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Introduction

Continuity

Suppose f : (a,b)→ R is a function and c ∈ (a,b).

Scary Definition

f is continuous at c if, for every ε > 0, there is δ > 0 such that
whenever d ∈ (a,b) is such that |c − d | < δ, then |f (c)− f (d)| < ε.

Intuitive Definition

f is continuous at c if, whenever d is really close to c, then f (d) is
really close to f (c).
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Introduction

Limits of sequences

Let (an) = (a0,a1,a2, . . .) be a sequence of real numbers and let L be
a real number.

Scary Definition

(an) converges to L if, for every ε > 0, there is N ∈ N such that, for all
n ∈ N with n ≥ N, we have |an − L| < ε.

Intuitive Definition

(an) converges to L if, for every really large natural number N, aN is
really close to L.
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Introduction

History

Great mathematicians, including Aristotle, Leibniz, Newton, and
Euler did mathematics making a liberal use of infinitely small and
infinitely large numbers.
Many mathematicians and philosophers were extremely skeptical
of this method of reasoning, for what exactly was an infinitesimal?
In the 19th century, Cauchy and Weierstrass rescued the calculus
by providing the now familiar ε− δ definitions.
In the 1960s, Abraham Robinson noticed that one could use the
techniques of mathematical logic to provide a rigorous foundation
for the use of infinitesimals, spawning the birth of nonstandard
analysis.
Ever since, nonstandard analysis has found great applications to
many areas of mathematics, including measure theory, functional
analysis, Lie theory, probability theory, number theory, algebra,
mathematical economics, and mathematical physics.
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Introduction

A quick start

To start “doing” analysis in a nonstandard fashion, we need to
know where we get our supply of infinitely large and infinitely small
elements.
In order to get going, let us start by assuming the existence of an
ordered field R∗ satisfying:

1 The ordered field R of real numbers is an ordered subfield of R∗;
2 There is an infinitely large element α of R∗ in the sense that r < α

for every r ∈ R;
3 R∗ behaves “logically” like R. (Transfer Principle)

This axiomatic approach is similar to studying R by only using the
fact that it is a complete, ordered field. (Complete means every
nonempty set bounded above has a least upper bound.)
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Introduction

The transfer principle

We assume that every subset A of R has an natural extension A∗:
A ⊆ A∗ ⊆ R∗. Thus, we will have sets N ⊆ N∗, [a,b] ⊆ [a,b]∗,
etc. . . We also do this for subsets of R2, R3, etc. . .
Also, we assume that every function f : A→ B has a natural
extension f ∗ : A∗ → B∗. For example, we have sin∗ : R∗ → [−1,1]∗

and ln∗ : (0,∞)∗ → R∗.
The transfer principle then asserts that any elementary property
about R is true if and only if the corresponding property of R∗ is
true.
To make this precise would require a detour into logic, so let us be
satisfied with an example.
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Introduction

An example of the transfer principle

Let f : (a,b)→ R be a function and let c ∈ (a,b).
Consider the following statement:

(∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ (a,b))(|x − c| < δ → |f (x)− f (c)| < ε)

which is true (in R) if and only if f is continuous at c.

The transfer principle then requires that the above statement is true if
and only if the statement

(∀ε ∈ R∗+)(∃δ ∈ R∗+)(∀x ∈ (a,b)∗)(|x − c|∗ < δ → |f ∗(x)− f ∗(c)|∗ < ε)

is true.
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Introduction

A non-example of the transfer principle

Here is an example of something that is not an elementary property:

R is complete.

The main reason that completeness of R is not elementary is that to
write this property down, one starts by writing ∀A ∈ P(R) . . .

We do not allow quantifiers over subsets of R, only elements of R.
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Introduction

New numbers

Recall that we assumed the existence of an infinitely large
element α of R∗.
Then −α is a negative infinite number.
1
α and − 1

α are positive and negative infinitesimals respectively.
There is an element N ∈ N∗ that is infinite. (Transfer principle)
Then N ± k is an infinite natural number for every standard k ∈ N.
We need to be careful with arithmetic in R∗: If β ∈ R∗ is a positive
infinitesimal, what can we say about αβ? If β = 1

α , then αβ = 1. If
β = 1

α2 , then αβ = 1
α , an infinitesimal.

Exercise: If r ∈ R∗ is finite (that is, not infinite) and s ∈ R∗ is
infinitesimal, then rs is infinitesimal.
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Introduction

Standard parts

For r , s ∈ R∗, write r ≈ s if and only if |r − s| is an infinitesimal.
(Here, 0 is infinitesimal; it is the only standard infinitesimal.)
For example, if ε is an infinitesimal, then 1 + ε ≈ 1; notice that
1 + ε is finite (and not standard if ε 6= 0).
Very Important Fact: If r ∈ R∗ is finite, then there is a unique
standard number s such that r ≈ s; we call s the standard part of r
and write s = st(r).
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Calculus
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Calculus

Continuity

Theorem

f is continuous at c if and only if, for all d ∈ (a,b)∗, if c ≈ d, then
f (c) ≈ f (d).

Proof.

(⇒) Suppose that f is continuous at c and suppose that d ∈ (a,b)∗ is
such that c ≈ d . Fix ε ∈ R+. We need |f (c)− f (d)| < ε.
Recall that there is δ ∈ R+ such that

(∀x ∈ (a,b))(|x − c| < δ → |f (x)− f (c)| < ε).

By transfer,

(∀x ∈ (a,b)∗)(|x − c| < δ → |f (x)− f (c)| < ε).

Since c ≈ d , |d − c| < δ is true, so |f (d)− f (c)| < ε, as desired.
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Calculus

Continuity (cont’d)

Theorem

f is continuous at c if and only if, for all d ∈ (a,b)∗, if c ≈ d, then
f (c) ≈ f (d).

Proof.

(⇐) Fix ε > 0. Let δ ∈ R∗+ be infinitesimal. Then if d ∈ (a,b)∗ is such
that |c − d | < δ, then c ≈ d , so f (c) ≈ f (d) by assumption, and hence
|f (c)− f (d)| < ε. So the following statement is true in R∗:

(∃δ ∈ R∗+)(∀x ∈ (a,b)∗)(|x − c| < δ → |f (x)− f (c)| < ε).

By the transfer principle, we have

(∃δ ∈ R+)(∀x ∈ (a,b))(|x − c| < δ → |f (x)− f (c)| < ε),

which is exactly what we wanted.
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Calculus

Uniform Continuity

Definition

Let f : A→ R. Then f is uniformly continuous if, for every ε > 0, there is
δ > 0 such that for every x , y ∈ A, if |x − y | < δ, then |f (x)− f (y)| < ε.

Theorem

f : A→ R is uniformly continuous if and only if for all x , y ∈ A∗, if x ≈ y,
then f (x) ≈ f (y).

Compare this with the nonstandard characterization of continuity:
f : A→ R is continuous if and only if for all x , y ∈ A∗ with x ≈ y and
y standard we have f (x) ≈ f (y).
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Calculus

Uniform Continuity (cont’d)

Example

Consider f : (0,1)→ R, f (x) = 1
x , a continuous function. Let M,N ∈ N∗

be infinite and distinct. Then 1
M ,

1
N ∈ (0,1)∗ and 1

M ≈
1
N , but

f ( 1
M ) = M 6≈ N = f ( 1

N ), so f is not uniformly continuous.

Notice that for any x ∈ [a,b]∗, there is y ∈ [a,b] such that x ≈ y . This
proves:

Theorem

If f : [a,b]→ R is continuous, then f is uniformly continuous.
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Calculus
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Calculus

Limits of sequences

Suppose that (an) = (a0,a1,a2, . . .) is a sequence of real
numbers.
We view this as a function a : N→ R, whence we get the
extension a : N∗ → R∗.
If N ∈ N∗, we will write aN instead of a(N), thinking of it as the N th

term of the sequence.

Theorem

(an) converges to L if and only if, for any infinite N ∈ N∗, we have
aN ≈ L.
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Calculus

Cluster Points

Definition

L is a cluster point of (an) if, for every ε > 0, there are infinitely many an
in the interval (L− ε,L + ε).

Example

If an = (−1)n(1 + 1
n ), then −1 and 1 are the cluster points of the

sequence.

Theorem

L is a cluster point of (an) if and only if L ≈ aN for some infinite N ∈ N∗.

Compare: L is the limit of (an) if and only if L ≈ aN for every infinite
N ∈ N∗.
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Calculus

Bolzano-Weierstrass

Now suppose that (an) is a bounded sequence, say −M ≤ an ≤ M
for all n ∈ N.
Suppose that N ∈ N∗ is infinite. Then by the transfer principle,
−M ≤ aN ≤ M. Thus, st(aN) exists.
By the theorem, st(aN) is a cluster point of (an). We just proved:

Theorem (Bolzano-Weierstrass)

Every bounded sequence has a cluster point.
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Calculus

Derivatives

Theorem

Suppose that f : (a,b)→ R is a function and c ∈ (a,b). Then f is
differentiable at c with derivative L if and only if, for every nonzero
infinitesimal ε:

f (c + ε)− f (c)

ε
≈ L.

Suppose f is differentiable at c. Then for any nonzero infinitesimal ε,
we have f (c + ε)− f (c) ≈ f ′(c) · ε ≈ 0. This proves:

Corollary

If f is differentiable at c, then f is continuous at c.
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Calculus

Integrals

Suppose that f : [a,b]→ R is continuous. Let N be an infinite natural
number. Let {x0, x1, . . . , xN} be the partition of [a,b]∗ into N equal
pieces. Then one can make sense out of the sum

∑N−1
i=0 f (xi) · 1

N and it
turns out that ∫ b

a
f (x)dx ≈

N−1∑
i=0

f (xi)
1
N
.
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Calculus

Dirac delta function

“Definition”

The Dirac delta function is the “function” δ : R→ R defined by

δ(x) =

{
0 if x 6= 0
+∞ if x = 0

further satisfying
∫ +∞
−∞ δ(x)dx = 1. (Unit impulse)

Definition

Let N ∈ N∗ be infinite. Then the Dirac delta function is the nonstandard
function δ : R∗ → R∗ given by

δ(x) =

{
0 if |x | > 1

2N

N if |x | ≤ 1
2N
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Calculus

Major Accomplishments

Theorem (Bernstein-Robinson, 1966)

If H is a separable Hilbert space and T : H → H is a polynomially
compact operator, then T has a nontrivial invariant subspace.

Theorem (van den Dries-Schmidt, 1984)

If f0(C,X ), f1(C,X ), . . . , fm(C,X ) ∈ Z[C,X ] are polynomials and K is
an algebraically closed field, then the set

{c ∈ K M | f0(c,X ) ∈ (f1(c,X ), . . . , fm(c,X ))}

is a Zariski-constructible set.

Theorem (G., 2010)

Hilbert’s fifth problem for local groups has a positive solution: every
locally euclidean local group is locally isomorphic to a Lie group.

Isaac Goldbring ( UCLA ) Calculus with infinitesimals LMU October 7, 2011 23 / 34



Constructing R∗

1 Introduction

2 Calculus

3 Constructing R∗

Isaac Goldbring ( UCLA ) Calculus with infinitesimals LMU October 7, 2011 24 / 34



Constructing R∗

Cantor’s construction of R

Let (an) be a sequence of rational numbers. We say that (an) is
Cauchy if, for every ε > 0, there is N ∈ N such that for all
m,n ≥ N, we have |am − an| < ε.
Every real number is a limit of a Cauchy sequence of rational
numbers (finite decimal approximations) and, conversely, every
Cauchy sequence of rational numbers converges to a real number.
Thus, we can think of real numbers as limits of Cauchy sequences
of rational numbers.
Problem: Many Cauchy sequences have the same limit, so we do
not have an identification of real numbers with Cauchy sequences.
Fix: We say that the Cauchy sequences (an) and (bn) are
equivalent if limn→∞ |an − bn| = 0. We then define real numbers to
be equivalence classes of Cauchy sequences of rational numbers.
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Constructing R∗

A construction of R∗

Once again, we use sequences: We think of the sequence
1,2,3, . . . ,n,n + 1, . . . as defining an infinite element of R∗.
However, the sequence π,e,− ln(8),103,5,6,7,8,9, . . . should
define the same infinite number.
More generally, the sequence (an) and (bn) of real numbers
should define the same element of R∗ if they agree on “most”
entries. But what does “most” mean?
We want a notion of “large” subset of N and then declare that (an)
and (bn) agree on “most” entries if the set of entries they agree on
is “large”.
And we want the relation “(an) agrees with (bn) for most n” to be
an equivalence relation.
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Constructing R∗

Large and small

For every subset A ⊆ N, we want a way to categorize A as either
small or large (but not both).
If A ⊆ N is small and B ⊆ A, then B should also be small.
If A,B ⊆ N are both small, then A ∪ B should also be small. (Then
the intersection of two large sets is large.)
Finite subsets of N should be small.

Theorem

There is a division of subsets of N into small and large as above.

Given such a division of subsets of N into small and large, the
collection of large sets is called an nonprincipal ultrafilter on N. For the
rest of this talk, let’s fix such a divison into small and large.
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Constructing R∗

R∗

Definition

Given two sequences (an) and (bn) of real numbers, we say that they
are equivalent if {n ∈ N : an = bn} is large. We then define R∗ to be
the set of equivalence classes of sequences of real numbers. (R∗ is
called an ultrapower of R.)

For [an], [bn] ∈ R∗, we define

[an] + [bn] := [an + bn] and [an] · [bn] := [anbn].

We also say [an] < [bn] if and only if {n ∈ N : an < bn} is large.
We can view R as a subset of R∗ by pretending that r ∈ R is
[(r , r , r , . . . , )], the equivalence class of the constant sequence r .
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Constructing R∗

R∗

Theorem

R∗ satisfies the three axioms from earlier in the talk.

We will only verify that R∗ is an ordered field extension of R that
contains an infinite element; the proof of the transfer principle (which
goes under the name “Łos’ theorem” in this context) would require too
far a detour into logic to prove here. We just say how you extend sets
and functions.

Definition

1 Suppose that A ⊆ R. Then we define A∗ ⊆ R∗ by: [an] ∈ A∗ if and
only if {n ∈ N : an ∈ A} is large.

2 Given f : A→ B, we define f ∗ : A∗ → B∗ by f ∗([an]) = [f (an)].
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Constructing R∗

R∗ is an ordered field

Most of the axioms of a field follow easily from the fact that R is a
field. We prove here the hardest of them, namely that every
nonzero element has a multiplicative inverse.
Suppose that [an] is not the zero element. What does this mean?
Well, the zero element of R∗ is [(0,0,0, . . .)], the equivalence class
of the constantly 0 sequence, so [an] 6= [(0,0, . . .)].
Thus, for “most” n ∈ N, an 6= 0; for these n, define bn := 1

an
. For

the other n, let bn be any real number that you want!
Then an · bn = 1 for “most” n ∈ N, so [an] · [bn] = [(1,1,1, . . .)],
which is the unit element of R∗.
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Constructing R∗

R∗ is an ordered field

What about the order? Well, since

N = {n ∈ N : an < bn} t {n ∈ N : an = bn} t {n ∈ N : bn < an}

and exactly one of these sets must be large, we have that < is a
linear order on R∗: either [an] < [bn] or [an] = [bn] or [bn] < [an].
The other axioms for an ordered field are easy to verify.
By the way, the axioms of an ordered field are “elementary,” so if
we had already proved the Transfer Principle, then we would get
that R∗ is an ordered field as a consequence.
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Constructing R∗

R∗ has an infinite number

Let α = [(1,2,3, . . .)] ∈ R∗. We claim that α is an infinite element
of R∗. (Actually, α ∈ N∗)
To see this, let r ∈ R. We need [(r , r , r , . . .)] < [(1,2,3,4, . . .)].
This is true because {n ∈ N : r < n} has a finite complement and
thus is large!
By the way, 1

α = [(1, 1
2 ,

1
3 , . . . , )] is a positive infinitesimal.
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Constructing R∗

Concluding remarks

In order to apply nonstandard methods to more sophisticated
subjects, one needs to modify the ultrapower construction above
to a more elaborate framework.
Nonstandard analysis provides a new collection of principles that
one can use in proofs, e.g. overflow, underflow, saturation,
hyperfinite approximation, etc. . .
Many theorems of standard mathematics have been proven by
nonstandard techniques because the intuitive approach to the
proof can be formalized in nonstandard analysis. However, it is a
theorem that any theorem which can be proven using nonstandard
analysis can also be proven without nonstandard analysis,
although the standard proof is often completely unreadable!
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analysis can also be proven without nonstandard analysis,
although the standard proof is often completely unreadable!
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Concluding remarks
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References

A good introduction to nonstandard analysis is
Lectures on the Hyperreals: An introduction to nonstandard analysis
by Robert Goldblatt.

I will put these slides on my webpage at
http://www.math.ucla.edu/∼isaac
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