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Combinatorial Number Theory

Densities

Definition

Suppose that A ⊆ Z.
1 The upper density of A is

d̄(A) := lim sup
n→∞

|A ∩ [−n,n]|
2n + 1

.

2 The Banach density of A is

BD(A) := lim
n→∞

sup
x∈Z

|A ∩ [x − n, x + n])|
2n + 1

.
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Combinatorial Number Theory

Positive density implies structure

A common theme in combinatorial number theory is to prove that a set
of positive density must possess some structure. Perhaps the most
famous example of such a theorem is:

Theorem (Szemeredi, 1975)

If A ⊆ Z is such that BD(A) > 0, then A contains arbitrarily long
arithmetic progressions.
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Combinatorial Number Theory

Structure notions of largeness

Definition

Suppose that A ⊆ Z. We say that A is:
1 thick if, for every n ∈ N, there is x ∈ Z such that x + [−n,n] ⊆ A

(equivalently, BD(A) = 1);
2 syndetic if there is n ∈ N such that A + [−n,n] = Z;
3 piecewise syndetic if there is m ∈ N such that A + [−m,m] is thick.

Our motivating theorem:

Theorem (Jin, 2002)

If A,B ⊆ Z are such that BD(A),BD(B) > 0, then A + B is piecewise
syndetic.
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Combinatorial Number Theory

Inspiration from Real Analysis

Fact

Suppose that A,B ⊆ [−1,1] are such that λ(A), λ(B) > 0. Then A + B
contains an interval.

Proof.

Let a and b be Lebesgue points for A and B respectively. Choose
r > 0 sufficiently small such that

λ(A ∩ (a− r ,a + r))

2r
,
λ(−B ∩ (−b − r ,−b + r))

2r
≈ 1.

For x ∈ (− r
2 ,

r
2), we have

λ((−B + x) ∩ (−b − r ,−b + r))

2r
≈ 1

2
.

It follows that (A− a)∩ (−B + b + x) 6= ∅, so a + b + ( r
2 ,

r
2) ⊆ A + B.
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Combinatorial Number Theory

Shifting from continuous to discrete

Question

How do we make the passage discrete to continuous? How do we
make the passage from densities to measures?

Answer

Furstenberg’s Correspondence Principle, which is a meta-principle that
roughly turns combinatorial questions about densities into questions in
ergodic theory. Nonstandard analysis provides a very slick way to
present this idea.
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Nonstandard Analysis

An axiomatic approach to R∗

We will work in a nonstandard universe R∗ that has the following
properties:

1 (R; +, ·,0,1, <) is an ordered subfield of (R∗; +, ·,0,1, <).
2 R∗ has a positive infinitesimal element, that is, there is δ ∈ R∗

such that δ > 0 but δ < r for every r ∈ R>0.
3 For every n ∈ N and every function f : Rn → R, there is a “natural

extension” f : (R∗)n → R∗. The natural extensions of the field
operations +, · : R2 → R coincide with the field operations in R∗.
Similarly, for every A ⊆ Rn, there is a subset A∗ ⊆ (R∗)n such that
A∗ ∩ Rn = A.

4 R∗, equipped with the above assignment of extensions of
functions and subsets, “behaves logically” like R.
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Nonstandard Analysis

Standard parts

Say that x ∈ R∗ is finite if |x | ≤ n for some n ∈ N.
For example, for any r ∈ R and any (positive or negative)
infinitesimal δ, r + δ is finite.
Conversely:

Fact

If x ∈ R∗ is finite, then there is a unique r ∈ R>0 such that x − r is
infinitesimal. We call r the standard part of x and denote it by st(x).
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Nonstandard Analysis

Extending sequences

Recall that every function f : R→ R has a nonstandard extension
f : R∗ → R∗.
Partial functions f : A→ R have nonstandard extensions
f : A∗ → R∗ as well.
In particular, if (an : n ∈ N) is a sequence of reals, viewing (an)
as the function a : N→ R, we get a nonstandard extension
a : N∗ → R∗. We also write this in sequence notation
(an : n ∈ N∗) and refer to aN for N ∈ N∗ \ N as an extended term
of the sequence.
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Nonstandard Analysis

Subsequential limits

Lemma

If (an) is a sequence and L ∈ R, then L is a subsequential limit of (an)
if and only if there is an extended term aN with st(aN) = L.

Corollary

If (an) is a bounded sequence, then

lim sup an = max{st(aN) : N ∈ N∗ \ N}.
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Nonstandard Analysis

Nonstandard characterization of densities

For A ⊆ Z, we have

d̄(A) = max
{

st
(
|A∗ ∩ [−N,N]|

2N + 1

)
: N ∈ N∗ \ N

}
.

In a similar manner, for every N > N, there is x ∈ Z∗ such that

BD(A) = st
(
|A∗ ∩ [x − N, x + N]|

2N + 1

)
.

The point of passing to the nonstandard framework is that the
quantities st

(
|A∗∩[−N,N]|

2N+1

)
are actually certain measures on A∗,

called Loeb measures. To define Loeb measure, we first need the
concept of internal sets and hyperfinite sets.
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Nonstandard Analysis

Internal sets

Internal subsets of R∗ are the “definable” subsets of R∗ in some
precise way that we won’t define. They “logically behave” like
ordinary subsets of R. For example, A∗∩ [−N,N] is an internal set.
The set of all infinitesimals is not internal. Indeed, nonempty
internal subsets of R∗ bounded above have a sup. But what would
the sup of the infinitesimals be?
An internal set is hyperfinite if there is an internal bijection
between it and an interval of the form [1,M] from N∗. Internal
subsets of hyperfinite sets are hyperfinite, so, e.g., A∗ ∩ [−N,N] is
hyperfinite.
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Nonstandard Analysis

Saturation

Definition

The nonstandard extension is said to be countably saturated if,
whenever (An : n ∈ N) is a family of internal sets with the finite
intersection property, then

⋂
n∈N An 6= ∅.

Any reasonable construction of the nonstandard extension is countably
saturated and we assume throughout that our model is countably
saturated.
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Nonstandard Analysis

Loeb measure

Suppose that E ⊆ R∗ is hyperfinite. Then there is a unique
M ∈ N∗ such that there is an internal bijection E → [1,M]; we call
M the internal cardinality of E and denote it by |E |.
Fix a hyperfinite set E and define a function µ : Pint(E)→ [0,1] by
µ(A) := st

(
|A|
|E |

)
. (Pint is the internal powerset.)

Then µ is a finitely additive measure. By countable saturation, µ
(trivially!) satisfies the conditions of the Caratheodory extension
theorem, so extends to a countably additive measure on a certain
σ-algebra containing the internal subsets of E ; this measure is
called the Loeb measure.
Motivating fact: Consider the function f : [1,M]→ [0,1] given by
f (k) := st( k

M ). Then the measure on [0,1] induced by the Loeb
measure on [1,M] is the usual Lebesgue measure.
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Nonstandard Analysis

Nonstandard characterization of densities again

For N ∈ N∗ \ N, let µN be the Loeb measure on [−N,N].
For internal E ⊆ Z∗, we simply write µN(E) instead of
µN(E ∩ [−N,N]).
We then have

d(A) = max {µN(A∗) : N ∈ N∗ \ N} .

Likewise, for every N > N, there is x ∈ Z∗ such that

BD(A) = µN((A∗ − x)).

Densities have become measures!
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Jin’s Theorem

We need a new space

Notice that the Lebesgue Density Theorem cannot possibly hold
for Loeb measure spaces.
For example, on any interval, the set of even elements of Z∗ have
measure 1

2 .
However, we noticed that the usual Lebesgue measure on [0,1] is
the quotient measure space associated to the Loeb measure
space on [−N,N] when two elements of [−N,N] are identified if
they differ by an amount infinitely smaller than N.
So to get a Lebesgue Density Theorem to hold, we need to go to
quotient spaces.
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Jin’s Theorem

Monad measure space

Given x , y ∈ Z∗, we say that x and y are equivalent, denoted
x ∼ y , if |x − y | ∈ N.
Equivalence classes are called monads and are simply Z-chains.
Given N > N, let HN := {[x ] : x ∈ [−N,N]}.
We call X ⊆ HN measurable if

⋃
X is Loeb measurable in [−N,N]

and then we declare m(X ) := µN(
⋃

X ). We refer to this quotient
measure space as a monad measure space.
For example, if E ⊆ [−N,N] is internal, then {[x ] : x ∈ E} is
measurable as its unionset is E + Z =

⋃
m(E + [−m,m]), a

countable union of internal sets, whence Loeb measurable.
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Jin’s Theorem

Lebesgue density theorem for monad measure spaces

Definition

Suppose that E ⊆ Z∗ is internal and x ∈ Z∗. We say that x is a density
point of E if there is M > N such that, for all N < N < M, we have
µN(E − x + Z) = 1.

Theorem (LDT for Monad Measure Spaces-DGJLLM, 2013)

Suppose that N > N and E ⊆ [−N,N] is internal. Then µN -almost all
points of E are density points of E.
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Jin’s Theorem

Points of syndeticity

Definition

Suppose that E ⊆ Z∗ is internal and x ∈ Z∗. We say that x is a point of
syndeticity of E if there is m ∈ N such that x + Z ⊆ E + [−m,m].

Lemma

Suppose that A ⊆ Z is such that A∗ has a point of syndeticity. Then A
is piecewise syndetic.

Proof.

Fix x ∈ Z∗ and m ∈ N such that x + Z ⊆ A∗ + [−m,m]. Then, for every
k ∈ N, the nonstandard model believes the statement “there is x ∈ Z∗
such that x + [−k , k ] ⊆ A∗ + [−m,m].” Apply transfer.
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Jin’s Theorem

Nonstandard Jin’s Theorem

Theorem

Suppose that N > N and that E ,F ⊆ [−N,N] are internal and have
positive Loeb measure. Take x ∈ E and y ∈ F density points for E and
F. Then x + y is a syndetic point for E + F.

Proof.

Take M > N small enough so that
µM(E − x + Z) = µM(−F + y + Z) = 1.
Arguing as before, this gives us that
x + y + [−M

2 ,
M
2 ] ⊆ E + F + Z =

⋃
m∈N(E + F + [−m,m]).

Countable saturation tells us that there is m ∈ N such that
x + y + [−M

2 ,
M
2 ] ⊆ E + F + [−m,m].

Since M > N, we get x + y + Z ⊆ E + F + [−m,m].
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Jin’s Theorem

Proof of Jin’s Theorem

Suppose that A,B ⊆ Z are such that BD(A),BD(B) > 0.
Fix N > N and take c,d ∈ Z∗ such that

µN(A∗ − c) = BD(A), µN(B∗ − d) = BD(B).

Set E := (A∗ − c) ∩ [−N,N] and F := (B∗ − d) ∩ [−N,N].
Then E + F has a point of syndeticity z, so there is m ∈ N such
that

z + Z ⊆ E + F + [−m,m].

It follows that c + d + z + Z ⊆ A∗ + B∗ + [−m,m], so
A∗ + B∗ = (A + B)∗ has a point of syndeticity.
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Jin’s Theorem

Quantitative version

Notice that we only used the existence of a single density point for
each of A∗ and B∗, even though the Lebesgue Density Theorem
guarantees us many density points. We can use this to obtain
strengthenings of Jin’s theorem. For example:

Definition

We say that A ⊆ Z is upper syndetic of level α if there is m ∈ N such
that, for all k ∈ N, we have

d̄({x ∈ Z : x + [−k , k ] ⊆ A + [−m,m]}) ≥ α.

Theorem (DGJLLM, 2013)

If A,B ⊆ Z are such that d̄(A) = α > 0 and BD(B) > 0, then A + B is
upper syndetic of level α.
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Jin’s Theorem

Measure of syndeticity points

Suppose that E ⊆ Z∗ is internal and N > N. We set

SE ,N := {z ∈ [−N,N] : z is a syndeticity point for E}.

Lemma

SE ,N is µN -measurable. If µN(SE ,N) = α > 0, then for all (standard)
ε > 0, there is m ∈ N such that, for all k ∈ N, we have

µN({z ∈ [−N,N] : z + [−k , k ] ⊆ E + [−m,m]} ≥ α− ε.

Proof.

SE ,N =
⋃∞

i=1 S i
E ,N , where S i

E ,N = (
⋂

x∈Z(E + [−i , i] + x)) ∩ [−N,N].
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Jin’s Theorem

Proof of Weak Quantitative Jin

Take N > N such that µN(A∗) = α.
Then almost all points of A∗ ∩ [−N,N] are points of density of A∗.
One can actually show that we can find a point of density b of B∗

whose absolute value is infinitely smaller than N.
Therefore, almost all points of (A∗ + b) ∩ [−N,N] are points of
syndeticity of A∗ + B∗, so µN(S(A+B)∗,N) ≥ α.
Therefore, for any ε > 0, we have m ∈ N such that, for all k ∈ N,
we have

µN({x ∈ [−N,N] : x + [−k , k ] ⊆ (A + B)∗ + [−m,m]} ≥ α− ε.

By the nonstandard characterization of upper density, this says
that A + B is upper syndetic of level α− ε.
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Multiplicative cuts

1 Combinatorial Number Theory
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Multiplicative cuts

Logarithmic density

Definition

For A ⊆ N, the logarithmic Banach density of A is

`BD(A) = lim
n→∞

sup
k≥1

1
ln n

∑
x∈A∩[k ,nk ]

1
x
.

Facts

1 `BD(N) = 1;
2 `BD(A) ≤ BD(A);
3 If `BD(A) = α, then there is N ∈ N∗ \ N and k ∈ N∗ such that
`BD(A) ≈ 1

ln N
∑

x∈A∗∩[k ,Nk ]
1
x .
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Multiplicative cuts

Loeb space

Definition

For internal A ⊆ [k ,Nk ], we set ν(A) := st( 1
ln N
∑

x∈A
1
x ). As before, we

get a Loeb measure.

Example

For all k ≤ a ≤ b ≤ Nk , we have ν([a,b]) = st( ln b−ln a
ln N ). In particular,

ν([k ,Nk ]) = 1 and ν([ac,bc]) = νL([a,b]).

Example

If c > 1, then ν(c · [a,b]) = st( 1
c ln N

∑
x∈[a,b]

1
x ) 6= ν([a,b]).
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Multiplicative cuts

Multiplicative monad spaces

Given x ≤ y ∈ N∗, we now say x ∼ y if b y
x c ∈ N.

This is an equivalence relation; quotient map ϕ : [k ,Nk ]→ Hk ,N .
Hk ,N inherits a (dense) linear order and multiplication.
We equip Hk ,N with the quotient measure m.
Set VN :=

⋂
k≥1[1,N1/k ).

Theorem (DGJLLM, 2014)

If a ∈ VN , then multiplication by ϕ(a) induces an invertible
measure-preserving transformation on Hk ,N .
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Multiplicative cuts

Approximate geometric progressions

Definition

Suppose n ∈ N and X ,Y ⊆ N∗. We say that X is an n-approximate
subset of Y if, for every x ∈ X , there is y ∈ Y such that y

n ≤ x ≤ ny .

Theorem (DGJLLM, 2014)

Suppose that `BD(A) > 0 and k ∈ N. Then there is n ∈ N such that, for
any m ∈ N, there is a geometric progression

G = {ar i : i = 0,1, . . . , k − 1}

such that G is an n-approximate subset of A and a, r > m.

The theorem is false if one replaces `BD by BD and is also false if one
requires genuine geometric progressions rather than approximate
ones (e.g. square-free numbers).
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Multiplicative cuts

Furstenberg’s Recurrence Theorem

Theorem (Furstenberg Recurrence)

Suppose that T : X → X is a measure preserving transformation,
µ(A) > 0, and k ∈ N. Then there exists n ∈ N such that

µ(A ∩ T−n(A) ∩ T−2n(A) ∩ · · · ∩ T−(k−1)n(A)) > 0.

Furstenberg deduced Szemeredi’s Theorem from his recurrence
theorem via what is now referred to as the Furstenberg
Correspondence Principle. Here is the nonstandard presentation.
Fix A ⊆ Z with BD(A) > 0. Fix an infinite interval I such that
BD(A) = µI(A∗ ∩ I).
Apply Furstenberg’s Recurrence Theorem to the measure
preservation transformation x 7→ x + 1(mod I) on I and use
transfer.
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Multiplicative cuts

The proof

Take k ,N ∈ N∗ with N > N such that `BD(A) = ν(A∗ ∩ [k ,Nk ]).
Let E = ϕ(A) so m(E) ≥ `BD(A).
Take M ∈ N∗ \ N, M < VN . Set x := [M].
Multiplication by x is a measure preserving transformation, so
Fursternberg’s Recurrence Theorem gives us a geometric
progression {cqi : i = 1, . . . k} in E , where q = x l for some l ∈ N.
Let r = M l and take a ∈ ϕ−1(cq). Then ϕ(ar i−1) = cqi , so each
ar i−1 is multiplicatively within ti ∈ N from A∗.
Let n = max(t1, . . . , tk ). So each of a,ar ,ar2, . . . ,ar k−1 is
multiplicatively within n of an element of A∗.
Since a, r > N, we can apply transfer.
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Multiplicative cuts
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