Calculus with infinitesimals

Isaac Goldbring

UCLA

LMU Math Department Seminar October 7, 2011

Isaac Goldbring (UCLA)

Calculus with infinitesimals

LMU October 7, 2011 1 / 34

1 Introduction

3 Constructing ℝ*

Isaac Goldbring (UCLA)

2

(4) (5) (4) (5)

Suppose $f : (a, b) \rightarrow \mathbb{R}$ is a function and $c \in (a, b)$.

Scary Definition

f is *continuous at c* if, for every $\epsilon > 0$, there is $\delta > 0$ such that whenever $d \in (a, b)$ is such that $|c - d| < \delta$, then $|f(c) - f(d)| < \epsilon$.

Intuitive Definition

f is *continuous at c* if, whenever *d* is really close to *c*, then f(d) is really close to f(c).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Suppose $f : (a, b) \rightarrow \mathbb{R}$ is a function and $c \in (a, b)$.

Scary Definition

f is *continuous at c* if, for every $\epsilon > 0$, there is $\delta > 0$ such that whenever $d \in (a, b)$ is such that $|c - d| < \delta$, then $|f(c) - f(d)| < \epsilon$.

Intuitive Definition

f is *continuous at c* if, whenever *d* is really close to *c*, then f(d) is really close to f(c).

< ロ > < 同 > < 回 > < 回 >

Suppose $f : (a, b) \rightarrow \mathbb{R}$ is a function and $c \in (a, b)$.

Scary Definition

f is *continuous at c* if, for every $\epsilon > 0$, there is $\delta > 0$ such that whenever $d \in (a, b)$ is such that $|c - d| < \delta$, then $|f(c) - f(d)| < \epsilon$.

Intuitive Definition

f is *continuous at c* if, whenever *d* is really close to *c*, then f(d) is really close to f(c).

Limits of sequences

Let $(a_n) = (a_0, a_1, a_2, ...)$ be a sequence of real numbers and let *L* be a real number.

Scary Definition

(*a_n*) converges to *L* if, for every $\epsilon > 0$, there is $N \in \mathbb{N}$ such that, for all $n \in \mathbb{N}$ with $n \ge N$, we have $|a_n - L| < \epsilon$.

Intuitive Definition

 (a_n) converges to L if, for every really large natural number N, a_N is really close to L.

< ロ > < 同 > < 回 > < 回 >

Limits of sequences

Let $(a_n) = (a_0, a_1, a_2, ...)$ be a sequence of real numbers and let *L* be a real number.

Scary Definition

(*a_n*) converges to *L* if, for every $\epsilon > 0$, there is $N \in \mathbb{N}$ such that, for all $n \in \mathbb{N}$ with $n \ge N$, we have $|a_n - L| < \epsilon$.

Intuitive Definition

 (a_n) converges to L if, for every really large natural number N, a_N is really close to L.

< ロ > < 同 > < 回 > < 回 >

Limits of sequences

Let $(a_n) = (a_0, a_1, a_2, ...)$ be a sequence of real numbers and let *L* be a real number.

Scary Definition

(*a_n*) converges to *L* if, for every $\epsilon > 0$, there is $N \in \mathbb{N}$ such that, for all $n \in \mathbb{N}$ with $n \ge N$, we have $|a_n - L| < \epsilon$.

Intuitive Definition

 (a_n) converges to L if, for every really large natural number N, a_N is really close to L.

History

- Great mathematicians, including Aristotle, Leibniz, Newton, and Euler did mathematics making a liberal use of infinitely small and infinitely large numbers.
- Many mathematicians and philosophers were extremely skeptical of this method of reasoning, for what exactly was an *infinitesimal*?
- In the 19th century, Cauchy and Weierstrass rescued the calculus by providing the now familiar $\epsilon \delta$ definitions.
- In the 1960s, Abraham Robinson noticed that one could use the techniques of *mathematical logic* to provide a rigorous foundation for the use of infinitesimals, spawning the birth of *nonstandard analysis*.
- Ever since, nonstandard analysis has found great applications to many areas of mathematics, including measure theory, functional analysis, Lie theory, probability theory, number theory, algebra, mathematical economics, and mathematical physics.

- To start "doing" analysis in a nonstandard fashion, we need to know where we get our supply of infinitely large and infinitely small elements.
- In order to get going, let us start by assuming the existence of an ordered field R* satisfying:
 - 1 The ordered field \mathbb{R} of real numbers is an ordered subfield of \mathbb{R}^* ;
 - 2 There is an *infinitely large* element α of \mathbb{R}^* in the sense that $r < \alpha$ for every $r \in \mathbb{R}$;
 - 3 \mathbb{R}^* behaves "logically" like \mathbb{R} . (Transfer Principle)
- This axiomatic approach is similar to studying ℝ by only using the fact that it is a complete, ordered field. (Complete means every nonempty set bounded above has a least upper bound.)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- To start "doing" analysis in a nonstandard fashion, we need to know where we get our supply of infinitely large and infinitely small elements.
- In order to get going, let us start by assuming the existence of an ordered field ℝ* satisfying:
 - 1 The ordered field \mathbb{R} of real numbers is an ordered subfield of \mathbb{R}^* ;
 - **2** There is an *infinitely large* element α of \mathbb{R}^* in the sense that $r < \alpha$ for every $r \in \mathbb{R}$;
 - 3 \mathbb{R}^* behaves "logically" like \mathbb{R} . (Transfer Principle)
- This axiomatic approach is similar to studying ℝ by only using the fact that it is a complete, ordered field. (Complete means every nonempty set bounded above has a least upper bound.)

- To start "doing" analysis in a nonstandard fashion, we need to know where we get our supply of infinitely large and infinitely small elements.
- In order to get going, let us start by assuming the existence of an ordered field ℝ* satisfying:
 - The ordered field \mathbb{R} of real numbers is an ordered subfield of \mathbb{R}^* ;
 - 2 There is an *infinitely large* element α of \mathbb{R}^* in the sense that $r < \alpha$ for every $r \in \mathbb{R}$;
 - 3 \mathbb{R}^* behaves "logically" like \mathbb{R} . (Transfer Principle)
- This axiomatic approach is similar to studying ℝ by only using the fact that it is a complete, ordered field. (Complete means every nonempty set bounded above has a least upper bound.)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- To start "doing" analysis in a nonstandard fashion, we need to know where we get our supply of infinitely large and infinitely small elements.
- In order to get going, let us start by assuming the existence of an ordered field ℝ* satisfying:
 - **1** The ordered field \mathbb{R} of real numbers is an ordered subfield of \mathbb{R}^* ;
 - 2 There is an *infinitely large* element α of ℝ* in the sense that r < α for every r ∈ ℝ;</p>
 - 3 \mathbb{R}^* behaves "logically" like \mathbb{R} . (Transfer Principle)
- This axiomatic approach is similar to studying ℝ by only using the fact that it is a complete, ordered field. (Complete means every nonempty set bounded above has a least upper bound.)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- To start "doing" analysis in a nonstandard fashion, we need to know where we get our supply of infinitely large and infinitely small elements.
- In order to get going, let us start by assuming the existence of an ordered field ℝ* satisfying:
 - 1 The ordered field \mathbb{R} of real numbers is an ordered subfield of \mathbb{R}^* ;
 - 2 There is an *infinitely large* element α of ℝ* in the sense that r < α for every r ∈ ℝ;</p>
 - 3 \mathbb{R}^* behaves "logically" like \mathbb{R} . (Transfer Principle)
- This axiomatic approach is similar to studying ℝ by only using the fact that it is a complete, ordered field. (Complete means every nonempty set bounded above has a least upper bound.)

- To start "doing" analysis in a nonstandard fashion, we need to know where we get our supply of infinitely large and infinitely small elements.
- In order to get going, let us start by assuming the existence of an ordered field ℝ* satisfying:
 - **1** The ordered field \mathbb{R} of real numbers is an ordered subfield of \mathbb{R}^* ;
 - 2 There is an *infinitely large* element α of ℝ* in the sense that r < α for every r ∈ ℝ;</p>
 - 3 \mathbb{R}^* behaves "logically" like \mathbb{R} . (Transfer Principle)
- This axiomatic approach is similar to studying ℝ by only using the fact that it is a complete, ordered field. (Complete means every nonempty set bounded above has a least upper bound.)

< ロ > < 同 > < 回 > < 回 >

- We assume that every subset A of ℝ has an natural extension A*: A ⊆ A* ⊆ ℝ*. Thus, we will have sets ℕ ⊆ ℕ*, [a, b] ⊆ [a, b]*, etc... We also do this for subsets of ℝ², ℝ³, etc...
- Also, we assume that every function $f : A \to B$ has a natural extension $f^* : A^* \to B^*$. For example, we have $\sin^* : \mathbb{R}^* \to [-1, 1]^*$ and $\ln^* : (0, \infty)^* \to \mathbb{R}^*$.
- The transfer principle then asserts that any *elementary* property about ℝ is true if and only if the corresponding property of ℝ* is true.
- To make this precise would require a detour into logic, so let us be satisfied with an example.

< ロ > < 同 > < 回 > < 回 >

- We assume that every subset A of ℝ has an natural extension A*: A ⊆ A* ⊆ ℝ*. Thus, we will have sets ℕ ⊆ ℕ*, [a, b] ⊆ [a, b]*, etc... We also do this for subsets of ℝ², ℝ³, etc...
- Also, we assume that every function *f* : *A* → *B* has a natural extension *f*^{*} : *A*^{*} → *B*^{*}. For example, we have sin^{*} : ℝ^{*} → [−1, 1]^{*} and ln^{*} : (0,∞)^{*} → ℝ^{*}.
- The transfer principle then asserts that any *elementary* property about \mathbb{R} is true if and only if the corresponding property of \mathbb{R}^* is true.
- To make this precise would require a detour into logic, so let us be satisfied with an example.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- We assume that every subset A of ℝ has an natural extension A*: A ⊆ A* ⊆ ℝ*. Thus, we will have sets ℕ ⊆ ℕ*, [a, b] ⊆ [a, b]*, etc... We also do this for subsets of ℝ², ℝ³, etc...
- Also, we assume that every function *f* : *A* → *B* has a natural extension *f*^{*} : *A*^{*} → *B*^{*}. For example, we have sin^{*} : ℝ^{*} → [−1, 1]^{*} and ln^{*} : (0,∞)^{*} → ℝ^{*}.
- The transfer principle then asserts that any *elementary* property about \mathbb{R} is true if and only if the corresponding property of \mathbb{R}^* is true.
- To make this precise would require a detour into logic, so let us be satisfied with an example.

< ロ > < 同 > < 回 > < 回 >

- We assume that every subset A of ℝ has an natural extension A*: A ⊆ A* ⊆ ℝ*. Thus, we will have sets ℕ ⊆ ℕ*, [a, b] ⊆ [a, b]*, etc... We also do this for subsets of ℝ², ℝ³, etc...
- Also, we assume that every function *f* : *A* → *B* has a natural extension *f*^{*} : *A*^{*} → *B*^{*}. For example, we have sin^{*} : ℝ^{*} → [−1, 1]^{*} and ln^{*} : (0,∞)^{*} → ℝ^{*}.
- The transfer principle then asserts that any *elementary* property about ℝ is true if and only if the corresponding property of ℝ* is true.
- To make this precise would require a detour into logic, so let us be satisfied with an example.

An example of the transfer principle

Let $f : (a, b) \rightarrow \mathbb{R}$ be a function and let $c \in (a, b)$. Consider the following statement:

 $(\forall \epsilon \in \mathbb{R}_+)(\exists \delta \in \mathbb{R}_+)(\forall x \in (a,b))(|x-c| < \delta \rightarrow |f(x) - f(c)| < \epsilon)$

which is true (in \mathbb{R}) if and only if *f* is continuous at *c*.

The transfer principle then requires that the above statement is true if and only if the statement

 $(\forall \epsilon \in \mathbb{R}^*_+)(\exists \delta \in \mathbb{R}^*_+)(\forall x \in (a,b)^*)(|x-c|^* < \delta \rightarrow |f^*(x) - f^*(c)|^* < \epsilon)$

is true.

An example of the transfer principle

Let $f : (a, b) \rightarrow \mathbb{R}$ be a function and let $c \in (a, b)$. Consider the following statement:

 $(\forall \epsilon \in \mathbb{R}_+)(\exists \delta \in \mathbb{R}_+)(\forall x \in (a,b))(|x-c| < \delta \rightarrow |f(x) - f(c)| < \epsilon)$

which is true (in \mathbb{R}) if and only if *f* is continuous at *c*.

The transfer principle then requires that the above statement is true if and only if the statement

 $(\forall \epsilon \in \mathbb{R}^*_+)(\exists \delta \in \mathbb{R}^*_+)(\forall x \in (a,b)^*)(|x-c|^* < \delta \rightarrow |f^*(x) - f^*(c)|^* < \epsilon)$

is true.

An example of the transfer principle

Let $f : (a, b) \rightarrow \mathbb{R}$ be a function and let $c \in (a, b)$. Consider the following statement:

 $(\forall \epsilon \in \mathbb{R}_+)(\exists \delta \in \mathbb{R}_+)(\forall x \in (a,b))(|x-c| < \delta \rightarrow |f(x) - f(c)| < \epsilon)$

which is true (in \mathbb{R}) if and only if *f* is continuous at *c*.

The transfer principle then requires that the above statement is true if and only if the statement

$$(orall \epsilon \in \mathbb{R}^*_+)(\exists \delta \in \mathbb{R}^*_+)(orall x \in (a,b)^*)(|x-c|^* < \delta
ightarrow |f^*(x)-f^*(c)|^* < \epsilon)$$

is true.

A non-example of the transfer principle

Here is an example of something that is *not* an elementary property:

 \mathbb{R} is complete.

The main reason that completeness of \mathbb{R} is not elementary is that to write this property down, one starts by writing $\forall A \in \mathcal{P}(\mathbb{R}) \dots$

We do not allow quantifiers over *subsets* of \mathbb{R} , only *elements* of \mathbb{R} .

A non-example of the transfer principle

Here is an example of something that is *not* an elementary property: \mathbb{R} is complete.

The main reason that completeness of \mathbb{R} is not elementary is that to write this property down, one starts by writing $\forall A \in \mathcal{P}(\mathbb{R}) \dots$

We do not allow quantifiers over *subsets* of \mathbb{R} , only *elements* of \mathbb{R} .

A non-example of the transfer principle

Here is an example of something that is *not* an elementary property:

 ${\mathbb R}$ is complete.

The main reason that completeness of \mathbb{R} is not elementary is that to write this property down, one starts by writing $\forall A \in \mathcal{P}(\mathbb{R}) \dots$

We do not allow quantifiers over *subsets* of \mathbb{R} , only *elements* of \mathbb{R} .

- Recall that we assumed the existence of an infinitely large element α of ℝ*.
- Then $-\alpha$ is a negative infinite number.
- $\frac{1}{\alpha}$ and $-\frac{1}{\alpha}$ are positive and negative *infinitesimals* respectively.
- There is an element $N \in \mathbb{N}^*$ that is infinite. (Transfer principle) Then $N \pm k$ is an infinite natural number for every *standard* $k \in \mathbb{N}$.
- We need to be careful with arithmetic in \mathbb{R}^* : If $\beta \in \mathbb{R}^*$ is a positive infinitesimal, what can we say about $\alpha\beta$? If $\beta = \frac{1}{\alpha}$, then $\alpha\beta = 1$. If $\beta = \frac{1}{\alpha^2}$, then $\alpha\beta = \frac{1}{\alpha}$, an infinitesimal.
- **Exercise:** If $r \in \mathbb{R}^*$ is *finite* (that is, not infinite) and $s \in \mathbb{R}^*$ is infinitesimal, then *rs* is infinitesimal.

★ ∃ > < ∃ >

- For $r, s \in \mathbb{R}^*$, write $r \approx s$ if and only if |r s| is an infinitesimal. (Here, 0 is infinitesimal; it is the only standard infinitesimal.)
- For example, if ϵ is an infinitesimal, then $1 + \epsilon \approx 1$; notice that $1 + \epsilon$ is finite (and not standard if $\epsilon \neq 0$).
- Very Important Fact: If $r \in \mathbb{R}^*$ is finite, then there is a unique *standard* number *s* such that $r \approx s$; we call *s* the *standard* part of *r* and write s = st(r).

3 Constructing \mathbb{R}^*

Isaac Goldbring (UCLA)

Calculus with infinitesimals

LMU October 7, 2011 12/34

Theorem

f is continuous at c if and only if, for all $d \in (a, b)^*$, if $c \approx d$, then $f(c) \approx f(d)$.

Proof.

(⇒) Suppose that *f* is continuous at *c* and suppose that *d* ∈ (*a*, *b*)^{*} is such that $c \approx d$. Fix $\epsilon \in \mathbb{R}_+$. We need $|f(c) - f(d)| < \epsilon$. Recall that there is $\delta \in \mathbb{R}_+$ such that

$$(\forall x \in (a,b))(|x-c| < \delta \rightarrow |f(x)-f(c)| < \epsilon).$$

By transfer,

$$(\forall x \in (a,b)^*)(|x-c| < \delta \rightarrow |f(x) - f(c)| < \epsilon).$$

Since $c \approx d$, $|d - c| < \delta$ is true, so $|f(d) - f(c)| < \epsilon$, as desired.

Isaac Goldbring (UCLA)

Calculus with infinitesimals

Theorem

f is continuous at c if and only if, for all $d \in (a, b)^*$, if $c \approx d$, then $f(c) \approx f(d)$.

Proof.

(⇒) Suppose that *f* is continuous at *c* and suppose that $d \in (a, b)^*$ is such that $c \approx d$. Fix $\epsilon \in \mathbb{R}_+$. We need $|f(c) - f(d)| < \epsilon$. Recall that there is $\delta \in \mathbb{R}_+$ such that

$$(\forall x \in (a,b))(|x-c| < \delta \rightarrow |f(x)-f(c)| < \epsilon).$$

By transfer,

$$(\forall x \in (a,b)^*)(|x-c| < \delta \rightarrow |f(x) - f(c)| < \epsilon).$$

Since $c \approx d$, $|d - c| < \delta$ is true, so $|f(d) - f(c)| < \epsilon$, as desired.

Isaac Goldbring (UCLA)

Calculus with infinitesimals

Theorem

f is continuous at c if and only if, for all $d \in (a, b)^*$, if $c \approx d$, then $f(c) \approx f(d)$.

Proof.

(⇒) Suppose that *f* is continuous at *c* and suppose that *d* ∈ (*a*, *b*)* is such that *c* ≈ *d*. Fix $\epsilon \in \mathbb{R}_+$. We need $|f(c) - f(d)| < \epsilon$. Recall that there is $\delta \in \mathbb{R}_+$ such that

$$(\forall x \in (a,b))(|x-c| < \delta \rightarrow |f(x)-f(c)| < \epsilon).$$

By transfer,

$$(\forall x \in (a,b)^*)(|x-c| < \delta \rightarrow |f(x) - f(c)| < \epsilon).$$

Since $c \approx d$, $|d - c| < \delta$ is true, so $|f(d) - f(c)| < \epsilon$, as desired.

Isaac Goldbring (UCLA)

Calculus with infinitesimals

Theorem

f is continuous at c if and only if, for all $d \in (a, b)^*$, if $c \approx d$, then $f(c) \approx f(d)$.

Proof.

(⇒) Suppose that *f* is continuous at *c* and suppose that *d* ∈ (*a*, *b*)* is such that *c* ≈ *d*. Fix $\epsilon \in \mathbb{R}_+$. We need $|f(c) - f(d)| < \epsilon$. Recall that there is $\delta \in \mathbb{R}_+$ such that

$$(\forall x \in (a,b))(|x-c| < \delta \rightarrow |f(x)-f(c)| < \epsilon).$$

By transfer,

$$(\forall x \in (a,b)^*)(|x-c| < \delta \rightarrow |f(x) - f(c)| < \epsilon).$$

Since $c \approx d$, $|d - c| < \delta$ is true, so $|f(d) - f(c)| < \epsilon$, as desired.

Theorem

f is continuous at c if and only if, for all $d \in (a, b)^*$, if $c \approx d$, then $f(c) \approx f(d)$.

Proof.

(⇒) Suppose that *f* is continuous at *c* and suppose that *d* ∈ (*a*, *b*)* is such that *c* ≈ *d*. Fix $\epsilon \in \mathbb{R}_+$. We need $|f(c) - f(d)| < \epsilon$. Recall that there is $\delta \in \mathbb{R}_+$ such that

$$(\forall x \in (a,b))(|x-c| < \delta \rightarrow |f(x)-f(c)| < \epsilon).$$

By transfer,

$$(\forall x \in (a,b)^*)(|x-c| < \delta \rightarrow |f(x) - f(c)| < \epsilon).$$

Since $c \approx d$, $|d - c| < \delta$ is true, so $|f(d) - f(c)| < \epsilon$, as desired.

Continuity (cont'd)

Theorem

f is continuous at c if and only if, for all $d \in (a, b)^*$, if $c \approx d$, then $f(c) \approx f(d)$.

Proof.

(\Leftarrow) Fix $\epsilon > 0$. Let $\delta \in \mathbb{R}^*_+$ be *infinitesimal*. Then if $d \in (a, b)^*$ is such that $|c - d| < \delta$, then $c \approx d$, so $f(c) \approx f(d)$ by assumption, and hence $|f(c) - f(d)| < \epsilon$. So the following statement is true in \mathbb{R}^* :

 $(\exists \delta \in \mathbb{R}^*_+)(orall x \in (a,b)^*)(|x-c| < \delta
ightarrow |f(x)-f(c)| < \epsilon).$

By the transfer principle, we have

 $(\exists \delta \in \mathbb{R}_+)(\forall x \in (a,b))(|x-c| < \delta \rightarrow |f(x)-f(c)| < \epsilon),$

which is exactly what we wanted.

Continuity (cont'd)

Theorem

f is continuous at c if and only if, for all $d \in (a, b)^*$, if $c \approx d$, then $f(c) \approx f(d)$.

Proof.

(⇐) Fix $\epsilon > 0$. Let $\delta \in \mathbb{R}^*_+$ be *infinitesimal*. Then if $d \in (a, b)^*$ is such that $|c - d| < \delta$, then $c \approx d$, so $f(c) \approx f(d)$ by assumption, and hence $|f(c) - f(d)| < \epsilon$. So the following statement is true in \mathbb{R}^* :

$$(\exists \delta \in \mathbb{R}^*_+)(orall x \in (a,b)^*)(|x-c| < \delta
ightarrow |f(x)-f(c)| < \epsilon).$$

By the transfer principle, we have

$$(\exists \delta \in \mathbb{R}_+)(\forall x \in (a, b))(|x - c| < \delta \rightarrow |f(x) - f(c)| < \epsilon),$$

which is exactly what we wanted.

Continuity (cont'd)

Theorem

f is continuous at c if and only if, for all $d \in (a, b)^*$, if $c \approx d$, then $f(c) \approx f(d)$.

Proof.

(⇐) Fix $\epsilon > 0$. Let $\delta \in \mathbb{R}^*_+$ be *infinitesimal*. Then if $d \in (a, b)^*$ is such that $|c - d| < \delta$, then $c \approx d$, so $f(c) \approx f(d)$ by assumption, and hence $|f(c) - f(d)| < \epsilon$. So the following statement is true in \mathbb{R}^* :

$$(\exists \delta \in \mathbb{R}^*_+)(orall x \in (a,b)^*)(|x-c| < \delta
ightarrow |f(x)-f(c)| < \epsilon).$$

By the transfer principle, we have

$$(\exists \delta \in \mathbb{R}_+)(\forall x \in (a,b))(|x-c| < \delta \rightarrow |f(x)-f(c)| < \epsilon),$$

which is exactly what we wanted.

Uniform Continuity

Definition

Let $f : A \to \mathbb{R}$. Then f is *uniformly continuous* if, for every $\epsilon > 0$, there is $\delta > 0$ such that for every $x, y \in A$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Theorem

 $f : A \to \mathbb{R}$ is uniformly continuous if and only if for all $x, y \in A^*$, if $x \approx y$, then $f(x) \approx f(y)$.

Compare this with the nonstandard characterization of continuity: $f : A \to \mathbb{R}$ is continuous if and only if for all $x, y \in A^*$ with $x \approx y$ and y standard we have $f(x) \approx f(y)$.

Uniform Continuity

Definition

Let $f : A \to \mathbb{R}$. Then f is *uniformly continuous* if, for every $\epsilon > 0$, there is $\delta > 0$ such that for every $x, y \in A$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Theorem

 $f : A \to \mathbb{R}$ is uniformly continuous if and only if for all $x, y \in A^*$, if $x \approx y$, then $f(x) \approx f(y)$.

Compare this with the nonstandard characterization of continuity: $f : A \to \mathbb{R}$ is continuous if and only if for all $x, y \in A^*$ with $x \approx y$ and y standard we have $f(x) \approx f(y)$.

Uniform Continuity (cont'd)

Example

Consider $f : (0, 1) \to \mathbb{R}$, $f(x) = \frac{1}{x}$, a continuous function. Let $M, N \in \mathbb{N}^*$ be *infinite* and distinct. Then $\frac{1}{M}, \frac{1}{N} \in (0, 1)^*$ and $\frac{1}{M} \approx \frac{1}{N}$, but $f(\frac{1}{M}) = M \not\approx N = f(\frac{1}{N})$, so f is not uniformly continuous.

Notice that for any $x \in [a, b]^*$, there is $y \in [a, b]$ such that $x \approx y$. This proves:

Theorem

If $f : [a, b] \rightarrow \mathbb{R}$ is continuous, then f is uniformly continuous.

Uniform Continuity (cont'd)

Example

Consider $f : (0, 1) \to \mathbb{R}$, $f(x) = \frac{1}{x}$, a continuous function. Let $M, N \in \mathbb{N}^*$ be *infinite* and distinct. Then $\frac{1}{M}, \frac{1}{N} \in (0, 1)^*$ and $\frac{1}{M} \approx \frac{1}{N}$, but $f(\frac{1}{M}) = M \not\approx N = f(\frac{1}{N})$, so f is not uniformly continuous.

Notice that for any $x \in [a, b]^*$, there is $y \in [a, b]$ such that $x \approx y$. This proves:

Theorem

If $f : [a, b] \to \mathbb{R}$ is continuous, then f is uniformly continuous.

Limits of sequences

- Suppose that (a_n) = (a₀, a₁, a₂, ...) is a sequence of real numbers.
- We view this as a function $a : \mathbb{N} \to \mathbb{R}$, whence we get the extension $a : \mathbb{N}^* \to \mathbb{R}^*$.
- If N ∈ N*, we will write a_N instead of a(N), thinking of it as the Nth term of the sequence.

Theorem

 (a_n) converges to L if and only if, for any infinite $N \in \mathbb{N}^*$, we have $a_N \approx L$.

イロト イヨト イヨト イヨト

Limits of sequences

- Suppose that (a_n) = (a₀, a₁, a₂, ...) is a sequence of real numbers.
- We view this as a function $a : \mathbb{N} \to \mathbb{R}$, whence we get the extension $a : \mathbb{N}^* \to \mathbb{R}^*$.
- If N ∈ N*, we will write a_N instead of a(N), thinking of it as the Nth term of the sequence.

Theorem

 (a_n) converges to L if and only if, for any infinite $N\in\mathbb{N}^*,$ we have $a_N\approx L.$

イロト イ団ト イヨト イヨト

Cluster Points

Definition

L is a *cluster point* of (a_n) if, for every $\epsilon > 0$, there are infinitely many a_n in the interval $(L - \epsilon, L + \epsilon)$.

Example

If $a_n = (-1)^n (1 + \frac{1}{n})$, then -1 and 1 are the cluster points of the sequence.

Theorem

L is a cluster point of (a_n) if and only if $L \approx a_N$ for some infinite $N \in \mathbb{N}^*$.

Compare: *L* is the limit of (a_n) if and only if $L \approx a_N$ for every infinite $N \in \mathbb{N}^*$.

э.

< 日 > < 同 > < 回 > < 回 > < □ > <

Cluster Points

Definition

L is a *cluster point* of (a_n) if, for every $\epsilon > 0$, there are infinitely many a_n in the interval $(L - \epsilon, L + \epsilon)$.

Example

If $a_n = (-1)^n (1 + \frac{1}{n})$, then -1 and 1 are the cluster points of the sequence.

Theorem

L is a cluster point of (a_n) if and only if $L \approx a_N$ for some infinite $N \in \mathbb{N}^*$.

Compare: *L* is the limit of (a_n) if and only if $L \approx a_N$ for every infinite $N \in \mathbb{N}^*$.

3

・ロト ・ 四ト ・ ヨト ・ ヨト …

Cluster Points

Definition

L is a *cluster point* of (a_n) if, for every $\epsilon > 0$, there are infinitely many a_n in the interval $(L - \epsilon, L + \epsilon)$.

Example

If $a_n = (-1)^n (1 + \frac{1}{n})$, then -1 and 1 are the cluster points of the sequence.

Theorem

L is a cluster point of (a_n) if and only if $L \approx a_N$ for some infinite $N \in \mathbb{N}^*$.

Compare: *L* is the limit of (a_n) if and only if $L \approx a_N$ for every infinite $N \in \mathbb{N}^*$.

Bolzano-Weierstrass

- Now suppose that (a_n) is a bounded sequence, say −M ≤ a_n ≤ M for all n ∈ N.
- Suppose that $N \in \mathbb{N}^*$ is infinite. Then by the transfer principle, $-M \leq a_N \leq M$. Thus, st (a_N) exists.
- By the theorem, $st(a_N)$ is a cluster point of (a_n) . We just proved:

Theorem (Bolzano-Weierstrass)

Every bounded sequence has a cluster point.

Bolzano-Weierstrass

- Now suppose that (a_n) is a bounded sequence, say −M ≤ a_n ≤ M for all n ∈ N.
- Suppose that $N \in \mathbb{N}^*$ is infinite. Then by the transfer principle, $-M \leq a_N \leq M$. Thus, st (a_N) exists.
- By the theorem, $st(a_N)$ is a cluster point of (a_n) . We just proved:

Theorem (Bolzano-Weierstrass)

Every bounded sequence has a cluster point.

Derivatives

Theorem

Suppose that $f : (a, b) \to \mathbb{R}$ is a function and $c \in (a, b)$. Then f is differentiable at c with derivative L if and only if, for every nonzero infinitesimal ϵ :

$$\frac{f(\boldsymbol{c}+\epsilon)-f(\boldsymbol{c})}{\epsilon}\approx L.$$

Suppose *f* is differentiable at *c*. Then for any nonzero infinitesimal ϵ , we have $f(c + \epsilon) - f(c) \approx f'(c) \cdot \epsilon \approx 0$. This proves:

Corollary

If f is differentiable at c, then f is continuous at c.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Derivatives

Theorem

Suppose that $f : (a, b) \to \mathbb{R}$ is a function and $c \in (a, b)$. Then f is differentiable at c with derivative L if and only if, for every nonzero infinitesimal ϵ :

$$\frac{f(c+\epsilon)-f(c)}{\epsilon}\approx L.$$

Suppose *f* is differentiable at *c*. Then for any nonzero infinitesimal ϵ , we have $f(c + \epsilon) - f(c) \approx f'(c) \cdot \epsilon \approx 0$. This proves:

Corollary

If f is differentiable at c, then f is continuous at c.

3

Suppose that $f : [a, b] \to \mathbb{R}$ is continuous. Let *N* be an infinite natural number. Let $\{x_0, x_1, \ldots, x_N\}$ be the partition of $[a, b]^*$ into *N* equal pieces. Then one can make sense out of the sum $\sum_{i=0}^{N-1} f(x_i) \cdot \frac{1}{N}$ and it turns out that

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{N-1} f(x_i) \frac{1}{N}$$

Dirac delta function

"Definition"

The *Dirac delta function* is the "function" $\delta : \mathbb{R} \to \mathbb{R}$ defined by

$$\delta(x) = egin{cases} 0 & ext{if } x
eq 0 \ +\infty & ext{if } x = 0 \end{cases}$$

further satisfying
$$\int_{-\infty}^{+\infty} \delta(x) dx = 1$$
. (Unit impulse)

Definition

Let $N \in \mathbb{N}^*$ be infinite. Then the *Dirac delta function* is the nonstandard function $\delta : \mathbb{R}^* \to \mathbb{R}^*$ given by

$$\delta(x) = \begin{cases} 0 & \text{if } |x| > \frac{1}{2N} \\ N & \text{if } |x| \le \frac{1}{2N} \end{cases}$$

Dirac delta function

"Definition"

The *Dirac delta function* is the "function" $\delta : \mathbb{R} \to \mathbb{R}$ defined by

$$\delta(x) = egin{cases} 0 & ext{if } x
eq 0 \ +\infty & ext{if } x = 0 \end{cases}$$

further satisfying
$$\int_{-\infty}^{+\infty} \delta(x) dx = 1$$
. (Unit impulse)

Definition

Let $N \in \mathbb{N}^*$ be infinite. Then the *Dirac delta function* is the nonstandard function $\delta : \mathbb{R}^* \to \mathbb{R}^*$ given by

$$\delta(\mathbf{x}) = \begin{cases} 0 & \text{if } |\mathbf{x}| > \frac{1}{2N} \\ N & \text{if } |\mathbf{x}| \le \frac{1}{2N} \end{cases}$$

Major Accomplishments

Theorem (Bernstein-Robinson, 1966)

If H is a separable Hilbert space and $T : H \rightarrow H$ is a polynomially compact operator, then T has a nontrivial invariant subspace.

Theorem (van den Dries-Schmidt, 1984)

If $f_0(C, X)$, $f_1(C, X)$, ..., $f_m(C, X) \in \mathbb{Z}[C, X]$ are polynomials and K is an algebraically closed field, then the set

$$\{c \in K^M \mid f_0(c, X) \in (f_1(c, X), \dots, f_m(c, X))\}$$

is a Zariski-constructible set.

Theorem (G., 2010)

Hilbert's fifth problem for local groups has a positive solution: every locally euclidean local group is locally isomorphic to a Lie group.

Isaac Goldbring (UCLA)

Calculus with infinitesimals

LMU October 7, 2011

23/34

1 Introduction

3 Constructing ℝ*

Isaac Goldbring (UCLA)

Calculus with infinitesimals

LMU October 7, 2011 24 / 34

- Let (a_n) be a sequence of rational numbers. We say that (a_n) is *Cauchy* if, for every $\epsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n \ge N$, we have $|a_m a_n| < \epsilon$.
- Every real number is a limit of a Cauchy sequence of rational numbers (finite decimal approximations) and, conversely, every Cauchy sequence of rational numbers converges to a real number.
- Thus, we can think of real numbers as limits of Cauchy sequences of rational numbers.
- Problem: Many Cauchy sequences have the same limit, so we do not have an identification of real numbers with Cauchy sequences.
- Fix: We say that the Cauchy sequences (a_n) and (b_n) are *equivalent* if $\lim_{n\to\infty} |a_n b_n| = 0$. We then *define* real numbers to be equivalence classes of Cauchy sequences of rational numbers.

- Let (a_n) be a sequence of rational numbers. We say that (a_n) is *Cauchy* if, for every $\epsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n \ge N$, we have $|a_m a_n| < \epsilon$.
- Every real number is a limit of a Cauchy sequence of rational numbers (finite decimal approximations) and, conversely, every Cauchy sequence of rational numbers converges to a real number.
- Thus, we can think of real numbers as limits of Cauchy sequences of rational numbers.
- Problem: Many Cauchy sequences have the same limit, so we do not have an identification of real numbers with Cauchy sequences.
- Fix: We say that the Cauchy sequences (a_n) and (b_n) are *equivalent* if $\lim_{n\to\infty} |a_n b_n| = 0$. We then *define* real numbers to be equivalence classes of Cauchy sequences of rational numbers.

- Let (a_n) be a sequence of rational numbers. We say that (a_n) is *Cauchy* if, for every $\epsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n \ge N$, we have $|a_m a_n| < \epsilon$.
- Every real number is a limit of a Cauchy sequence of rational numbers (finite decimal approximations) and, conversely, every Cauchy sequence of rational numbers converges to a real number.
- Thus, we can think of real numbers as limits of Cauchy sequences of rational numbers.
- Problem: Many Cauchy sequences have the same limit, so we do not have an identification of real numbers with Cauchy sequences.
- Fix: We say that the Cauchy sequences (a_n) and (b_n) are *equivalent* if $\lim_{n\to\infty} |a_n b_n| = 0$. We then *define* real numbers to be equivalence classes of Cauchy sequences of rational numbers.

- Let (a_n) be a sequence of rational numbers. We say that (a_n) is *Cauchy* if, for every $\epsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n \ge N$, we have $|a_m a_n| < \epsilon$.
- Every real number is a limit of a Cauchy sequence of rational numbers (finite decimal approximations) and, conversely, every Cauchy sequence of rational numbers converges to a real number.
- Thus, we can think of real numbers as limits of Cauchy sequences of rational numbers.
- Problem: Many Cauchy sequences have the same limit, so we do not have an identification of real numbers with Cauchy sequences.
- Fix: We say that the Cauchy sequences (a_n) and (b_n) are *equivalent* if $\lim_{n\to\infty} |a_n b_n| = 0$. We then *define* real numbers to be equivalence classes of Cauchy sequences of rational numbers.

・ロト ・ 四ト ・ ヨト ・ ヨト

- Let (a_n) be a sequence of rational numbers. We say that (a_n) is *Cauchy* if, for every $\epsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n \ge N$, we have $|a_m a_n| < \epsilon$.
- Every real number is a limit of a Cauchy sequence of rational numbers (finite decimal approximations) and, conversely, every Cauchy sequence of rational numbers converges to a real number.
- Thus, we can think of real numbers as limits of Cauchy sequences of rational numbers.
- Problem: Many Cauchy sequences have the same limit, so we do not have an identification of real numbers with Cauchy sequences.
- Fix: We say that the Cauchy sequences (a_n) and (b_n) are *equivalent* if $\lim_{n\to\infty} |a_n b_n| = 0$. We then *define* real numbers to be equivalence classes of Cauchy sequences of rational numbers.

- Once again, we use sequences: We think of the sequence 1, 2, 3, ..., n, n + 1, ... as defining an infinite element of \mathbb{R}^* .
- However, the sequence π, e, ln(8), 103, 5, 6, 7, 8, 9, ... should define the same infinite number.
- More generally, the sequence (*a_n*) and (*b_n*) of *real* numbers should define the same element of ℝ* if they agree on "most" entries. But what does "most" mean?
- We want a notion of "large" subset of \mathbb{N} and then declare that (a_n) and (b_n) agree on "most" entries if the set of entries they agree on is "large".
- And we want the relation " (a_n) agrees with (b_n) for most n" to be an equivalence relation.

- Once again, we use sequences: We think of the sequence 1, 2, 3, ..., n, n + 1, ... as defining an infinite element of \mathbb{R}^* .
- However, the sequence π, e, ln(8), 103, 5, 6, 7, 8, 9, ... should define the same infinite number.
- More generally, the sequence (*a_n*) and (*b_n*) of *real* numbers should define the same element of ℝ* if they agree on "most" entries. But what does "most" mean?
- We want a notion of "large" subset of \mathbb{N} and then declare that (a_n) and (b_n) agree on "most" entries if the set of entries they agree on is "large".
- And we want the relation " (a_n) agrees with (b_n) for most n" to be an equivalence relation.

- Once again, we use sequences: We think of the sequence 1, 2, 3, ..., n, n + 1, ... as defining an infinite element of \mathbb{R}^* .
- However, the sequence π, e, ln(8), 103, 5, 6, 7, 8, 9, ... should define the same infinite number.
- More generally, the sequence (*a_n*) and (*b_n*) of *real* numbers should define the same element of ℝ* if they agree on "most" entries. But what does "most" mean?
- We want a notion of "large" subset of \mathbb{N} and then declare that (a_n) and (b_n) agree on "most" entries if the set of entries they agree on is "large".
- And we want the relation " (a_n) agrees with (b_n) for most n" to be an equivalence relation.

- Once again, we use sequences: We think of the sequence $1, 2, 3, \ldots, n, n+1, \ldots$ as defining an infinite element of \mathbb{R}^* .
- However, the sequence π, e, ln(8), 103, 5, 6, 7, 8, 9, ... should define the same infinite number.
- More generally, the sequence (*a_n*) and (*b_n*) of *real* numbers should define the same element of ℝ* if they agree on "most" entries. But what does "most" mean?
- We want a notion of "large" subset of \mathbb{N} and then declare that (a_n) and (b_n) agree on "most" entries if the set of entries they agree on is "large".
- And we want the relation " (a_n) agrees with (b_n) for most n" to be an equivalence relation.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Once again, we use sequences: We think of the sequence $1, 2, 3, \ldots, n, n+1, \ldots$ as defining an infinite element of \mathbb{R}^* .
- However, the sequence π, e, ln(8), 103, 5, 6, 7, 8, 9, ... should define the same infinite number.
- More generally, the sequence (*a_n*) and (*b_n*) of *real* numbers should define the same element of ℝ* if they agree on "most" entries. But what does "most" mean?
- We want a notion of "large" subset of \mathbb{N} and then declare that (a_n) and (b_n) agree on "most" entries if the set of entries they agree on is "large".
- And we want the relation "(*a_n*) agrees with (*b_n*) for most *n*" to be an equivalence relation.

A B A A B A

Large and small

- For every subset A ⊆ N, we want a way to categorize A as either small or large (but not both).
- If $A \subseteq \mathbb{N}$ is small and $B \subseteq A$, then B should also be small.
- If A, B ⊆ N are both small, then A ∪ B should also be small. (Then the intersection of two large sets is large.)
- Finite subsets of \mathbb{N} should be small.

Theorem

There is a division of subsets of $\mathbb N$ into small and large as above.

Given such a division of subsets of \mathbb{N} into small and large, the collection of large sets is called an *nonprincipal ultrafilter on* \mathbb{N} . For the rest of this talk, let's fix such a divison into small and large.

Large and small

- For every subset A ⊆ N, we want a way to categorize A as either small or large (but not both).
- If $A \subseteq \mathbb{N}$ is small and $B \subseteq A$, then B should also be small.
- If A, B ⊆ N are both small, then A ∪ B should also be small. (Then the intersection of two large sets is large.)
- Finite subsets of \mathbb{N} should be small.

Theorem

There is a division of subsets of \mathbb{N} into small and large as above.

Given such a division of subsets of \mathbb{N} into small and large, the collection of large sets is called an *nonprincipal ultrafilter on* \mathbb{N} . For the rest of this talk, let's fix such a divison into small and large.

э

Large and small

- For every subset A ⊆ N, we want a way to categorize A as either small or large (but not both).
- If $A \subseteq \mathbb{N}$ is small and $B \subseteq A$, then B should also be small.
- If A, B ⊆ N are both small, then A ∪ B should also be small. (Then the intersection of two large sets is large.)
- Finite subsets of \mathbb{N} should be small.

Theorem

There is a division of subsets of \mathbb{N} into small and large as above.

Given such a division of subsets of \mathbb{N} into small and large, the collection of large sets is called an *nonprincipal ultrafilter on* \mathbb{N} . For the rest of this talk, let's fix such a divison into small and large.

э.

Definition

Given two sequences (a_n) and (b_n) of real numbers, we say that they are *equivalent* if $\{n \in \mathbb{N} : a_n = b_n\}$ is large. We then define \mathbb{R}^* to be the set of equivalence classes of sequences of real numbers. (\mathbb{R}^* is called an *ultrapower* of \mathbb{R} .)

For $[a_n], [b_n] \in \mathbb{R}^*$, we define

 $[a_n] + [b_n] := [a_n + b_n]$ and $[a_n] \cdot [b_n] := [a_n b_n]$.

• We also say $[a_n] < [b_n]$ if and only if $\{n \in \mathbb{N} : a_n < b_n\}$ is large.

■ We can view \mathbb{R} as a subset of \mathbb{R}^* by pretending that $r \in \mathbb{R}$ is [(r, r, r, ...,)], the equivalence class of the constant sequence *r*.

(日)

Definition

Given two sequences (a_n) and (b_n) of real numbers, we say that they are *equivalent* if $\{n \in \mathbb{N} : a_n = b_n\}$ is large. We then define \mathbb{R}^* to be the set of equivalence classes of sequences of real numbers. (\mathbb{R}^* is called an *ultrapower* of \mathbb{R} .)

For
$$[a_n], [b_n] \in \mathbb{R}^*$$
, we define

$$[a_n] + [b_n] := [a_n + b_n]$$
 and $[a_n] \cdot [b_n] := [a_n b_n]$.

• We also say $[a_n] < [b_n]$ if and only if $\{n \in \mathbb{N} : a_n < b_n\}$ is large.

■ We can view \mathbb{R} as a subset of \mathbb{R}^* by pretending that $r \in \mathbb{R}$ is [(r, r, r, ...,)], the equivalence class of the constant sequence *r*.

Theorem

\mathbb{R}^* satisfies the three axioms from earlier in the talk.

We will only verify that \mathbb{R}^* is an ordered field extension of \mathbb{R} that contains an infinite element; the proof of the transfer principle (which goes under the name "Łos' theorem" in this context) would require too far a detour into logic to prove here. We just say how you extend sets and functions.

Definition

Suppose that A ⊆ ℝ. Then we define A* ⊆ ℝ* by: [a_n] ∈ A* if and only if {n ∈ ℕ : a_n ∈ A} is large.

2 Given $f : A \rightarrow B$, we define $f^* : A^* \rightarrow B^*$ by $f^*([a_n]) = [f(a_n)]$.

Theorem

 \mathbb{R}^* satisfies the three axioms from earlier in the talk.

We will only verify that \mathbb{R}^* is an ordered field extension of \mathbb{R} that contains an infinite element; the proof of the transfer principle (which goes under the name "Łos' theorem" in this context) would require too far a detour into logic to prove here. We just say how you extend sets and functions.

Definition

Suppose that A ⊆ ℝ. Then we define A* ⊆ ℝ* by: [a_n] ∈ A* if and only if {n ∈ ℕ : a_n ∈ A} is large.

2 Given $f : A \rightarrow B$, we define $f^* : A^* \rightarrow B^*$ by $f^*([a_n]) = [f(a_n)]$.

Theorem

 \mathbb{R}^* satisfies the three axioms from earlier in the talk.

We will only verify that \mathbb{R}^* is an ordered field extension of \mathbb{R} that contains an infinite element; the proof of the transfer principle (which goes under the name "Łos' theorem" in this context) would require too far a detour into logic to prove here. We just say how you extend sets and functions.

Definition

Suppose that A ⊆ ℝ. Then we define A* ⊆ ℝ* by: [a_n] ∈ A* if and only if {n ∈ ℕ : a_n ∈ A} is large.

2 Given $f : A \rightarrow B$, we define $f^* : A^* \rightarrow B^*$ by $f^*([a_n]) = [f(a_n)]$.

- Most of the axioms of a field follow easily from the fact that ℝ is a field. We prove here the hardest of them, namely that every nonzero element has a multiplicative inverse.
- Suppose that $[a_n]$ is not the zero element. What does this mean? Well, the zero element of \mathbb{R}^* is $[(0,0,0,\ldots)]$, the equivalence class of the constantly 0 sequence, so $[a_n] \neq [(0,0,\ldots)]$.
- Thus, for "most" $n \in \mathbb{N}$, $a_n \neq 0$; for these *n*, define $b_n := \frac{1}{a_n}$. For the other *n*, let b_n be any real number that you want!
- Then $a_n \cdot b_n = 1$ for "most" $n \in \mathbb{N}$, so $[a_n] \cdot [b_n] = [(1, 1, 1, \ldots)]$, which is the unit element of \mathbb{R}^* .

- Most of the axioms of a field follow easily from the fact that ℝ is a field. We prove here the hardest of them, namely that every nonzero element has a multiplicative inverse.
- Suppose that [*a_n*] is not the zero element. What does this mean? Well, the zero element of ℝ* is [(0,0,0,...)], the equivalence class of the constantly 0 sequence, so [*a_n*] ≠ [(0,0,...)].
- Thus, for "most" $n \in \mathbb{N}$, $a_n \neq 0$; for these *n*, define $b_n := \frac{1}{a_n}$. For the other *n*, let b_n be any real number that you want!
- Then $a_n \cdot b_n = 1$ for "most" $n \in \mathbb{N}$, so $[a_n] \cdot [b_n] = [(1, 1, 1, \ldots)]$, which is the unit element of \mathbb{R}^* .

- Most of the axioms of a field follow easily from the fact that ℝ is a field. We prove here the hardest of them, namely that every nonzero element has a multiplicative inverse.
- Suppose that [*a_n*] is not the zero element. What does this mean? Well, the zero element of ℝ* is [(0,0,0,...)], the equivalence class of the constantly 0 sequence, so [*a_n*] ≠ [(0,0,...)].
- Thus, for "most" $n \in \mathbb{N}$, $a_n \neq 0$; for these *n*, define $b_n := \frac{1}{a_n}$. For the other *n*, let b_n be any real number that you want!
- Then $a_n \cdot b_n = 1$ for "most" $n \in \mathbb{N}$, so $[a_n] \cdot [b_n] = [(1, 1, 1, \ldots)]$, which is the unit element of \mathbb{R}^* .

A (10) A (10) A (10)

- Most of the axioms of a field follow easily from the fact that ℝ is a field. We prove here the hardest of them, namely that every nonzero element has a multiplicative inverse.
- Suppose that [*a_n*] is not the zero element. What does this mean? Well, the zero element of ℝ* is [(0,0,0,...)], the equivalence class of the constantly 0 sequence, so [*a_n*] ≠ [(0,0,...)].
- Thus, for "most" $n \in \mathbb{N}$, $a_n \neq 0$; for these *n*, define $b_n := \frac{1}{a_n}$. For the other *n*, let b_n be any real number that you want!
- Then $a_n \cdot b_n = 1$ for "most" $n \in \mathbb{N}$, so $[a_n] \cdot [b_n] = [(1, 1, 1, \ldots)]$, which is the unit element of \mathbb{R}^* .

A B A A B A

What about the order? Well, since

 $\mathbb{N} = \{ n \in \mathbb{N} : a_n < b_n \} \sqcup \{ n \in \mathbb{N} : a_n = b_n \} \sqcup \{ n \in \mathbb{N} : b_n < a_n \}$

and exactly one of these sets must be large, we have that < is a linear order on \mathbb{R}^* : either $[a_n] < [b_n]$ or $[a_n] = [b_n]$ or $[b_n] < [a_n]$.

- The other axioms for an ordered field are easy to verify.
- By the way, the axioms of an ordered field are "elementary," so if we had already proved the Transfer Principle, then we would get that R* is an ordered field as a consequence.

- Let α = [(1,2,3,...)] ∈ ℝ*. We claim that α is an infinite element of ℝ*. (Actually, α ∈ ℕ*)
- To see this, let $r \in \mathbb{R}$. We need [(r, r, r, ...)] < [(1, 2, 3, 4, ...)].
- This is true because $\{n \in \mathbb{N} : r < n\}$ has a finite complement and thus is large!
- By the way, $\frac{1}{\alpha} = [(1, \frac{1}{2}, \frac{1}{3}, \dots,)]$ is a positive infinitesimal.

- Let α = [(1,2,3,...)] ∈ ℝ*. We claim that α is an infinite element of ℝ*. (Actually, α ∈ ℕ*)
- To see this, let $r \in \mathbb{R}$. We need [(r, r, r, ...)] < [(1, 2, 3, 4, ...)].
- This is true because {n ∈ N : r < n} has a finite complement and thus is large!</p>
- By the way, $\frac{1}{\alpha} = [(1, \frac{1}{2}, \frac{1}{3}, \dots,)]$ is a positive infinitesimal.

- Let α = [(1,2,3,...)] ∈ ℝ*. We claim that α is an infinite element of ℝ*. (Actually, α ∈ ℕ*)
- To see this, let $r \in \mathbb{R}$. We need [(r, r, r, ...)] < [(1, 2, 3, 4, ...)].
- This is true because {*n* ∈ ℕ : *r* < *n*} has a finite complement and thus is large!
- By the way, $\frac{1}{\alpha} = [(1, \frac{1}{2}, \frac{1}{3}, \dots,)]$ is a positive infinitesimal.

- Let α = [(1,2,3,...)] ∈ ℝ*. We claim that α is an infinite element of ℝ*. (Actually, α ∈ ℕ*)
- To see this, let $r \in \mathbb{R}$. We need [(r, r, r, ...)] < [(1, 2, 3, 4, ...)].
- This is true because {*n* ∈ ℕ : *r* < *n*} has a finite complement and thus is large!
- By the way, $\frac{1}{\alpha} = [(1, \frac{1}{2}, \frac{1}{3}, \dots,)]$ is a positive infinitesimal.

Concluding remarks

- In order to apply nonstandard methods to more sophisticated subjects, one needs to modify the ultrapower construction above to a more elaborate framework.
- Nonstandard analysis provides a new collection of principles that one can use in proofs, e.g. overflow, underflow, saturation, hyperfinite approximation, etc...
- Many theorems of standard mathematics have been proven by nonstandard techniques because the intuitive approach to the proof can be formalized in nonstandard analysis. However, it is a theorem that any theorem which can be proven using nonstandard analysis can also be proven *without* nonstandard analysis, although the standard proof is often completely unreadable!

Concluding remarks

- In order to apply nonstandard methods to more sophisticated subjects, one needs to modify the ultrapower construction above to a more elaborate framework.
- Nonstandard analysis provides a new collection of principles that one can use in proofs, e.g. overflow, underflow, saturation, hyperfinite approximation, etc...
- Many theorems of standard mathematics have been proven by nonstandard techniques because the intuitive approach to the proof can be formalized in nonstandard analysis. However, it is a theorem that any theorem which can be proven using nonstandard analysis can also be proven *without* nonstandard analysis, although the standard proof is often completely unreadable!

Concluding remarks

- In order to apply nonstandard methods to more sophisticated subjects, one needs to modify the ultrapower construction above to a more elaborate framework.
- Nonstandard analysis provides a new collection of principles that one can use in proofs, e.g. overflow, underflow, saturation, hyperfinite approximation, etc...
- Many theorems of standard mathematics have been proven by nonstandard techniques because the intuitive approach to the proof can be formalized in nonstandard analysis. However, it is a theorem that any theorem which can be proven using nonstandard analysis can also be proven *without* nonstandard analysis, although the standard proof is often completely unreadable!

(4) (5) (4) (5)

A D M A A A M M

A good introduction to nonstandard analysis is Lectures on the Hyperreals: An introduction to nonstandard analysis by Robert Goldblatt.

I will put these slides on my webpage at
http://www.math.ucla.edu/~isaac

A good introduction to nonstandard analysis is Lectures on the Hyperreals: An introduction to nonstandard analysis by Robert Goldblatt.

I will put these slides on my webpage at
http://www.math.ucla.edu/~isaac

∃ ▶ ∢