
LOCALLY COMPACT CONTRACTIVE LOCAL GROUPS

LOU VAN DEN DRIES AND ISAAC GOLDBRING

Abstract. We study locally compact contractive local groups, that is,
locally compact local groups with a contractive pseudo-automorphism.
We prove that if such an object is locally connected, then it is locally
isomorphic to a Lie group. We also prove a related structure theorem
for locally compact contractive local groups which are not necessarily
locally connected. These results are local analogues of theorems for
locally compact contractive groups.

1. Introduction

Throughout G is a local group as defined in [1]. We let 1 be its identity,
Λ ⊆ G be the domain of its inversion map, and Ω ⊆ G×G be the domain of
its product map. All local groups in this paper are assumed to be hausdorff,
and likewise, “topological group” means “hausdorff topological group”.

An automorphism ϕ of a topological group H is said to be contractive if

lim
n→∞

ϕn(x) = 1 for all x ∈ H,

and we call a topological group contractive1 if it has a contractive auto-
morphism. In [5] it is shown that locally compact connected contractive
topological groups are (finite-dimensional, real) Lie groups. In response to
a question by Svetlana Selivanova we prove here a local analogue of this
result. To formulate this analogue precisely, we define a contractive pseudo-
automorphism of G to be a morphism ϕ : G → G of local groups such that
for some open neighborhood U of 1 in G the map φ|U : U → G is injective
and open, and limn→∞ ϕ

n(x) = 1 for all x ∈ U . Call G contractive if G has
a contractive pseudo-automorphism.

Theorem 1.1. If G is locally compact, locally connected, and contractive,
then G is locally isomorphic to a contractive Lie group.

The recent solution [1] of a local version of Hilbert’s 5th problem is of no
help here, and we use instead an old result due to Mal’cev [2] to the effect
that local groups satisfying a certain generalized associative law embed into
topological groups. In Section 2 we prove Mal’cev’s theorem. In Section 3 we
show that if G is contractive in a strong way, then G obeys the generalized
associative law that makes Mal’cev’s theorem applicable. In Section 4 we
use this to derive Theorem 1.1 from the corresponding global result in [5].

1Contractible in [5], but this term has another meaning in topology.
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We also prove a related structure theorem for locally compact contractive
local groups that are not necessarily locally connected.

See [1] for the definition of G|U for an open neighborhood U of 1 in G, and
of “morphism of local groups” (also called “local group morphism” below).
Recall also from [1] that two local groups are said to be locally isomorphic
if they have isomorphic restrictions to open neighborhoods of their identity.
Here are definitions of some auxiliary notions. Let X ⊆ G. We call X
symmetric if X ⊆ Λ and X−1 = X; in particular, G is symmetric iff Λ = G.
The largest symmetric subset of X is its symmetrization Xs:

Xs := {x ∈ X ∩ Λ : x−1 ∈ X ∩ Λ} (so Gs = Λ ∩ Λ−1).

If U is an open neighborhood of 1, then so is Us. If ϕ : G→ G is a contractive
pseudo-automorphism of G, then ϕ(Gs) ⊆ Gs, and the restriction of ϕ to
a map Gs → Gs is a contractive pseudo-automorphism of G|Gs. We call G
neat if Λ = G and (xy, y−1) ∈ Ω for all (x, y) ∈ Ω. Note that G|U is neat
for any symmetric open neighborhood U of 1 with U × U ⊆ Ω.

2. Mal’cev’s theorem

Theorem 2.1 below provides a necessary and sufficient condition for a neat
local group to admit an injective local group morphism into a topological
group. Because some of its byproducts are useful in the next section we
repeat Mal’cev’s construction [2], and include details omitted in Mal’cev’s
proof. Throughout we let m,n range over N = {0, 1, 2, . . . }.

We call G globalizable if there is a topological group H and an open
neighborhood U of the identity in H such that G = H|U . Note that if G is
globalizable and symmetric, then G is neat.

Let a1, . . . , an, b ∈ G. We define the notion (a1, . . . , an) ; b, by induction
on n as follows:

• If n = 0, then (a1, . . . , an) ; b iff b = 1;
• (a1) ; b iff a1 = b;
• If n > 1, then (a1, . . . , an) ; b iff for some i ∈ {1, . . . , n− 1}, there

exist b′, b′′ ∈ G such that (a1, . . . , ai) ; b′, (ai+1, . . . , an) ; b′′,
(b′, b′′) ∈ Ω and b′ · b′′ = b.

Informally, (a1, . . . , an) ; b if for some way of introducing parentheses into
the sequence (a1, . . . , an) all intermediate products are defined and the re-
sulting product equals b. A priori, there may be distinct b, c ∈ G such that
(a1, . . . , an) ; b and (a1, . . . , an) ; c.

We call G globally associative if for all a1, . . . , an, b, c ∈ G such that
(a1, . . . , an) ; b and (a1, . . . , an) ; c we have b = c. If G is globally
asociative, so is its restriction G|U to any open neighborhood U of 1. If
there is an injective local group morphism from G into a topological group,
then G is globally associative. For neat G the converse holds:
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Theorem 2.1. Suppose G is neat and globally associative. Then there is an
injective local group morphism ι : G → H into a topological group H such
that if φ : G → L is any local group morphism into a topological group L,
then there is a unique continuous group morphism φ̃ : H → L with φ̃◦ ι = φ.

Proof. Let G∗ :=
⋃

nG
×n be the set of words on G. Consider a word

x = (x1, . . . , xm) ∈ G×m. If (xi, xi+1) ∈ Ω, 1 ≤ i < m, then we call the word

(x1, . . . , xi−1, xixi+1, xi+2, . . . , xm) ∈ G×(m−1)

a contraction of x of type I. If also xi+1 = x−1
i , then we call

(x1, . . . , xi−1, xi+2, . . . , xm) ∈ G×(m−2)

a contraction of x of type II. If (a, b) ∈ Ω and xi = ab, 1 ≤ i ≤ m then

(x1, . . . , xi−1, a, b, xi+1, . . . , xm) ∈ G×(m+1)

is an expansion of x of type I. Finally, for a ∈ G and 0 ≤ i ≤ m we call

(x1, . . . , xi, a, a
−1, xi+1, . . . , xm) ∈ G×(m+2)

an expansion of x of type II. Define an admissible sequence to be a finite
sequence w1, . . . , wN of words wi ∈ G∗ with N ≥ 1 such that wi+1 is a
contraction or expansion of wi, for all i with 1 ≤ i < N . This gives an
equivalence relation ∼ on G∗ by: x ∼ y iff there is an admissible sequence
w1, . . . , wN such that w1 = x and wN = y. Let H be the set of equivalence
classes [x] of elements x = (x1, . . . , xm) ∈ G∗. It is easy to check that we
have a binary operation and a unary operation on H given by

[(x1, . . . , xm)] · [(y1, . . . , yn)] := [(x1, . . . , xm, y1, . . . , yn)]

and
[(x1, . . . , xm)]−1 := [(x−1

m , . . . , x−1
1 )].

Endowed with these operations, H is a group with identity element 1H = [∅],
the equivalence class of the empty sequence. Note that also 1H = [(1)].

Define ι : G → H by ιg := [(g)]. Clearly, ιG generates the group H. We
now show that ι is injective. (This is the part asserted without proof by
Mal’cev [2].) The key to doing this is the following.

Claim 1: Suppose that x, y, z ∈ G∗ and x contracts to y and y expands to
z. Then one can also go from x to z by first expanding once or twice and
then contracting once.

There are some obvious cases where the relevant contraction and expansion
operations “commute” and can just be interchanged. (This includes the case
where y is a contraction of x of type II or z is an expansion of y of type II.)
So we can assume that y is a contraction of x := (x1, . . . , xm) of type I,

y = (x1, . . . , xi−1, xixi+1, xi+2, . . . , xm), 1 ≤ i < m, (xi, xi+1) ∈ Ω,

and z is an expansion of y of type I of the form

z = (x1, . . . , xi−1, a, b, xi+2, . . . , xm), (a, b) ∈ Ω, ab = xixi+1.
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Now G is neat, so (ab, x−1
i+1) ∈ Ω and xi = (ab)x−1

i+1. Define

u :=(x1, . . . , xi−1, ab, x
−1
i+1, xi+1, . . . , xn),

v :=(x1, . . . , xi−1, a, b, x
−1
i+1, xi+1, . . . , xn).

Then u is an expansion of x of type I, v is an expansion of u of type I, and
z is a contraction of v of type II. This proves the claim.

Define a special sequence to be an admissible sequence w1, . . . , wN such that
for some M ∈ {1, . . . , N}, wi+1 is an expansion of wi for 1 ≤ i < M , and
wi+1 is a contraction of wi for M ≤ i < N .

Claim 2: Let x, y ∈ G∗ and x ∼ y. Then there is a special sequence
w1, . . . , wN such that w1 = x and wN = y.

To prove this, let w1, . . . , wn be any admissible sequence (typically, part of an
admissible sequence connecting x to y), and suppose it is not special. Then
n ≥ 3 and we have a largest m ∈ {2, . . . , n − 1} such that wm−1 contracts
to wm and wm expands to wm+1. Apply Claim 1 to wm−1, wm, wm+1 in the
role of x, y, z, so wm gets replaced by one or two words. If the resulting
admissible sequence is not yet special, apply the same procedure to it. We
have to show that after a finite number of such steps we end up with a
special sequence. The critical case is when m ∈ {2, . . . , n − 1} is such that
wi contracts to wi+1 for 1 ≤ i < m, and wi expands to wi+1 for m ≤ i < n.
Then the reader can easily check that after at most

(n−m) + 2(n−m) + · · ·+ 2m−1(n−m) = (2m − 1)(n−m)

such steps (applications of Claim 1) we obtain a special sequence. This
concludes the proof of Claim 2.

Now suppose that a, b ∈ G and ι(a) = ι(b), that is, (a) ∼ (b). By Claim 2,
we can take x ∈ G∗ such that x is obtained from (a) by a finite succession of
expansions (hence x ; a), and (b) is obtained from x by a finite succession
of contractions (hence x ; b). Hence a = b by global associativity, so ι is
injective. Note:

ι(1) = 1H , ι(a−1) = ι(a)−1 for a ∈ G, ι(ab) = ι(a)ι(b) for (a, b) ∈ Ω.

Let B be the set of open neighborhoods of 1 in G, and ιB := {ιU | U ∈ B}.
We verify the conditions (i)-(v) below that make ιB a neighborhood base
at 1H for a (necessarily unique) group topology on H, which by convention
includes here the requirement of being hausdorff.

(i) Let U, V ∈ B; we need W ∈ B such that ιW ⊆ ιU ∩ ιV . Since ι is
injective, we can take W = U ∩ V .

(ii) Let U ∈ B; we need V ∈ B such that ιV · ιV ⊆ ιU . Choose V ∈ B such
that V × V ⊆ Ω and V 2 ⊆ U . Then for g, g′ ∈ V , we have

ι(g) · ι(g′) = ι(gg′) ∈ ιU.
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(iii) Let U ∈ B; we need V ∈ B such that (ιV )−1 ⊆ ιU . Choose V ∈ B such
that V −1 ⊆ U , for example V = U ∩ U−1. Then clearly (ιV )−1 ⊆ ιU .

(iv) Let h ∈ H and U ∈ B; we need V ∈ B such that h(ιV )h−1 ⊆ ιU . Since
H is generated by ιG we can reduce to the case h = ιg, g ∈ G. Choose
V ∈ B such that {g} × V ⊆ Ω, (gV )× {g−1} ⊆ Ω, and (gV )g−1 ⊆ U .

(v) (hausdorff requirement)
⋂
{ιU | U ∈ B} = {1H}. This holds because

G is hausdorff.

With H now being a topological group, ι is clearly continuous at 1. Then
the local homogeneity lemma 2.16 of [1] yields that ι is continuous at each
a ∈ G, and thus ι is a local group morphism.

Let L be any topological group and φ : G→ L a morphism of local groups.

Claim 3: Suppose x1, . . . , xm, y1, . . . , yn ∈ G and (x1, . . . , xm) ∼ (y1, . . . , yn).
Then φ(x1) · · ·φ(xm) = φ(y1) · · ·φ(yn).

It is routine to verify the claim when y = (y1, . . . , yn) is a contraction or
expansion of x = (x1, . . . , xm), and the general case then follows.

By Claim 3 we can define a group morphism φ̃ : H → L by

φ̃([g1, . . . , gn]) := φ(g1) · · ·φ(gn), (g1, . . . , gn ∈ G),

so φ̃ ◦ ι = φ. To check continuity of φ̃, let V be an open neighborhood of
the identity in L. Then U := φ−1(V ) is an open neighborhood of 1 in G

and ιU ⊆ φ̃−1(V ), so φ̃−1(V ) is a neighborhood of 1H in H. Thus φ̃ is
continuous. �

Let G be neat and globally associative. The universal property of ι,H
in Theorem 2.1 determines ι,H up to unique isomorphism over G, and so,
without claiming that G is globalizable, we may call H the globalization of
G. The construction in the proof of the theorem and the local homogeneity
lemma 2.16 of [1] show that ι : G → H is not just continuous but also
open. In particular ιG is open in H and ι is a homeomorphism onto ιG.
Accordingly, we identify G with ιG ⊆ H via ι. Note that G generates H.
The following properties of H are also evident from its construction.

Lemma 2.2.
(1) For any symmetric open neighborhood U of 1 in G with U ×U ⊆ Ω,

we have G|U = H|U (and so G|U is globalizable).
(2) If G is connected, then H is connected.
(3) G is locally compact if and only if H is locally compact.

Remark. Olver [4] has another variant of Mal’cev’s theorem, where G is a
local Lie group, G, Ω, Λ are connected, and instead of neatness, it is assumed
that for any x ∈ G and neighborhood U of 1, there are x1, . . . , xn ∈ U such
that (x1, . . . , xn) ; x.
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3. Contractive injective endomorphisms

In this section ϕ : G→ G is an injective morphism of local groups such that
limn→∞ ϕ

n(x) = 1 for all x ∈ G. (If ϕ is also open, then G is contractive.)

Lemma 3.1. Suppose that a1, . . . , an, a ∈ G and (a1, . . . , an) ; a. Then
also (ϕ(a1), . . . , ϕ(an)) ; ϕ(a).

Proof. We proceed by induction on n. The conclusion of the lemma is
obvious when n = 0 or 1. Suppose that n > 1. Choose i ∈ {1, . . . , n − 1}
and b′, b′′ ∈ G with (b′, b′′) ∈ Ω such that

(a1, . . . , ai) ; b′, (ai+1, . . . , an) ; b′′, b′ · b′′ = a.

By the induction hypothesis we have

(ϕ(a1), . . . , ϕ(ai)) ; ϕ(b′), (ϕ(ai+1), . . . , ϕ(an)) ; ϕ(b′′).

Also (ϕ(b′), ϕ(b′′)) ∈ Ω and ϕ(b′)ϕ(b′′) = ϕ(b′b′′) = ϕ(a), and therefore
(ϕ(a1), · · · , ϕ(an)) ; ϕ(a). �

The following is taken from [1]. By recursion on n we define the relation
(a1, . . . , an)→ b for a1, . . . , an, b ∈ G as follows:

• If n = 0, then (a1, . . . , an)→ b iff b = 1;
• (a1)→ b iff a1 = b;
• If n > 1, then (a1, . . . , an) → b iff for all i ∈ {1, . . . , n − 1} there

exist b′, b′′ ∈ G such that (a1, . . . , ai) → b′, (ai+1, . . . , an) → b′′,
(b′, b′′) ∈ Ω and b′ · b′′ = b.

An easy induction on n shows that for a1, . . . , an, b, c ∈ G, if

(a1, . . . , an)→ b, (a1, . . . , an) ; c,

then b = c. By Lemma 2.5 of [1] there is for each n > 0 a neighborhood Un

of 1 such that for all a1, . . . , an ∈ Un there is b ∈ G with (a1, · · · , an)→ b.

Corollary 3.2. G is globally associative.

Proof. Let a1, . . . , an, b, c ∈ G be such that

(a1, . . . , an) ; b and (a1, . . . , an) ; c.

It is enough to derive b = c. By Lemma 3.1 we have

(ϕm(a1), . . . , ϕm(an)) ; ϕm(b) and (ϕm(a1), . . . , ϕm(an)) ; ϕm(c),

for all m > 0. Choose m so large that ϕm(a1), . . . , ϕm(an) ∈ Un. It follows
that ϕm(b) = ϕm(c), and thus b = c. �

For the remainder of this section L denotes a topological group.

A near-automorphism of L is an injective, continuous, open group mor-
phism L → L. We call a near-automorphism τ : L → L contractive if
limn→∞ τ

n(x) = 1 for all x ∈ L.
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For example, x 7→ px : Zp → Zp is a contractive near-automorphism of
the compact additive group Zp of p-adic integers, and is not an auto-
morphism. Thus non-trivial compact groups may admit contractive near-
automorphisms, but do not admit contractive automorphisms; see [5], 1.8(b).

Remark 3.3. If τ : L → L is a contractive near-automorphism of L, then
τ is a contractive pseudo-automorphism of L viewed as a local group.

Lemma 3.4. Suppose τ : L → L is a near-automorphism. Let L1 be the
connected component of 1 in L. Then τ(L1) = L1 and so τ |L1 is an auto-
morphism of L1. If L has only finitely many connected components, then τ
is an automorphism of L.

Proof. Since τ is continuous and open, τ(L1) is a connected open subgroup
of L, and hence also closed in L, and thus τ(L1) = L1. The set L/L1 of
cosets is the set of connected components of L. Suppose L/L1 is finite. Since
τ(L1) = L1, the function

xL1 7→ τ(x)L1 : L/L1 → L/L1

is injective, hence bijective. It follows that τ is an automorphism of L. �

Lemma 3.5. Suppose G is neat and ϕ is open. Let H be the globalization
of G and let ϕ̃ : H → H be the unique extension of ϕ to an endomorphism
of H. Then the map ϕ̃ is open, and for D :=

⋃
n ker(ϕ̃n) we have:

(1) D is a discrete normal subgroup of H and ϕ̃−1(D) = D;
(2) ϕ̃ descends to a contractive near-automorphism

ϕD : H/D → H/D, ϕD(xD) := ϕ̃(x)D;

(3) for any symmetric open neighborhood U ⊆ G of 1 with U × U ⊆ Ω,
the image π(U) of U in H/D is open, and the map

x 7→ xD : U → H/D

is an isomorphism G|U → (H/D)|π(U) of local groups.

Proof. The openness of ϕ gives the openness of ϕ̃. It is easy to check that
D is a normal subgroup of H and ϕ̃−1(D) = D. Each ϕn is injective, so
D ∩ G = {1}, which gives (1), and so ϕ̃ descends to a near-automorphism
ϕD of H/D. To show that ϕD is contractive, let x ∈ H be given. Then
x = x1 · · ·xm, with x1, . . . , xm ∈ U , so ϕ̃n(x) = ϕn(x1) · · ·ϕn(xm) → 1 as
n→∞. Item (3) is straightforward. �

4. The structure of locally compact contractive local groups

In this section H is a topological group, and H1 is the connected component
of its identity. Our aim here is to prove local analogues of the following two
structure theorems for locally compact contractive groups.

Fact 4.1 ([3], (1.10) and [5], Lemma 1.4). Each locally compact connected
contractive group is a Lie group.
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Fact 4.2 ([5], Proposition 4.2). If H is locally compact and contractive,
then H is isomorphic as topological group to a product H1 × D, where D
is a closed, totally disconnected, normal subgroup of H, and H1 and D are
both contractive. (So H1 is a Lie group.)

Obviously, if a local group is locally isomorphic to a Lie group, then it is
locally compact and locally connected. A strong converse of this implication
holds for contractive local groups: Theorem 1.1 from the Introduction, which
is our local analogue of Fact 4.1. To prove this converse we need the next
lemma whose proof is close to [5], Lemma 1.4, and whose purpose is to reduce
to a situation where the results of the previous section are applicable.

Lemma 4.3. Suppose G is locally compact, ϕ is a contractive pseudo-
automorphism of G, and V is a neighborhood of 1 in G. Then there is
an open symmetric neighborhood U of 1 in G such that U ⊆ V , U ×U ⊆ Ω,
ϕ(U) ⊆ U , ϕ|U : U → G is open and injective, and limn→∞ ϕ

n(x) = 1 for
all x ∈ U .

Proof. By restricting G as indicated at the end of the Introduction we can
assume that G is symmetric. By shrinking V we may assume in addition:
V is compact, symmetric, V × V ⊆ Ω, and V is contained in an open
neighborhood W of 1 in G for which ϕ|W : W → G is open and injective,
and limn→∞ ϕ

n(x) = 1 for all x ∈W . For X ⊆ G, we set

ϕ−n(X) := {x ∈ G | ϕn(x) ∈ X},
while ϕn(X) has the usual meaning as a direct image; note that then for all
k ∈ Z we have ϕ(ϕk(X)) ⊆ ϕk+1(X). For l ∈ Z, set Vl :=

⋂
k≤l ϕ

k(V ). We
claim that then the family (Vl) has the following properties:

(1) Vl is symmetric, Vl ⊇ Vl+1 and ϕ(Vl) ⊆ Vl+1;
(2) W ⊆

⋃
l∈Z Vl, and Vl ∩ V has nonempty interior in G for some l;

(3) for every neighborhood X of 1 there exists n1 ∈ N such that for all
n ≥ n1 we have ϕn(V ) ⊆ X;

(4) (Vl | l ∈ Z) is a neighborhood base of 1.
Item (1) is straightforward to check. To prove (2), let x ∈ W . We can
take n0 ∈ N such that ϕn(x) ∈ V for all n ≥ n0, so x ∈ V−n0 . This proves
W ⊆

⋃
l∈Z Vl. Now each Vl is closed in G, so by Baire’s theorem some Vl∩V

has nonempty interior in G, which is (2).
To prove (3), let X be a neighborhood of 1. Take a compact symmetric

neighborhood A of 1 with A ⊆ V , V A × A ⊆ Ω, and A2 ⊆ X. By (1) and
(2), with A in place of V , we obtain n0 ∈ N such that

B := {x ∈ A | ϕn(x) ∈ A for all n ≥ n0}
has nonempty interior in G. Take b ∈ interior(B); so b−1 ∈ A. Let x ∈ V ;
then (xb−1, b) ∈ Ω and x = (xb−1)b. By the local homogeneity lemma 2.16
of [1] we can take an open neighborhood U = Ux of 1 such that

{x} × U , {b} × U ⊆ Ω, {xb−1} × bU ⊆ Ω, bU ⊆ B,
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and xU and bU are open neighborhoods of x and b respectively. Since V
is compact, we have x1, . . . , xm ∈ V such that V ⊆ x1Ux1 ∪ · · · ∪ xmUxm .
Choose n1 ∈ N such that n1 ≥ n0 and ϕn(x1b

−1), . . . , ϕn(xmb
−1) ∈ A for all

n ≥ n1. Since ϕn(B) ⊆ A for all n ≥ n0, and for i = 1, . . . ,m we have

xiUxi = (xib
−1)bUxi , bUxi ⊆ B,

it follows that ϕn(V ) ⊆ A2 ⊆ X for all n ≥ n1. This proves (3).
Applying (3) to X = V gives n1 ∈ N such that V ⊆ V−n for all n ≥ n1,

and thus V−n is a neighborhood of 1 for all n ≥ n1. Since ϕ is open near 1,
it follows from the last part of (1) that all Vl are neighborhoods of 1. Since
Vn ⊆ ϕn(V ) for all n, this yields (4) as a consequence of (3).

Thus U := interior(V0) satisfies the conclusion of the lemma. �

Proof of Theorem 1.1. Let G be locally compact and locally connected,
and let ϕ : G → G be a contractive pseudo-automorphism. Our job is to
show that then G is locally isomorphic to a contractive Lie group.

By Lemma 4.3 and a remark at the end of the Introduction we can reduce
to the case thatG is neat and ϕ is open and injective, with limn→∞ ϕ

n(x) = 1
for all x ∈ G. Then by Lemma 3.5 and with H, D, φD as in that lemma, G
is locally isomorphic to the topological group L = H/D, which has φD as a
contractive near-automorphism. Since G is locally connected, G is then also
locally isomorphic to L1, the connected component of the identity of L, and
L1 is a contractive Lie group by Lemma 3.4 and Fact 4.1. �

To obtain the local analogue of Fact 4.2, we need the next lemma, which is
essentially Fact 4.2 with a contractive near-automorphism of H instead of a
contractive automorphism.

Lemma 4.4. Suppose H is locally compact and τ is a contractive near-
automorphism of H. Then there exists a totally disconnected, closed, normal
subgroup P of H such that (h, p) 7→ hp : H1 × P → H is an isomorphism of
topological groups, τ(P ) ⊆ P , and τ |P is a contractive near-automorphism
of P .

Proof. By Lemma 3.4, τ |H1 is a contractive automorphism of H1, so by
Fact 4.1, H1 is a Lie group. The remainder of the proof is just like that of
Proposition 4.2 in [5]. �

Theorem 4.5. Suppose G is locally compact and contractive. Then G is
locally isomorphic to a direct product L × P , where L is a contractive Lie
group and P is a totally disconnected locally compact group with a contractive
near-automorphism.

Proof. As in the proof of Theorem 1.1 we reduce to the case that G is neat
and we have an injective open morphism ϕ : G → G of local groups such
that limn→∞ ϕ

n(x) = 1 for all x ∈ G. Let H, D and ϕD be as in Lemma 3.5.
By that lemma, G is locally isomorphic to H/D, and so it remains to apply
Lemma 4.4 to H/D and ϕD in the role of H and τ . �
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