Monad measure spaces and combinatorial number theory

Isaac Goldbring

University of Illinois at Chicago

Canadian Mathematics Society Winter Meeting December 6, 2014

1 Combinatorial Number Theory

2 Nonstandard Analysis

Densities

Definition

Suppose that $A \subseteq \mathbb{Z}$.
1 The upper density of A is

$$
\bar{d}(A):=\limsup _{n \rightarrow \infty} \frac{|A \cap[-n, n]|}{2 n+1} .
$$

2 The Banach density of A is

$$
\mathrm{BD}(A):=\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{Z}} \frac{\mid A \cap[x-n, x+n]) \mid}{2 n+1} .
$$

Positive density implies structure

A common theme in combinatorial number theory is to prove that a set of positive density must possess some structure. Perhaps the most famous example of such a theorem is:

Theorem (Szemeredi, 1975)

If $A \subseteq \mathbb{Z}$ is such that $\mathrm{BD}(A)>0$, then A contains arbitrarily long arithmetic progressions.

Structure notions of largeness

Definition

Suppose that $A \subseteq \mathbb{Z}$. We say that A is:
1 thick if, for every $n \in \mathbb{N}$, there is $x \in \mathbb{Z}$ such that $x+[-n, n] \subseteq A$ (equivalently, $\mathrm{BD}(A)=1$);
2 syndetic if there is $n \in \mathbb{N}$ such that $A+[-n, n]=\mathbb{Z}$;
3 piecewise syndetic if there is $m \in \mathbb{N}$ such that $A+[-m, m]$ is thick.

Our motivating theorem:

Theorem (Jinn 2002)

```
If A,B\subseteq\mathbb{Z}\mathrm{ are such that }\textrm{BD}(A),\textrm{BD}(B)>0\mathrm{ , then }A+B\mathrm{ is piecewise}
syndetic.
```


Structure notions of largeness

Definition

Suppose that $A \subseteq \mathbb{Z}$. We say that A is:
1 thick if, for every $n \in \mathbb{N}$, there is $x \in \mathbb{Z}$ such that $x+[-n, n] \subseteq A$ (equivalently, $\mathrm{BD}(A)=1$);
2 syndetic if there is $n \in \mathbb{N}$ such that $A+[-n, n]=\mathbb{Z}$;
3 piecewise syndetic if there is $m \in \mathbb{N}$ such that $A+[-m, m]$ is thick.

Our motivating theorem:

Theorem (Jin, 2002)

If $A, B \subseteq \mathbb{Z}$ are such that $\mathrm{BD}(A), \mathrm{BD}(B)>0$, then $A+B$ is piecewise syndetic.

Structure notions of largeness

Definition

Suppose that $A \subseteq \mathbb{Z}$. We say that A is:
1 thick if, for every $n \in \mathbb{N}$, there is $x \in \mathbb{Z}$ such that $x+[-n, n] \subseteq A$ (equivalently, $\mathrm{BD}(A)=1$);
2 syndetic if there is $n \in \mathbb{N}$ such that $A+[-n, n]=\mathbb{Z}$;
3 piecewise syndetic if there is $m \in \mathbb{N}$ such that $A+[-m, m]$ is thick.

Our motivating theorem:

Theorem (Jin, 2002)

If $A, B \subseteq \mathbb{Z}$ are such that $\mathrm{BD}(A), \mathrm{BD}(B)>0$, then $A+B$ is piecewise syndetic.

Structure notions of largeness

Definition

Suppose that $A \subseteq \mathbb{Z}$. We say that A is:
1 thick if, for every $n \in \mathbb{N}$, there is $x \in \mathbb{Z}$ such that $x+[-n, n] \subseteq A$ (equivalently, $\mathrm{BD}(A)=1$);
2 syndetic if there is $n \in \mathbb{N}$ such that $A+[-n, n]=\mathbb{Z}$;
3 piecewise syndetic if there is $m \in \mathbb{N}$ such that $A+[-m, m]$ is thick.

Our motivating theorem:

Theorem (Jin, 2002)
If $A, B \subseteq \mathbb{Z}$ are such that $\mathrm{BD}(A), \mathrm{BD}(B)>0$, then $A+B$ is piecewise syndetic.

Structure notions of largeness

Definition

Suppose that $A \subseteq \mathbb{Z}$. We say that A is:
1 thick if, for every $n \in \mathbb{N}$, there is $x \in \mathbb{Z}$ such that $x+[-n, n] \subseteq A$ (equivalently, $\mathrm{BD}(A)=1$);
2 syndetic if there is $n \in \mathbb{N}$ such that $A+[-n, n]=\mathbb{Z}$;
3 piecewise syndetic if there is $m \in \mathbb{N}$ such that $A+[-m, m]$ is thick.
Our motivating theorem:
Theorem (Jin, 2002)
If $A, B \subseteq \mathbb{Z}$ are such that $\mathrm{BD}(A), \mathrm{BD}(B)>0$, then $A+B$ is piecewise syndetic.

Inspiration from Real Analysis

Fact

Suppose that $A, B \subseteq[-1,1]$ are such that $\lambda(A), \lambda(B)>0$. Then $A+B$ contains an interval.

Proof.

For $x \in\left(-\frac{r}{2}, \frac{r}{2}\right)$, we have

It follows that $(A-a) \cap(-B+b+x) \neq \emptyset$, so $a+b+\left(\frac{r}{2}, \frac{r}{2}\right) \subseteq A+B$.

Inspiration from Real Analysis

Fact

Suppose that $A, B \subseteq[-1,1]$ are such that $\lambda(A), \lambda(B)>0$. Then $A+B$ contains an interval.

Proof.

Let a and b be Lebesgue points for A and B respectively. Choose $r>0$ sufficiently small such that

$$
\frac{\lambda(A \cap(a-r, a+r))}{2 r}, \frac{\lambda(-B \cap(-b-r,-b+r))}{2 r} \approx 1
$$

For $x \in\left(-\frac{r}{2}, \frac{r}{2}\right)$, we have

[^0]
Inspiration from Real Analysis

Fact

Suppose that $A, B \subseteq[-1,1]$ are such that $\lambda(A), \lambda(B)>0$. Then $A+B$ contains an interval.

Proof.

Let a and b be Lebesgue points for A and B respectively. Choose $r>0$ sufficiently small such that

$$
\frac{\lambda(A \cap(a-r, a+r))}{2 r}, \frac{\lambda(-B \cap(-b-r,-b+r))}{2 r} \approx 1
$$

For $x \in\left(-\frac{r}{2}, \frac{r}{2}\right)$, we have

$$
\frac{\lambda((-B+x) \cap(-b-r,-b+r))}{2 r} \approx \frac{1}{2}
$$

[^1]
Inspiration from Real Analysis

Fact

Suppose that $A, B \subseteq[-1,1]$ are such that $\lambda(A), \lambda(B)>0$. Then $A+B$ contains an interval.

Proof.

Let a and b be Lebesgue points for A and B respectively. Choose $r>0$ sufficiently small such that

$$
\frac{\lambda(A \cap(a-r, a+r))}{2 r}, \frac{\lambda(-B \cap(-b-r,-b+r))}{2 r} \approx 1 .
$$

For $x \in\left(-\frac{r}{2}, \frac{r}{2}\right)$, we have

$$
\frac{\lambda((-B+x) \cap(-b-r,-b+r))}{2 r} \approx \frac{1}{2}
$$

It follows that $(A-a) \cap(-B+b+x) \neq \emptyset$, so $a+b+\left(\frac{r}{2}, \frac{r}{2}\right) \subseteq A+B$.

Shifting from continuous to discrete

Question

How do we make the passage discrete to continuous? How do we make the passage from densities to measures?

> Answer
> Furstenberg's Correspondence Principle, which is a meta-principle that roughly turns combinatorial questions about densities into questions in ergodic theory. Nonstandard analysis provides a very slick way to present this idea.

Shifting fron continuous to discrete

Question

How do we make the passage discrete to continuous? How do we make the passage from densities to measures?

Answer

Furstenberg's Correspondence Principle, which is a meta-principle that roughly turns combinatorial questions about densities into questions in ergodic theory. Nonstandard analysis provides a very slick way to present this idea.

1 Combinatorial Number Theory

2 Nonstandard Analysis

3 Jin's Theorem

4 Multiplicative cuts

An axiomatic approach to \mathbb{R}^{*}

We will work in a nonstandard universe \mathbb{R}^{*} that has the following properties:
$1(\mathbb{R} ;+, \cdot, 0,1,<)$ is an ordered subfield of $\left(\mathbb{R}^{*} ;+, \cdot, 0,1,<\right)$.
$2 \mathbb{R}^{*}$ has a positive infinitesimal element, that is, there is $\delta \in \mathbb{R}^{*}$ such that $\delta>0$ but $\delta<r$ for every $r \in \mathbb{R}^{>0}$.
3 For every $n \in \mathbb{N}$ and every function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, there is a "natural extension" $f:\left(\mathbb{R}^{*}\right)^{n} \rightarrow \mathbb{R}^{*}$. The natural extensions of the field operations $+, \cdot: \mathbb{R}^{2} \rightarrow \mathbb{R}$ coincide with the field operations in \mathbb{R}^{*}. Similarly, for every $A \subseteq \mathbb{R}^{n}$, there is a subset $A^{*} \subseteq\left(\mathbb{R}^{*}\right)^{n}$ such that $A^{*} \cap \mathbb{R}^{n}=A$.
$4 \mathbb{R}^{*}$, equipped with the above assignment of extensions of functions and subsets, "behaves logically" like \mathbb{R}.

Standard parts

■ Say that $x \in \mathbb{R}^{*}$ is finite if $|x| \leq n$ for some $n \in \mathbb{N}$.
■ For example, for any $r \in \mathbb{R}$ and any (positive or negative) infinitesimal $\delta, r+\delta$ is finite.

- Conversely:

> Fact
> If $x \in \mathbb{R}^{*}$ is finite, then there is a unique $r \in \mathbb{R}^{>0}$ such that $x-r$ is infinitesimal. We call r the standard part of x and denote it by $\operatorname{st}(x)$.

Standard parts

■ Say that $x \in \mathbb{R}^{*}$ is finite if $|x| \leq n$ for some $n \in \mathbb{N}$.
■ For example, for any $r \in \mathbb{R}$ and any (positive or negative) infinitesimal $\delta, r+\delta$ is finite.
■ Conversely:

Fact

If $x \in \mathbb{R}^{*}$ is finite, then there is a unique $r \in \mathbb{R}^{>0}$ such that $x-r$ is infinitesimal. We call r the standard part of x and denote it by $\operatorname{st}(x)$.

Extending sequences

$■$ Recall that every function $f: \mathbb{R} \rightarrow \mathbb{R}$ has a nonstandard extension $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$.
■ Partial functions $f: A \rightarrow \mathbb{R}$ have nonstandard extensions $f: A^{*} \rightarrow \mathbb{R}^{*}$ as well.
$■$ In particular, if $\left(a_{n}: n \in \mathbb{N}\right)$ is a sequence of reals, viewing $\left(a_{n}\right)$ as the function $a: \mathbb{N} \rightarrow \mathbb{R}$, we get a nonstandard extension $a: \mathbb{N}^{*} \rightarrow \mathbb{R}^{*}$. We also write this in sequence notation ($a_{n}: n \in \mathbb{N}^{*}$) and refer to a_{N} for $N \in \mathbb{N}^{*} \backslash \mathbb{N}$ as an extended term of the sequence.

Subsequential limits

Lemma

If $\left(a_{n}\right)$ is a sequence and $L \in \mathbb{R}$, then L is a subsequential limit of $\left(a_{n}\right)$ if and only if there is an extended term a_{N} with $\operatorname{st}\left(a_{N}\right)=L$.

Corollary
If $\left(a_{n}\right)$ is a bounded sequence, then

$$
\lim \sup a_{n}=\max \left\{\operatorname{st}\left(a_{N}\right)\right.
$$

Subsequential limits

Lemma

If $\left(a_{n}\right)$ is a sequence and $L \in \mathbb{R}$, then L is a subsequential limit of $\left(a_{n}\right)$ if and only if there is an extended term a_{N} with $\operatorname{st}\left(a_{N}\right)=L$.

Corollary

If $\left(a_{n}\right)$ is a bounded sequence, then

$$
\lim \sup a_{n}=\max \left\{\operatorname{st}\left(a_{N}\right): N \in \mathbb{N}^{*} \backslash \mathbb{N}\right\}
$$

Nonstandard characterization of densities

■ For $A \subseteq \mathbb{Z}$, we have

$$
\bar{d}(A)=\max \left\{s t\left(\frac{\left|A^{*} \cap[-N, N]\right|}{2 N+1}\right): N \in \mathbb{N}^{*} \backslash \mathbb{N}\right\} .
$$

■ In a similar manner, for every $N>\mathbb{N}$, there is $x \in \mathbb{Z}^{*}$ such that

- The point of passing to the nonstandard framework is that the quantities st $\left(\frac{\left|A^{*} \cap[-N, N]\right|}{2 N+1}\right)$ are actually certain measures on A^{*} called Loeb measures. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.

Nonstandard characterization of densities

■ For $A \subseteq \mathbb{Z}$, we have

$$
\bar{d}(A)=\max \left\{s t\left(\frac{\left|A^{*} \cap[-N, N]\right|}{2 N+1}\right): N \in \mathbb{N}^{*} \backslash \mathbb{N}\right\} .
$$

■ In a similar manner, for every $N>\mathbb{N}$, there is $x \in \mathbb{Z}^{*}$ such that

$$
\mathrm{BD}(A)=\operatorname{st}\left(\frac{\left|A^{*} \cap[x-N, x+N]\right|}{2 N+1}\right) .
$$

- The point of passing to the nonstandard framework is that the quantities st $\left(\frac{\left|A^{*} \cap[-N, N]\right|}{2^{N+1}}\right)$ are actually certain measures on A^{*} called Loeb measures. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.

Nonstandard characterization of densities

■ For $A \subseteq \mathbb{Z}$, we have

$$
\bar{d}(A)=\max \left\{s t\left(\frac{\left|A^{*} \cap[-N, N]\right|}{2 N+1}\right): N \in \mathbb{N}^{*} \backslash \mathbb{N}\right\} .
$$

■ In a similar manner, for every $N>\mathbb{N}$, there is $x \in \mathbb{Z}^{*}$ such that

$$
\mathrm{BD}(A)=\operatorname{st}\left(\frac{\left|A^{*} \cap[x-N, x+N]\right|}{2 N+1}\right) .
$$

■ The point of passing to the nonstandard framework is that the quantities st $\left(\frac{\left|A^{*} \cap[-N, N]\right|}{2 N+1}\right)$ are actually certain measures on A^{*}, called Loeb measures. To define Loeb measure, we first need the concept of internal sets and hyperfinite sets.

Internal sets

■ Internal subsets of \mathbb{R}^{*} are the "definable" subsets of \mathbb{R}^{*} in some precise way that we won't define. They "logically behave" like ordinary subsets of \mathbb{R}. For example, $A^{*} \cap[-N, N]$ is an internal set.

- The set of all infinitesimals is not internal. Indeed, nonempty internal subsets of \mathbb{R}^{*} bounded above have a sup. But what would the sup of the infinitesimals be?
- An internal set is hyperfinite if there is an internal bijection between it and an interval of the form $[1, M]$ from \mathbb{N}^{*}. Internal subsets of hyperfinite sets are hyperfinite, so, e.g., $A^{*} \cap[-N, N]$ is hyperfinite.

Internal sets

■ Internal subsets of \mathbb{R}^{*} are the "definable" subsets of \mathbb{R}^{*} in some precise way that we won't define. They "logically behave" like ordinary subsets of \mathbb{R}. For example, $A^{*} \cap[-N, N]$ is an internal set.
■ The set of all infinitesimals is not internal. Indeed, nonempty internal subsets of \mathbb{R}^{*} bounded above have a sup. But what would the sup of the infinitesimals be?

- An internal set is hyperfinite if there is an internal bijection
between it and an interval of the form $[1, M]$ from \mathbb{N}^{*}. Internal
subsets of hyperfinite sets are hyperfinite, so, e.g., $A^{*} \cap[-N, N]$ is hyperfinite.

Internal sets

■ Internal subsets of \mathbb{R}^{*} are the "definable" subsets of \mathbb{R}^{*} in some precise way that we won't define. They "logically behave" like ordinary subsets of \mathbb{R}. For example, $A^{*} \cap[-N, N]$ is an internal set.
■ The set of all infinitesimals is not internal. Indeed, nonempty internal subsets of \mathbb{R}^{*} bounded above have a sup. But what would the sup of the infinitesimals be?
■ An internal set is hyperfinite if there is an internal bijection between it and an interval of the form $[1, M]$ from \mathbb{N}^{*}. Internal subsets of hyperfinite sets are hyperfinite, so, e.g., $A^{*} \cap[-N, N]$ is hyperfinite.

Saturation

Definition

The nonstandard extension is said to be countably saturated if, whenever $\left(A_{n}: n \in \mathbb{N}\right)$ is a family of internal sets with the finite intersection property, then $\bigcap_{n \in \mathbb{N}} A_{n} \neq \emptyset$.

Any reasonable construction of the nonstandard extension is countably saturated and we assume throughout that our model is countably saturated.

Loeb measure

■ Suppose that $E \subseteq \mathbb{R}^{*}$ is hyperfinite. Then there is a unique $M \in \mathbb{N}^{*}$ such that there is an internal bijection $E \rightarrow[1, M]$; we call M the internal cardinality of E and denote it by $|E|$.

- Then μ is a finitely additive measure. By countable saturation, μ (trivially!) satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ-algebra containing the internal subsets of E; this measure is called the Loeb measure.
- Motivating fact: Consider the function $f:[1, M] \rightarrow[0,1]$ given by $f(k):=\operatorname{st}\left(\frac{k}{M}\right)$. Then the measure on $[0,1]$ induced by the Loeb measure on $[1, M]$ is the usual Lebesgue measure.

Loeb measure

- Suppose that $E \subseteq \mathbb{R}^{*}$ is hyperfinite. Then there is a unique $M \in \mathbb{N}^{*}$ such that there is an internal bijection $E \rightarrow[1, M]$; we call M the internal cardinality of E and denote it by $|E|$.
- Fix a hyperfinite set E and define a function $\mu: \mathcal{P}_{\text {int }}(E) \rightarrow[0,1]$ by $\mu(A):=\operatorname{st}\left(\frac{|A|}{|E|}\right) \cdot\left(\mathcal{P}_{\text {int }}\right.$ is the internal powerset. $)$
- Then μ is a finitely additive measure. By countable saturation, μ (trivially!) satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ-algebra containing the internal subsets of E; this measure is called the Loeb measure.
 measure on $[1, M]$ is the usual Lebesgue measure.

Loeb measure

■ Suppose that $E \subseteq \mathbb{R}^{*}$ is hyperfinite. Then there is a unique $M \in \mathbb{N}^{*}$ such that there is an internal bijection $E \rightarrow[1, M]$; we call M the internal cardinality of E and denote it by $|E|$.
■ Fix a hyperfinite set E and define a function $\mu: \mathcal{P}_{\text {int }}(E) \rightarrow[0,1]$ by $\mu(A):=\operatorname{st}\left(\frac{|A|}{|E|}\right) \cdot\left(\mathcal{P}_{\mathrm{int}}\right.$ is the internal powerset.)
■ Then μ is a finitely additive measure. By countable saturation, μ (trivially!) satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ-algebra containing the internal subsets of E; this measure is called the Loeb measure.
 measure on $[1, M]$ is the usual Lebesgue measure.

Loeb measure

■ Suppose that $E \subseteq \mathbb{R}^{*}$ is hyperfinite. Then there is a unique $M \in \mathbb{N}^{*}$ such that there is an internal bijection $E \rightarrow[1, M]$; we call M the internal cardinality of E and denote it by $|E|$.

- Fix a hyperfinite set E and define a function $\mu: \mathcal{P}_{\text {int }}(E) \rightarrow[0,1]$ by $\mu(A):=\operatorname{st}\left(\frac{|A|}{|E|}\right) \cdot\left(\mathcal{P}_{\text {int }}\right.$ is the internal powerset.)
- Then μ is a finitely additive measure. By countable saturation, μ (trivially!) satisfies the conditions of the Caratheodory extension theorem, so extends to a countably additive measure on a certain σ-algebra containing the internal subsets of E; this measure is called the Loeb measure.
- Motivating fact: Consider the function $f:[1, M] \rightarrow[0,1]$ given by $f(k):=\operatorname{st}\left(\frac{k}{M}\right)$. Then the measure on $[0,1]$ induced by the Loeb measure on $[1, M]$ is the usual Lebesgue measure.

Nonstandard characterization of densities again

■ For $N \in \mathbb{N}^{*} \backslash \mathbb{N}$, let μ_{N} be the Loeb measure on $[-N, N]$.
■ For internal $E \subseteq \mathbb{Z}^{*}$, we simply write $\mu_{N}(E)$ instead of $\mu_{N}(E \cap[-N, N])$.

- We then have

■ Likewise, for every $N>\mathbb{N}$, there is $x \in \mathbb{Z}^{*}$ such that

$\mathrm{BD}(A)=\mu_{N}\left(\left(A^{*}-x\right)\right)$.

- Densities have become measures!

Nonstandard characterization of densities again

\square For $N \in \mathbb{N}^{*} \backslash \mathbb{N}$, let μ_{N} be the Loeb measure on $[-N, N]$.
■ For internal $E \subseteq \mathbb{Z}^{*}$, we simply write $\mu_{N}(E)$ instead of $\mu_{N}(E \cap[-N, N])$.

- We then have

$$
\bar{d}(A)=\max \left\{\mu_{N}\left(A^{*}\right): N \in \mathbb{N}^{*} \backslash \mathbb{N}\right\}
$$

■ Likewise, for every $N>\mathbb{N}$, there is $x \in \mathbb{Z}^{*}$ such that

$B D(A)=\mu_{N}\left(\left(A^{*}-x\right)\right)$.

- Densities have become measures!

Nonstandard characterization of densities again

■ For $N \in \mathbb{N}^{*} \backslash \mathbb{N}$, let μ_{N} be the Loeb measure on $[-N, N]$.
■ For internal $E \subseteq \mathbb{Z}^{*}$, we simply write $\mu_{N}(E)$ instead of $\mu_{N}(E \cap[-N, N])$.
\square We then have

$$
\bar{d}(A)=\max \left\{\mu_{N}\left(A^{*}\right): N \in \mathbb{N}^{*} \backslash \mathbb{N}\right\}
$$

\square Likewise, for every $N>\mathbb{N}$, there is $x \in \mathbb{Z}^{*}$ such that

$$
\mathrm{BD}(A)=\mu_{N}\left(\left(A^{*}-x\right)\right)
$$

■ Densities have become measures!

Nonstandard characterization of densities again

■ For $N \in \mathbb{N}^{*} \backslash \mathbb{N}$, let μ_{N} be the Loeb measure on $[-N, N]$.
■ For internal $E \subseteq \mathbb{Z}^{*}$, we simply write $\mu_{N}(E)$ instead of $\mu_{N}(E \cap[-N, N])$.

- We then have

$$
\bar{d}(A)=\max \left\{\mu_{N}\left(A^{*}\right): N \in \mathbb{N}^{*} \backslash \mathbb{N}\right\}
$$

\square Likewise, for every $N>\mathbb{N}$, there is $x \in \mathbb{Z}^{*}$ such that

$$
\mathrm{BD}(A)=\mu_{N}\left(\left(A^{*}-x\right)\right)
$$

■ Densities have become measures!

1 Combinatorial Number Theory

2 Nonstandard Analysis

3 Jin's Theorem

4 Multiplicative cuts

We need a new space

■ Notice that the Lebesgue Density Theorem cannot possibly hold for Loeb measure spaces.
■ For example, on any interval, the set of even elements of \mathbb{Z}^{*} have measure $\frac{1}{2}$.

- However, we noticed that the usual Lebesgue measure on $[0,1]$ is the quotient measure space associated to the Loeb measure space on $[-N, N]$ when two elements of $[-N, N]$ are identified if they differ by an amount infinitely smaller than N.
- So to get a Lebesgue Density Theorem to hold, we need to go to quotient spaces.

We need a new space

■ Notice that the Lebesgue Density Theorem cannot possibly hold for Loeb measure spaces.
■ For example, on any interval, the set of even elements of \mathbb{Z}^{*} have measure $\frac{1}{2}$.
■ However, we noticed that the usual Lebesgue measure on $[0,1]$ is the quotient measure space associated to the Loeb measure space on $[-N, N]$ when two elements of $[-N, N]$ are identified if they differ by an amount infinitely smaller than N.
■ So to get a Lebesgue Density Theorem to hold, we need to go to quotient spaces.

Monad measure space

\square Given $x, y \in \mathbb{Z}^{*}$, we say that x and y are equivalent, denoted $x \sim y$, if $|x-y| \in \mathbb{N}$.
■ Equivalence classes are called monads and are simply \mathbb{Z}-chains.
$■$ Given $N>\mathbb{N}$, let $\mathcal{H}_{N}:=\{[x]: x \in[-N, N]\}$.
\square We call $X \subseteq \mathcal{H}_{N}$ measurable if $\bigcup X$ is Loeb measurable in $[-N, N]$ and then we declare $\mathfrak{m}(X):=\mu_{N}(\bigcup X)$. We refer to this quotient measure space as a monad measure space.
\square For example, if $E \subseteq[-N, N]$ is internal, then $\{[x]: x \in E\}$ is measurable as its unionset is $E+\mathbb{Z}=\bigcup_{m}(E+[-m, m])$, a countable union of internal sets, whence Loeb measurable.

Lebesgue density theorem for monad measure spaces

Definition

Suppose that $E \subseteq \mathbb{Z}^{*}$ is internal and $x \in \mathbb{Z}^{*}$. We say that x is a density point of E if there is $M>\mathbb{N}$ such that, for all $\mathbb{N}<N<M$, we have $\mu_{N}(E-x+\mathbb{Z})=1$.

Theorem (LDT for Monad Measure Spaces-DGJLLM, 2013)

Suppose that $N>\mathbb{N}$ and $E \subseteq[-N, N]$ is internal. Then μ_{N}-almost all points of E are density points of E.

Points of syndeticity

Definition

Suppose that $E \subseteq \mathbb{Z}^{*}$ is internal and $x \in \mathbb{Z}^{*}$. We say that x is a point of syndeticity of E if there is $m \in \mathbb{N}$ such that $x+\mathbb{Z} \subseteq E+[-m, m]$.

Lemma

Suppose that $A \subseteq \mathbb{Z}$ is such that A^{*} has a point of syndeticity. Then A is piecewise syndetic.

> Proof.
> Fix $x \in \mathbb{Z}^{*}$ and $m \in \mathbb{N}$ such that $x+\mathbb{Z} \subseteq A^{*}+[-m, m]$. Then, for every $k \in \mathbb{N}$, the nonstandard model believes the statement "there is $x \in \mathbb{Z}^{*}$ such that $x+[-k, k] \subseteq A^{*}+[-m, m]$." Apply transfer.

Points of syndeticity

Definition

Suppose that $E \subseteq \mathbb{Z}^{*}$ is internal and $x \in \mathbb{Z}^{*}$. We say that x is a point of syndeticity of E if there is $m \in \mathbb{N}$ such that $x+\mathbb{Z} \subseteq E+[-m, m]$.

Lemma

Suppose that $A \subseteq \mathbb{Z}$ is such that A^{*} has a point of syndeticity. Then A is piecewise syndetic.

Points of syndeticity

Definition

Suppose that $E \subseteq \mathbb{Z}^{*}$ is internal and $x \in \mathbb{Z}^{*}$. We say that x is a point of syndeticity of E if there is $m \in \mathbb{N}$ such that $x+\mathbb{Z} \subseteq E+[-m, m]$.

Lemma

Suppose that $A \subseteq \mathbb{Z}$ is such that A^{*} has a point of syndeticity. Then A is piecewise syndetic.

Proof.

Fix $x \in \mathbb{Z}^{*}$ and $m \in \mathbb{N}$ such that $x+\mathbb{Z} \subseteq A^{*}+[-m, m]$. Then, for every $k \in \mathbb{N}$, the nonstandard model believes the statement "there is $x \in \mathbb{Z}^{*}$ such that $x+[-k, k] \subseteq A^{*}+[-m, m]$." Apply transfer.

Nonstandard Jin's Theorem

Theorem

Suppose that $N>\mathbb{N}$ and that $E, F \subseteq[-N, N]$ are internal and have positive Loeb measure. Take $x \in E$ and $y \in F$ density points for E and F. Then $x+y$ is a syndetic point for $E+F$.

Proof.

- Take $M>\mathbb{N}$ small enough so that

- Arguing as before, this gives us that

- Countable saturation tells us that there is $m \in \mathbb{N}$ such that $x+y+\left[-\frac{M}{2}, \frac{M}{2}\right] \subseteq E+F+[-m, m]$
- Since $M>\mathbb{N}$, we get $x+y+\mathbb{Z} \subseteq E+F+[-m, m]$

Nonstandard Jin's Theorem

Theorem

Suppose that $N>\mathbb{N}$ and that $E, F \subseteq[-N, N]$ are internal and have positive Loeb measure. Take $x \in E$ and $y \in F$ density points for E and F. Then $x+y$ is a syndetic point for $E+F$.

Proof.

■ Take $M>\mathbb{N}$ small enough so that
$\mu_{M}(E-x+\mathbb{Z})=\mu_{M}(-F+y+\mathbb{Z})=1$.
\square Arguing as before, this gives us that

$$
x+y+\left[-\frac{M}{2}, \frac{M}{2}\right] \subseteq E+F+\mathbb{Z}=\bigcup_{m \in \mathbb{N}}(E+F+[-m, m])
$$

■ Countable saturation tells us that there is $m \in \mathbb{N}$ such that $x+y+\left[-\frac{M}{2}, \frac{M}{2}\right] \subseteq E+F+[-m, m]$.
■ Since $M>\mathbb{N}$, we get $x+y+\mathbb{Z} \subseteq E+F+[-m, m]$.

Proof of Jin's Theorem

\square Suppose that $A, B \subseteq \mathbb{Z}$ are such that $\operatorname{BD}(A), \mathrm{BD}(B)>0$.
$■$ Fix $N>\mathbb{N}$ and take $c, d \in \mathbb{Z}^{*}$ such that

$$
\mu_{N}\left(A^{*}-c\right)=\mathrm{BD}(A), \mu_{N}\left(B^{*}-d\right)=\mathrm{BD}(B)
$$

■ Set $E:=\left(A^{*}-c\right) \cap[-N, N]$ and $F:=\left(B^{*}-d\right) \cap[-N, N]$.
■ Then $E+F$ has a point of syndeticity z, so there is $m \in \mathbb{N}$ such that

$$
z+\mathbb{Z} \subseteq E+F+[-m, m]
$$

■ It follows that $c+d+z+\mathbb{Z} \subseteq A^{*}+B^{*}+[-m, m]$, so $A^{*}+B^{*}=(A+B)^{*}$ has a point of syndeticity.

Quantitative version

■ Notice that we only used the existence of a single density point for each of A^{*} and B^{*}, even though the Lebesgue Density Theorem guarantees us many density points. We can use this to obtain strengthenings of Jin's theorem. For example:

\square
Theorem (DGJLLM, 2013) upper syndetic of level α

Quantitative version

■ Notice that we only used the existence of a single density point for each of A^{*} and B^{*}, even though the Lebesgue Density Theorem guarantees us many density points. We can use this to obtain strengthenings of Jin's theorem. For example:

Definition

We say that $A \subseteq \mathbb{Z}$ is upper syndetic of level α if there is $m \in \mathbb{N}$ such that, for all $k \in \mathbb{N}$, we have

$$
\bar{d}(\{x \in \mathbb{Z}: x+[-k, k] \subseteq A+[-m, m]\}) \geq \alpha
$$

Theorem (DGJLLM, 2013)

If $A, B \subseteq \mathbb{Z}$ are such that $\bar{d}(A)=\alpha>0$ and $\mathrm{BD}(B)>0$, then $A+B$ is upper syndetic of level α.

Measure of syndeticity points

Suppose that $E \subseteq \mathbb{Z}^{*}$ is internal and $N>\mathbb{N}$. We set

$$
\mathcal{S}_{E, N}:=\{z \in[-N, N]: z \text { is a syndeticity point for } E\} .
$$

Lemma

$\mathcal{S}_{E, N}$ is μ_{N}-measurable. If $\mu_{N}\left(\mathcal{S}_{E, N}\right)=\alpha>0$, then for all (standard) $\epsilon>0$, there is $m \in \mathbb{N}$ such that, for all $k \in \mathbb{N}$, we have

$$
\mu_{N}(\{z \in[-N, N]: z+[-k, k] \subseteq E+[-m, m]\} \geq \alpha-\epsilon
$$

Measure of syndeticity points

Suppose that $E \subseteq \mathbb{Z}^{*}$ is internal and $N>\mathbb{N}$. We set

$$
\mathcal{S}_{E, N}:=\{z \in[-N, N]: z \text { is a syndeticity point for } E\} .
$$

Lemma

$\mathcal{S}_{E, N}$ is μ_{N}-measurable. If $\mu_{N}\left(\mathcal{S}_{E, N}\right)=\alpha>0$, then for all (standard) $\epsilon>0$, there is $m \in \mathbb{N}$ such that, for all $k \in \mathbb{N}$, we have

$$
\mu_{N}(\{z \in[-N, N]: z+[-k, k] \subseteq E+[-m, m]\} \geq \alpha-\epsilon
$$

Proof.

$\mathcal{S}_{E, N}=\bigcup_{i=1}^{\infty} \mathcal{S}_{E, N}^{i}$, where $\mathcal{S}_{E, N}^{i}=\left(\bigcap_{x \in \mathbb{Z}}(E+[-i, i]+x)\right) \cap[-N, N]$.

Proof of Weak Quantitative Jin

■ Take $N>\mathbb{N}$ such that $\mu_{N}\left(A^{*}\right)=\alpha$.
■ Then almost all points of $A^{*} \cap[-N, N]$ are points of density of A^{*}.
■ One can actually show that we can find a point of density b of B^{*} whose absolute value is infinitely smaller than N.
■ Therefore, almost all points of $\left(A^{*}+b\right) \cap[-N, N]$ are points of syndeticity of $A^{*}+B^{*}$, so $\mu_{N}\left(\mathcal{S}_{(A+B)^{*}, N}\right) \geq \alpha$.
■ Therefore, for any $\epsilon>0$, we have $m \in \mathbb{N}$ such that, for all $k \in \mathbb{N}$, we have

$$
\mu_{N}\left(\left\{x \in[-N, N]: x+[-k, k] \subseteq(A+B)^{*}+[-m, m]\right\} \geq \alpha-\epsilon\right.
$$

■ By the nonstandard characterization of upper density, this says that $A+B$ is upper syndetic of level $\alpha-\epsilon$.

1 Combinatorial Number Theory

2 Nonstandard Analysis

4 Multiplicative cuts

Logarithmic density

Definition

For $A \subseteq \mathbb{N}$, the logarithmic Banach density of A is

$$
\ell \mathrm{BD}(A)=\lim _{n \rightarrow \infty} \sup _{k \geq 1} \frac{1}{\ln n} \sum_{x \in A \cap[k, n k]} \frac{1}{x}
$$

Facts

T $\operatorname{CBD}(\mathbb{N})=1 ;$
 $2 \ell B D(A) \leq \mathrm{BD}(A)$;

3 If $\ell \mathrm{BD}(A)=\alpha$, then there is $N \in \mathbb{N}^{*} \backslash \mathbb{N}$ and $k \in \mathbb{N}^{*}$ such that

Logarithmic density

Definition

For $A \subseteq \mathbb{N}$, the logarithmic Banach density of A is

$$
\ell \mathrm{BD}(A)=\lim _{n \rightarrow \infty} \sup _{k \geq 1} \frac{1}{\ln n} \sum_{x \in A \cap[k, n k]} \frac{1}{x}
$$

Facts

$1 \ell \mathrm{BD}(\mathbb{N})=1$;
$2 \ell \mathrm{BD}(A) \leq \mathrm{BD}(A)$;
3 If $\ell \mathrm{BD}(A)=\alpha$, then there is $N \in \mathbb{N}^{*} \backslash \mathbb{N}$ and $k \in \mathbb{N}^{*}$ such that $\ell \mathrm{BD}(A) \approx \frac{1}{\ln N} \sum_{x \in A^{*} \cap[k, N k]} \frac{1}{x}$.

Loeb space

Definition

For internal $A \subseteq[k, N k]$, we set $\nu(A):=\operatorname{st}\left(\frac{1}{\ln N} \sum_{x \in A} \frac{1}{x}\right)$. As before, we get a Loeb measure.

Example

For all $k \leq a \leq b \leq N k$, we have $\nu([a, b])=\operatorname{st}\left(\frac{\ln b-\ln a}{\ln N}\right)$. In particular, $\nu([k, N k])=1$ and $\nu([a c, b c])=\nu_{L}([a, b])$

Example

If $c>1$, then $\nu(c \cdot[a, b])=\operatorname{st}\left(\frac{1}{c \ln N} \sum_{x \in[a, b] \frac{1}{x}}\right) \neq \nu([a, b])$.

Loeb space

Definition

For internal $A \subseteq[k, N k]$, we set $\nu(A):=\operatorname{st}\left(\frac{1}{\ln N} \sum_{x \in A} \frac{1}{x}\right)$. As before, we get a Loeb measure.

Example

For all $k \leq a \leq b \leq N k$, we have $\nu([a, b])=\operatorname{st}\left(\frac{\ln b-\ln a}{\ln N}\right)$. In particular, $\nu([k, N k])=1$ and $\nu([a c, b c])=\nu_{L}([a, b])$.

Example
If $c>1$, then $\nu(c \cdot[a, b])=\operatorname{st}\left(\frac{1}{\ln N} \sum_{\left.x \in[a, b] \frac{1}{x}\right)} \neq \nu([a, b])\right.$.

Loeb space

Definition

For internal $A \subseteq[k, N k]$, we set $\nu(A):=\operatorname{st}\left(\frac{1}{\ln N} \sum_{x \in A} \frac{1}{x}\right)$. As before, we get a Loeb measure.

Example

For all $k \leq a \leq b \leq N k$, we have $\nu([a, b])=\operatorname{st}\left(\frac{\ln b-\ln a}{\ln N}\right)$. In particular, $\nu([k, N k])=1$ and $\nu([a c, b c])=\nu_{L}([a, b])$.

Example

If $c>1$, then $\nu(c \cdot[a, b])=\operatorname{st}\left(\frac{1}{c \ln N} \sum_{x \in[a, b]} \frac{1}{x}\right) \neq \nu([a, b])$.

Multiplicative monad spaces

\square Given $x \leq y \in \mathbb{N}^{*}$, we now say $x \sim y$ if $\left\lfloor\frac{y}{x}\right\rfloor \in \mathbb{N}$.
\square This is an equivalence relation; quotient map $\varphi:[k, N k] \rightarrow \mathcal{H}_{k, N}$.

- $\mathcal{H}_{k, N}$ inherits a (dense) linear order and multiplication.
- We equip $\mathcal{H}_{k, N}$ with the quotient measure \mathfrak{m}.
\square Set $V_{N}:=\bigcap_{k \geq 1}\left[1, N^{1 / k}\right)$.

Theorem (DGJLLM, 2014)
 If $\boldsymbol{a} \in \mathrm{I}_{\mathrm{N}}$, then multinlication by $\varphi(\mathrm{a})$ induces an invertible measure-preserving transformation on $\mathcal{H}_{k, N}$.

Multiplicative monad spaces

\square Given $x \leq y \in \mathbb{N}^{*}$, we now say $x \sim y$ if $\left\lfloor\frac{y}{x}\right\rfloor \in \mathbb{N}$.
\square This is an equivalence relation; quotient $\operatorname{map} \varphi:[k, N k] \rightarrow \mathcal{H}_{k, N}$.

- $\mathcal{H}_{k, N}$ inherits a (dense) linear order and multiplication.
- We equip $\mathcal{H}_{k, N}$ with the quotient measure \mathfrak{m}.
\square Set $V_{N}:=\bigcap_{k \geq 1}\left[1, N^{1 / k}\right)$.

Theorem (DGJLLM, 2014)

If $a \in V_{N}$, then multiplication by $\varphi(a)$ induces an invertible measure-preserving transformation on $\mathcal{H}_{k, N}$.

Approximate geometric progressions

Definition

Suppose $n \in \mathbb{N}$ and $X, Y \subseteq \mathbb{N}^{*}$. We say that X is an n-approximate subset of Y if, for every $x \in X$, there is $y \in Y$ such that $\frac{y}{n} \leq x \leq n y$.

Theorem (DGJLLM, 2014)

Suppose that $\ell \mathrm{BD}(\Delta)>0$ and $k \in \mathbb{N}$. Then there is $n \in \mathbb{N}$ such that, for any $m \in \mathbb{N}$, there is a geometric progression

such that G is an n-approximate subset of A and $a, r>m$.
The theorem is false if one replaces $2 B D$ by BD and is also talse if one requires genuine geometric progressions rather than approximate ones (e.g. square-free numbers).

Approximate geometric progressions

Definition

Suppose $n \in \mathbb{N}$ and $X, Y \subseteq \mathbb{N}^{*}$. We say that X is an n-approximate subset of Y if, for every $x \in X$, there is $y \in Y$ such that $\frac{y}{n} \leq x \leq n y$.

Theorem (DGJLLM, 2014)

Suppose that $\ell \mathrm{BD}(A)>0$ and $k \in \mathbb{N}$. Then there is $n \in \mathbb{N}$ such that, for any $m \in \mathbb{N}$, there is a geometric progression

$$
G=\left\{a r^{i}: i=0,1, \ldots, k-1\right\}
$$

such that G is an n-approximate subset of A and $a, r>m$.
The theorem is false if one replaces $\ell \mathrm{BD}$ by BD and is also false if one requires genuine geometric progressions rather than approximate ones (e.g. square-free numbers).

Furstenberg's Recurrence Theorem

Theorem (Furstenberg Recurrence)

Suppose that $T: X \rightarrow X$ is a measure preserving transformation, $\mu(A)>0$, and $k \in \mathbb{N}$. Then there exists $n \in \mathbb{N}$ such that

$$
\mu\left(A \cap T^{-n}(A) \cap T^{-2 n}(A) \cap \cdots \cap T^{-(k-1) n}(A)\right)>0
$$

■ Furstenberg deduced Szemeredi's Theorem from his recurrence theorem via what is now referred to as the Furstenberg Correspondence Principle. Here is the nonstandard presentation.
\square Fix $A \subseteq \mathbb{Z}$ with $\mathrm{BD}(A)>0$. Fix an infinite interval $/$ such that $\mathrm{BD}(A)=\mu_{I}\left(A^{*} \cap I\right)$.

- Apply Furstenberg's Recurrence Theorem to the measure preservation transformation $x \mapsto x+1(\bmod /)$ on I and use transfer.

Furstenberg's Recurrence Theorem

Theorem (Furstenberg Recurrence)

Suppose that $T: X \rightarrow X$ is a measure preserving transformation, $\mu(A)>0$, and $k \in \mathbb{N}$. Then there exists $n \in \mathbb{N}$ such that

$$
\mu\left(A \cap T^{-n}(A) \cap T^{-2 n}(A) \cap \cdots \cap T^{-(k-1) n}(A)\right)>0
$$

■ Furstenberg deduced Szemeredi's Theorem from his recurrence theorem via what is now referred to as the Furstenberg Correspondence Principle. Here is the nonstandard presentation.

Furstenberg's Recurrence Theorem

Theorem (Furstenberg Recurrence)

Suppose that $T: X \rightarrow X$ is a measure preserving transformation, $\mu(A)>0$, and $k \in \mathbb{N}$. Then there exists $n \in \mathbb{N}$ such that

$$
\mu\left(A \cap T^{-n}(A) \cap T^{-2 n}(A) \cap \cdots \cap T^{-(k-1) n}(A)\right)>0
$$

■ Furstenberg deduced Szemeredi's Theorem from his recurrence theorem via what is now referred to as the Furstenberg Correspondence Principle. Here is the nonstandard presentation.
$■$ Fix $A \subseteq \mathbb{Z}$ with $\mathrm{BD}(A)>0$. Fix an infinite interval / such that $\mathrm{BD}(A)=\mu_{I}\left(A^{*} \cap I\right)$.

- Apply Furstenberg's Recurrence Theorem to the measure preservation transformation $x \mapsto x+1(\bmod /)$ on I and use transfer.

Furstenberg's Recurrence Theorem

Theorem (Furstenberg Recurrence)

Suppose that $T: X \rightarrow X$ is a measure preserving transformation, $\mu(A)>0$, and $k \in \mathbb{N}$. Then there exists $n \in \mathbb{N}$ such that

$$
\mu\left(A \cap T^{-n}(A) \cap T^{-2 n}(A) \cap \cdots \cap T^{-(k-1) n}(A)\right)>0
$$

■ Furstenberg deduced Szemeredi's Theorem from his recurrence theorem via what is now referred to as the Furstenberg Correspondence Principle. Here is the nonstandard presentation.
\square Fix $A \subseteq \mathbb{Z}$ with $\mathrm{BD}(A)>0$. Fix an infinite interval / such that $\mathrm{BD}(A)=\mu_{l}\left(A^{*} \cap I\right)$.

- Apply Furstenberg's Recurrence Theorem to the measure preservation transformation $x \mapsto x+1(\bmod I)$ on I and use transfer.

The proof

■ Take $k, N \in \mathbb{N}^{*}$ with $N>\mathbb{N}$ such that $\ell \operatorname{BD}(A)=\nu\left(A^{*} \cap[k, N k]\right)$.
■ Let $E=\varphi(A)$ so $\mathfrak{m}(E) \geq \ell \operatorname{BD}(A)$.
■ Take $M \in \mathbb{N}^{*} \backslash \mathbb{N}, M<V_{N}$. Set $x:=[M]$.

- Multiplication by x is a measure preserving transformation, so Fursternberg's Recurrence Theorem gives us a geometric progression $\left\{c q^{i}: i=1, \ldots k\right\}$ in E, where $q=x^{\prime}$ for some $I \in \mathbb{N}$.
\square Let $r=M^{l}$ and take $a \in \varphi^{-1}(c q)$. Then $\varphi\left(a r^{i-1}\right)=c q^{i}$, so each $a r^{i-1}$ is multiplicatively within $t_{i} \in \mathbb{N}$ from A^{*}.
\square Let $n=\max \left(t_{1}, \ldots, t_{k}\right)$. So each of $a, a r, a r^{2}, \ldots, a r^{k-1}$ is multiplicatively within n of an element of A^{*}.
■ Since $a, r>\mathbb{N}$, we can apply transfer.

References

- M. Di Nasso, I. Goldbring, R. Jin, S. Leth, M. Lupini, and K. Mahlburg, Geo-arithmetic structure in logarithmically large sets, in preparation.
■ M. Di Nasso, I. Goldbring, R. Jin, S. Leth, M. Lupini, and K. Mahlburg, High density piecewise syndeticity of sumsets, submitted.
■ R. Jin, Sumset phenomenon, Proceedings of the American Mathematical Society, Vol. 130, No. 3 (2002), 855-861.

[^0]: It follows that $(A-a) \cap(-B+b+x) \neq \emptyset$, so $a+b+\left(\frac{r}{2}, \frac{r}{2}\right) \subseteq A+B$.

[^1]: It follows that $(A-a) \cap(-B+b+x) \neq 0$, so $a+b+\left(\frac{r}{2}, \frac{r}{2}\right) \subseteq A+B$.

