Reminder of the Main Theorem

Theorem

Suppose that $BD(A) > \frac{1}{2}$. Then there exists infinite $B, C \subseteq \mathbb{N}$ such that $B + C \subseteq A$.

The Key Technical Lemma

Suppose that BD(*A*) := $\alpha > 0$ and that (I_n) is a sequence of intervals with $|I_n| \to \infty$ such that $\lim_{n\to\infty} \frac{|A \cap I_n|}{|I_n|} = \alpha$. Then there is $L \subseteq \mathbb{N}$ such that:

- 1 lim sup_{n\to\infty} $\frac{|L \cap I_n|}{|I_n|} \ge \alpha;$
- 2 for every finite $F \subseteq L$, we have $A \cap \bigcap_{x \in F} (A x)$ is infinite.

3

Reminder of the Main Theorem

Theorem

Suppose that $BD(A) > \frac{1}{2}$. Then there exists infinite $B, C \subseteq \mathbb{N}$ such that $B + C \subseteq A$.

The Key Technical Lemma

Suppose that $BD(A) := \alpha > 0$ and that (I_n) is a sequence of intervals with $|I_n| \to \infty$ such that $\lim_{n\to\infty} \frac{|A \cap I_n|}{|I_n|} = \alpha$. Then there is $L \subseteq \mathbb{N}$ such that:

1 lim sup_{n\to\infty}
$$\frac{|L\cap I_n|}{|I_n|} \ge \alpha;$$

2 for every finite $F \subseteq L$, we have $A \cap \bigcap_{x \in F} (A - x)$ is infinite.

The key measure-theoretic result that we will use is the following theorem of Bergelson:

Fact

Suppose that (X, \mathcal{B}, μ) is a probability space and (A_n) is a sequence of measurable sets for which there is $a \in (0, 1]$ such that $\mu(A_n) \ge a$ for all n. Then there is infinite $P \subseteq \mathbb{N}$ such that, for every finite $F \subseteq P$, we have

$$\mu(\bigcap_{n\in F}A_n)>0.$$

A B F A B F

A D M A A A M M

Proof of main theorem

- Fix (I_n) witnessing that BD(A) = α > 1/2. Fix L = (ℓ_n) satisfying the conclusion of the key technical lemma.
- Recursively define $D := (d_n) \subseteq A$ such that $\ell_i + d_n \in A$ for $i \leq n$.
- Fix $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ such that $\mu(L^* \cap I_{\nu}) = \operatorname{st}\left(\frac{|L^* \cap I_{\nu}|}{|I_{\nu}|}\right) \ge \alpha$.

Then, for every $n \in \mathbb{N}$, we have

$$\mu(L^* \cap (A^* - d_n) \cap I_{\nu}) \geq 2\alpha - 1 > 0.$$

By Bergelson, after passing to a subsequence, we may assume that, for all $n \in \mathbb{N}$, we have

$$\mu(L^*\cap \bigcap_{i\leq n}(A^*-d_i)\cap I_{\nu})>0.$$

Proof of main theorem

- Fix (I_n) witnessing that BD(A) = α > 1/2. Fix L = (ℓ_n) satisfying the conclusion of the key technical lemma.
- Recursively define $D := (d_n) \subseteq A$ such that $\ell_i + d_n \in A$ for $i \leq n$.
- Fix $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ such that $\mu(L^* \cap I_{\nu}) = \operatorname{st}\left(\frac{|L^* \cap I_{\nu}|}{|I_{\nu}|}\right) \ge \alpha$.

Then, for every $n \in \mathbb{N}$, we have

$$\mu(L^* \cap (A^* - d_n) \cap I_{\nu}) \geq 2\alpha - 1 > 0.$$

By Bergelson, after passing to a subsequence, we may assume that, for all $n \in \mathbb{N}$, we have

$$\mu(L^*\cap \bigcap_{i\leq n}(A^*-d_i)\cap I_{\nu})>0.$$

.

Proof of main theorem

- Fix (I_n) witnessing that BD(A) = α > 1/2. Fix L = (ℓ_n) satisfying the conclusion of the key technical lemma.
- Recursively define $D := (d_n) \subseteq A$ such that $\ell_i + d_n \in A$ for $i \leq n$.

Fix
$$\nu \in \mathbb{N}^* \setminus \mathbb{N}$$
 such that $\mu(L^* \cap I_{\nu}) = \operatorname{st}\left(\frac{|L^* \cap I_{\nu}|}{|I_{\nu}|}\right) \ge \alpha$.

Then, for every $n \in \mathbb{N}$, we have

$$\mu(L^* \cap (A^* - d_n) \cap I_{\nu}) \geq 2\alpha - 1 > 0.$$

By Bergelson, after passing to a subsequence, we may assume that, for all $n \in \mathbb{N}$, we have

$$\mu(L^*\cap \bigcap_{i\leq n}(A^*-d_i)\cap I_{\nu})>0.$$

< ∃ > < ∃

Proof of main theorem

- Fix (I_n) witnessing that BD(A) = α > 1/2. Fix L = (ℓ_n) satisfying the conclusion of the key technical lemma.
- Recursively define $D := (d_n) \subseteq A$ such that $\ell_i + d_n \in A$ for $i \leq n$.

Fix
$$\nu \in \mathbb{N}^* \setminus \mathbb{N}$$
 such that $\mu(L^* \cap I_{\nu}) = \mathsf{st}\left(\frac{|L^* \cap I_{\nu}|}{|I_{\nu}|}\right) \ge \alpha$.

Then, for every $n \in \mathbb{N}$, we have

$$\mu(L^* \cap (A^* - d_n) \cap I_{\nu}) \geq 2\alpha - 1 > 0.$$

By Bergelson, after passing to a subsequence, we may assume that, for all $n \in \mathbb{N}$, we have

$$\mu(L^*\cap \bigcap_{i\leq n}(A^*-d_i)\cap I_{\nu})>0.$$

< ∃ > < ∃

Proof of main theorem

- Fix (I_n) witnessing that BD(A) = α > 1/2. Fix L = (ℓ_n) satisfying the conclusion of the key technical lemma.
- Recursively define $D := (d_n) \subseteq A$ such that $\ell_i + d_n \in A$ for $i \leq n$.

Fix
$$\nu \in \mathbb{N}^* \setminus \mathbb{N}$$
 such that $\mu(L^* \cap I_{\nu}) = \mathsf{st}\left(\frac{|L^* \cap I_{\nu}|}{|I_{\nu}|}\right) \ge \alpha$.

Then, for every $n \in \mathbb{N}$, we have

$$\mu(L^* \cap (A^* - d_n) \cap I_{\nu}) \geq 2\alpha - 1 > 0.$$

■ By Bergelson, after passing to a subsequence, we may assume that, for all *n* ∈ ℕ, we have

$$\mu(L^*\cap \bigcap_{i\leq n}(A^*-d_i)\cap I_{\nu})>0.$$

- The takeaway: for every $n \in \mathbb{N}$, we have $L \cap \bigcap_{i \le n} (A d_i)$ is infinite.
- We are now home free. Pick $b_1 \in L$ arbitrary and take $c_1 \in D$ such that $b_1 + c_1 \in A$.
- Now take $b_2 \in (L \cap (A c_1)) \setminus \{b_1\}$ and take $c_2 \in D$ such that $b_1 + c_2, b_2 + c_2 \in A$.
- Now take $b_3 \in (L \cap (A c_1) \cap (A c_2)) \setminus \{b_1, b_2\}$ and take $c_3 \in D$ such that $b_1 + c_3, b_2 + c_3, b_3 + c_3 \in A$.
- Keep going...

.

- The takeaway: for every $n \in \mathbb{N}$, we have $L \cap \bigcap_{i \le n} (A d_i)$ is infinite.
- We are now home free. Pick $b_1 \in L$ arbitrary and take $c_1 \in D$ such that $b_1 + c_1 \in A$.
- Now take $b_2 \in (L \cap (A c_1)) \setminus \{b_1\}$ and take $c_2 \in D$ such that $b_1 + c_2, b_2 + c_2 \in A$.
- Now take $b_3 \in (L \cap (A c_1) \cap (A c_2)) \setminus \{b_1, b_2\}$ and take $c_3 \in D$ such that $b_1 + c_3, b_2 + c_3, b_3 + c_3 \in A$.
- Keep going...

- The takeaway: for every $n \in \mathbb{N}$, we have $L \cap \bigcap_{i \le n} (A d_i)$ is infinite.
- We are now home free. Pick $b_1 \in L$ arbitrary and take $c_1 \in D$ such that $b_1 + c_1 \in A$.
- Now take $b_2 \in (L \cap (A c_1)) \setminus \{b_1\}$ and take $c_2 \in D$ such that $b_1 + c_2, b_2 + c_2 \in A$.
- Now take $b_3 \in (L \cap (A c_1) \cap (A c_2)) \setminus \{b_1, b_2\}$ and take $c_3 \in D$ such that $b_1 + c_3, b_2 + c_3, b_3 + c_3 \in A$.
- Keep going...

- The takeaway: for every $n \in \mathbb{N}$, we have $L \cap \bigcap_{i \le n} (A d_i)$ is infinite.
- We are now home free. Pick $b_1 \in L$ arbitrary and take $c_1 \in D$ such that $b_1 + c_1 \in A$.
- Now take $b_2 \in (L \cap (A c_1)) \setminus \{b_1\}$ and take $c_2 \in D$ such that $b_1 + c_2, b_2 + c_2 \in A$.
- Now take $b_3 \in (L \cap (A c_1) \cap (A c_2)) \setminus \{b_1, b_2\}$ and take $c_3 \in D$ such that $b_1 + c_3, b_2 + c_3, b_3 + c_3 \in A$.

Keep going...

- The takeaway: for every $n \in \mathbb{N}$, we have $L \cap \bigcap_{i \le n} (A d_i)$ is infinite.
- We are now home free. Pick $b_1 \in L$ arbitrary and take $c_1 \in D$ such that $b_1 + c_1 \in A$.
- Now take $b_2 \in (L \cap (A c_1)) \setminus \{b_1\}$ and take $c_2 \in D$ such that $b_1 + c_2, b_2 + c_2 \in A$.
- Now take $b_3 \in (L \cap (A c_1) \cap (A c_2)) \setminus \{b_1, b_2\}$ and take $c_3 \in D$ such that $b_1 + c_3, b_2 + c_3, b_3 + c_3 \in A$.
- Keep going...

< ∃ > < ∃

Proof of the key technical lemma

The Key Technical Lemma

Suppose that $BD(A) := \alpha > 0$ and that (I_n) is a sequence of intervals with $|I_n| \to \infty$ such that $\lim_{n\to\infty} \frac{|A \cap I_n|}{|I_n|} = \alpha$. Then there is $L \subseteq \mathbb{N}$ such that:

1 lim sup_{n\to\infty}
$$\frac{|L \cap I_n|}{|I_n|} \ge \alpha;$$

2 for every finite $F \subseteq L$, we have $A \cap \bigcap_{x \in F} (A - x)$ is infinite.

We first observe that it is enough to find *L* satisfying (1) and

(2) There is $x_0 \in A^* \setminus A$ such that $x_0 + L \subseteq A^*$.

イロト イ団ト イヨト イヨト

Proof of the key technical lemma

The Key Technical Lemma

Suppose that $BD(A) := \alpha > 0$ and that (I_n) is a sequence of intervals with $|I_n| \to \infty$ such that $\lim_{n\to\infty} \frac{|A \cap I_n|}{|I_n|} = \alpha$. Then there is $L \subseteq \mathbb{N}$ such that:

1 lim sup_{$$n\to\infty$$} $\frac{|L\cap I_n|}{|I_n|} \ge \alpha$;
2 for every finite $F \subseteq L$, we have $A \cap \bigcap_{x \in F} (A - x)$ is infinite.

We first observe that it is enough to find L satisfying (1) and

(2) There is
$$x_0 \in A^* \setminus A$$
 such that $x_0 + L \subseteq A^*$.

Proof of the key technical lemma (cont'd)

- Notation: For $m \in \mathbb{N}^*$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^*$, we set $\delta_m(X) := \frac{|X|}{|I_m|}$.
- Fix $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ and standard $\epsilon \in (0, 1/2)$.
- We seek to construct internal sets $X_1, X_2, ... \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots$ such that $\mu_{\nu}(X_j) \ge 1 e^j$, and, for each $x \in X_j$, we have $\delta_{n_i}(A^* \cap (x + I_{n_i})) \ge \alpha \frac{1}{i}$.
- Suppose we are successful and let $X := \bigcap_j X_j$. Since $\mu(X) > 0$, we can pick $y_0 \in X \setminus \mathbb{N}$.
- We can find $x_0 \in A^*$ such that $x_0 \ge y_0$ and $x_0 y_0 \in \mathbb{N}$.
- Set $L := (A^* \cap (x_0 + \mathbb{N})) x_0$. Clearly *L* satisfies (2').

For (1), notice

 $\lim_{i\to\infty}\delta_{n_i}(L\cap I_{n_i})=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (x_0+I_{n_i}))=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (y_0+I_{n_i}))\geq\alpha.$

Proof of the key technical lemma (cont'd)

- Notation: For $m \in \mathbb{N}^*$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^*$, we set $\delta_m(X) := \frac{|X|}{|I_m|}$.
- Fix $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ and standard $\epsilon \in (0, 1/2)$.
- We seek to construct internal sets $X_1, X_2, ... \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots$ such that $\mu_{\nu}(X_j) \ge 1 e^j$, and, for each $x \in X_j$, we have $\delta_{n_j}(A^* \cap (x + I_{n_j})) \ge \alpha \frac{1}{i}$.
- Suppose we are successful and let $X := \bigcap_j X_j$. Since $\mu(X) > 0$, we can pick $y_0 \in X \setminus \mathbb{N}$.
- We can find $x_0 \in A^*$ such that $x_0 \ge y_0$ and $x_0 y_0 \in \mathbb{N}$.
- Set $L := (A^* \cap (x_0 + \mathbb{N})) x_0$. Clearly *L* satisfies (2').

For (1), notice

 $\lim_{i\to\infty}\delta_{n_i}(L\cap I_{n_i})=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (x_0+I_{n_i}))=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (y_0+I_{n_i}))\geq\alpha.$

Proof of the key technical lemma (cont'd)

- Notation: For $m \in \mathbb{N}^*$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^*$, we set $\delta_m(X) := \frac{|X|}{|I_m|}$.
- Fix $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ and standard $\epsilon \in (0, 1/2)$.
- We seek to construct internal sets $X_1, X_2, ... \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots$ such that $\mu_{\nu}(X_j) \ge 1 e^j$, and, for each $x \in X_j$, we have $\delta_{n_j}(A^* \cap (x + I_{n_j})) \ge \alpha \frac{1}{i}$.
- Suppose we are successful and let $X := \bigcap_j X_j$. Since $\mu(X) > 0$, we can pick $y_0 \in X \setminus \mathbb{N}$.
- We can find $x_0 \in A^*$ such that $x_0 \ge y_0$ and $x_0 y_0 \in \mathbb{N}$.
- Set $L := (A^* \cap (x_0 + \mathbb{N})) x_0$. Clearly *L* satisfies (2').

For (1), notice

 $\lim_{i\to\infty}\delta_{n_i}(L\cap I_{n_i})=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (x_0+I_{n_i}))=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (y_0+I_{n_i}))\geq\alpha.$

Proof of the key technical lemma (cont'd)

- Notation: For $m \in \mathbb{N}^*$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^*$, we set $\delta_m(X) := \frac{|X|}{|I_m|}$.
- Fix $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ and standard $\epsilon \in (0, 1/2)$.
- We seek to construct internal sets $X_1, X_2, ... \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots$ such that $\mu_{\nu}(X_j) \ge 1 e^j$, and, for each $x \in X_j$, we have $\delta_{n_j}(A^* \cap (x + I_{n_j})) \ge \alpha \frac{1}{i}$.
- Suppose we are successful and let $X := \bigcap_j X_j$. Since $\mu(X) > 0$, we can pick $y_0 \in X \setminus \mathbb{N}$.
- We can find $x_0 \in A^*$ such that $x_0 \ge y_0$ and $x_0 y_0 \in \mathbb{N}$.
- Set $L := (A^* \cap (x_0 + \mathbb{N})) x_0$. Clearly *L* satisfies (2').

For (1), notice

 $\lim_{i\to\infty}\delta_{n_i}(L\cap I_{n_i})=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (x_0+I_{n_i}))=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (y_0+I_{n_i}))\geq\alpha.$

Proof of the key technical lemma (cont'd)

- Notation: For $m \in \mathbb{N}^*$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^*$, we set $\delta_m(X) := \frac{|X|}{|I_m|}$.
- Fix $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ and standard $\epsilon \in (0, 1/2)$.
- We seek to construct internal sets $X_1, X_2, ... \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots$ such that $\mu_{\nu}(X_j) \ge 1 e^j$, and, for each $x \in X_j$, we have $\delta_{n_j}(A^* \cap (x + I_{n_j})) \ge \alpha \frac{1}{i}$.
- Suppose we are successful and let $X := \bigcap_j X_j$. Since $\mu(X) > 0$, we can pick $y_0 \in X \setminus \mathbb{N}$.
- We can find $x_0 \in A^*$ such that $x_0 \ge y_0$ and $x_0 y_0 \in \mathbb{N}$.
- Set $L := (A^* \cap (x_0 + \mathbb{N})) x_0$. Clearly *L* satisfies (2').

For (1), notice

 $\lim_{i\to\infty}\delta_{n_i}(L\cap I_{n_i})=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (x_0+I_{n_i}))=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (y_0+I_{n_i}))\geq\alpha.$

.

Proof of the key technical lemma (cont'd)

- Notation: For $m \in \mathbb{N}^*$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^*$, we set $\delta_m(X) := \frac{|X|}{|I_m|}$.
- Fix $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ and standard $\epsilon \in (0, 1/2)$.
- We seek to construct internal sets $X_1, X_2, ... \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots$ such that $\mu_{\nu}(X_j) \ge 1 \epsilon^j$, and, for each $x \in X_j$, we have $\delta_{n_j}(A^* \cap (x + I_{n_j})) \ge \alpha \frac{1}{i}$.
- Suppose we are successful and let $X := \bigcap_j X_j$. Since $\mu(X) > 0$, we can pick $y_0 \in X \setminus \mathbb{N}$.
- We can find $x_0 \in A^*$ such that $x_0 \ge y_0$ and $x_0 y_0 \in \mathbb{N}$.
- Set $L := (A^* \cap (x_0 + \mathbb{N})) x_0$. Clearly *L* satisfies (2').

For (1), notice

 $\lim_{i\to\infty}\delta_{n_i}(L\cap I_{n_i})=\lim_{i\to\infty}\delta_{n_i}(A^*\cap(x_0+I_{n_i}))=\lim_{i\to\infty}\delta_{n_i}(A^*\cap(y_0+I_{n_i}))\geq\alpha.$

Proof of the key technical lemma (cont'd)

- Notation: For $m \in \mathbb{N}^*$ (standard or nonstandard) and hyperfinite $X \subseteq \mathbb{N}^*$, we set $\delta_m(X) := \frac{|X|}{|I_m|}$.
- Fix $\nu \in \mathbb{N}^* \setminus \mathbb{N}$ and standard $\epsilon \in (0, 1/2)$.
- We seek to construct internal sets $X_1, X_2, ... \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots$ such that $\mu_{\nu}(X_j) \ge 1 \epsilon^j$, and, for each $x \in X_j$, we have $\delta_{n_j}(A^* \cap (x + I_{n_j})) \ge \alpha \frac{1}{i}$.
- Suppose we are successful and let $X := \bigcap_j X_j$. Since $\mu(X) > 0$, we can pick $y_0 \in X \setminus \mathbb{N}$.
- We can find $x_0 \in A^*$ such that $x_0 \ge y_0$ and $x_0 y_0 \in \mathbb{N}$.
- Set $L := (A^* \cap (x_0 + \mathbb{N})) x_0$. Clearly *L* satisfies (2').
- For (1), notice

 $\lim_{i\to\infty}\delta_{n_i}(L\cap I_{n_i})=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (x_0+I_{n_i}))=\lim_{i\to\infty}\delta_{n_i}(A^*\cap (y_0+I_{n_i}))\geq\alpha.$

< 口 > < 同

- Suppose we have constructed internal sets $X_1, X_2, ..., X_{i-1} \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots < n_{i-1}$ with the desired properties.
- Fix $K \in \mathbb{N}^* \setminus \mathbb{N}$ and set *Z* to be the set of all $M \in \mathbb{N}^*$ such that: $n_{i-1} < M \le K$;
 - $\quad \bullet \ \delta_{\nu}(\{x \in I_{\nu} : \delta_{M}(A^{*} \cap (x + I_{M})) \geq \alpha \frac{1}{i}\}) > 1 \epsilon^{i}.$
- Then Z is internal. An appropriate choice of K and a calculation (to be done on the next slide) shows that Z contains all elements of N* \ N below K.
- By *underflow*, we must have $Z \cap \mathbb{N} \neq \emptyset$. Take $n_i \in Z \cap \mathbb{N}$ and define X_i as it should be.

< ロ > < 同 > < 回 > < 回 >

- Suppose we have constructed internal sets $X_1, X_2, ..., X_{i-1} \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots < n_{i-1}$ with the desired properties.
- Fix $K \in \mathbb{N}^* \setminus \mathbb{N}$ and set Z to be the set of all $M \in \mathbb{N}^*$ such that:

$$\bullet n_{i-1} < M \leq K;$$

- $\delta_{\nu}(\{x \in I_{\nu} : \delta_{M}(A^{*} \cap (x + I_{M})) \geq \alpha \frac{1}{i}\}) > 1 \epsilon^{i}.$
- Then Z is internal. An appropriate choice of K and a calculation (to be done on the next slide) shows that Z contains all elements of N* \ N below K.
- By *underflow*, we must have $Z \cap \mathbb{N} \neq \emptyset$. Take $n_i \in Z \cap \mathbb{N}$ and define X_i as it should be.

(4) (5) (4) (5)

- Suppose we have constructed internal sets $X_1, X_2, ..., X_{i-1} \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots < n_{i-1}$ with the desired properties.
- Fix $K \in \mathbb{N}^* \setminus \mathbb{N}$ and set *Z* to be the set of all $M \in \mathbb{N}^*$ such that:

$$\begin{array}{l} \Pi_{i-1} < M \leq K, \\ \\ \bullet \ \delta_{\nu}(\{x \in I_{\nu} \ : \ \delta_{M}(A^{*} \cap (x + I_{M})) \geq \alpha - \frac{1}{i}\}) > 1 - \epsilon^{i} \end{array}$$

- Then Z is internal. An appropriate choice of K and a calculation (to be done on the next slide) shows that Z contains all elements of N* \ N below K.
- By *underflow*, we must have $Z \cap \mathbb{N} \neq \emptyset$. Take $n_i \in Z \cap \mathbb{N}$ and define X_i as it should be.

- Suppose we have constructed internal sets $X_1, X_2, ..., X_{i-1} \subseteq I_{\nu}$ and standard natural numbers $n_1 < n_2 < n_3 < \cdots < n_{i-1}$ with the desired properties.
- Fix $K \in \mathbb{N}^* \setminus \mathbb{N}$ and set *Z* to be the set of all $M \in \mathbb{N}^*$ such that:

$$\begin{array}{l} \Pi_{i-1} < M \leq K, \\ \blacksquare \ \delta_{\nu}(\{x \in I_{\nu} \ : \ \delta_{M}(A^{*} \cap (x + I_{M})) \geq \alpha - \frac{1}{i}\}) > 1 - \epsilon^{i} \end{array}$$

- Then Z is internal. An appropriate choice of K and a calculation (to be done on the next slide) shows that Z contains all elements of N* \ N below K.
- By *underflow*, we must have $Z \cap \mathbb{N} \neq \emptyset$. Take $n_i \in Z \cap \mathbb{N}$ and define X_i as it should be.

< 3 > < 3</p>

Proof of the key technical lemma (conclusion)

Fix $\mathbb{N} < M \leq K$. If K is "small enough", we have that

$$\frac{1}{|I_{\nu}|} \sum_{x \in I_{\nu}} \delta_M(A^* \cap (x + I_M)) = \frac{1}{|I_M|} \sum_{y \in I_M} \frac{1}{|I_{\nu}|} \sum_{x \in I_{\nu}} \chi_{A^*}(x + y)$$
$$\approx \frac{1}{|I_M|} \sum_{y \in I_M} \delta_{\nu}(A^* \cap I_{\nu})$$

 $\approx \alpha$.

Since $BD(A) = \alpha$, we have that $st(\delta_M(A^* \cap (x + I_M))) \le \alpha$, so μ_{ν} -almost all $x \in I_{\nu}$ are such that $\delta_M(A^* \cap (x + I_M)) \approx \alpha$. \Box

Proof of the key technical lemma (conclusion)

Fix $\mathbb{N} < M \leq K$. If K is "small enough", we have that

$$\frac{1}{|I_{\nu}|} \sum_{x \in I_{\nu}} \delta_M(A^* \cap (x + I_M)) = \frac{1}{|I_M|} \sum_{y \in I_M} \frac{1}{|I_{\nu}|} \sum_{x \in I_{\nu}} \chi_{A^*}(x + y)$$
$$\approx \frac{1}{|I_M|} \sum_{y \in I_M} \delta_{\nu}(A^* \cap I_{\nu})$$

 $\approx \alpha$.

Since $BD(A) = \alpha$, we have that $st(\delta_M(A^* \cap (x + I_M))) \le \alpha$, so μ_{ν} -almost all $x \in I_{\nu}$ are such that $\delta_M(A^* \cap (x + I_M)) \approx \alpha$. \Box

< ∃ > < ∃

 M. DiNasso, I. Goldbring, R. Jin, S. Leth, M. Lupini, and K. Mahlburg, *Progress on a sumset conjecture of Erdos*, submitted. arXiv 1307.0767